OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN
|
|
- Lubomír Čech
- před 9 lety
- Počet zobrazení:
Transkript
1 Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty, kdy každý uzel grafu avštívíme právě jedou a pak se vrátíme do výchozího místa. V úloze obchodího cestujícího hledáme Hamiltoův cyklus s miimálím součtem ohodoceí hra. EULERŮV TAH JE TAH, KTERÝ OBSAHUJE KAŽDOU HRANU PRÁVĚ JEDNOU. EULERŮV CYKLUS JE TAKOVÝ CYKLUS, KDY KAŽDOU HRANOU V GRAFU PROJDEME PRÁVĚ JEDNOU, A PAK SE VRÁTÍME DO VÝCHOZÍHO MÍSTA. SETKÁVÁME SE S NÍM V ÚLOZE ČÍNSKÉHO LISTONOŠE. FLEURYHO ALGORITMUS je algoritmus pro hledáí Eulerova cyklu. Ve STATICKÝCH ÚLOHÁCH záme všechy požadavky předem, v DYNAMICKÝCH ÚLOHÁCH po výjezdu vozidel přicházejí další požadavky. V OKRUŽNÍCH ÚLOHÁCH euvažujeme velikost požadavků, zatímco v ROZVOZNÍCH ÚLOHÁCH ao, takže zde hraje roli i kapacita vozidla. OBCHODNÍ CESTUJÍCÍ (TRAVELLING SALESMAN PROBLEM) Uvažujme situaci, kdy máme zadáo výchozí místo a uzly 2,3 představující zákazíky, které musíme avštívit. Jejichž požadavky jsou ulové, čímž se myslí, že zde epracujeme s omezeími a kapacitu vozidla. Vzdáleost mezi uzly i a j začíme c ij. Matici vzdáleostí C získáme tak, že určíme ejkratší možou cestu mezi každou dvojicí uzlů, a to ať už jsou přímo spojey hraou, ebo e (v tom případě musíme zkrátka jet přes jiý uzel jako bychom dodefiovali umělou hrau, jejíž délka se rová ejkratší vzdáleosti mezi těmito uzly). Naším cílem je avštívit všechy zákazíky a vrátit se do výchozího místa tak, aby délka trasy byla miimálí. Jiak řečeo, chceme ajít Hamiltoův cyklus s miimálím součtem ohodoceí hra. Úloha obchodího cestujícího patří mezi NP-hard úlohy. Už pro pouhých 10 uzlů existuje přes sto tisíc růzých cest. Leka Fiřtová (2014)
2 Úloha obchodího cestujícího Zavedeme proměou x ij, která se bude rovat 1, pokud pojedeme z uzlu i do j, jiak 0. Úloha obchodího cestujícího může být formulováa jako symetrická ebo esymetrická. V symetrické úloze je matice vzdáleostí symetrická, tedy pro každou dvojici uzlů platí, že c ij = c ji. Jde vlastě o eorietovaý graf. Co se týče matice vzdáleostí a matice proměých x ij, pracujeme pouze s horí trojúhelíkovou maticí bez diagoály. V esymetrické úloze eí matice ákladů symetrická. Náklady a dopravu z i do j mohou být jié ež áklady a dopravu z j do i (apříklad se ěkde mohou vyskytovat jedosměrky apod.). V modelu existují jak proměé x ij, tak x ji, pracujeme s celou maticí. Jde o orietovaý graf. Symetrickou úlohu lze řešit i jako esymetrickou, aopak to ale eplatí. MODEL PRO NESYMETRICKOU ÚLOHU FORMULUJEME NÁSLEDOVNĚ: z = i=1 j=1 c ij x ij mi Sažíme se, aby součet vzdáleostí byl miimálí. j=1 x ij = 1 i = 1,2 (1) Pro každý uzel musí platit, že z ěj právě jedou vyjedeme. i=1 x ij = 1 j = 1,2 (2)Pro každý uzel musí platit, že do ěj právě jedou vjedeme. x ij {0, 1} i, j = 1,2 (3) Pojedeme z uzlu i do uzlu j? Problém takto formulovaé úlohy je, že by ve výsledém řešeí mohlo vzikout ěkolik parciálích cyklů, a proto je uté do úlohy ještě přidat tzv. aticyklické podmíky. Například uvažujme ásledující graf (bude použit i v dalším příkladu, takže je dobré se a ěj podívat pořádě). Bez aticyklických podmíek by řešeí vypadalo ásledově: Leka Fiřtová (2014)
3 Úloha obchodího cestujícího Tohle eí řešeí, které chceme. Proto je potřeba přidat ěkterou z ásledujících aticyklických podmíek: Miller-Tucker-Zemli: Zavedeme proměou u, která určuje pořadí uzlu ve výsledé optimálí trase. Aby řešeí emohlo obsahovat parciálí cykly, musí platit ásledující podmíka: u i u j + x ij 1 i = 1,2, j = 2,3, i j V příkladu uvedeém výše máme 5 uzlů, tz. = 5. Pokud epojedeme z uzlu i do uzlu j (tz. x ij = 0), bude podmíka splěa vždy. Pokud z uzlu i do uzlu j pojedeme, musí platit: pořadí uzlu j pořadí uzlu i 1 Jestliže má toto platit pro všechy uzly i = 1,2, j = 2,3, i j, pak emohou vzikout parciálí cykly. Řešeí příkladu výše po zahrutí uvedeé podmíky vypadá ásledově: Datzig-Fulkerso-Johaso Ozačme V možiu všech uzlů a U podmožiu tvořeou ěkterými z těchto uzlů. Aticyklickou podmíku můžeme zapsat takto: iu ju x ij U 1, U V, 2 U 2 V příkladu výše, kde = 5, existuje 10 možých podmoži s alespoň dvěma a ejvýše třemi uzly. U = 2: (1,2), (1,3), (1,4),(1,5),(2,3),(2,4), (2,5),(3,4),(3,5),(4,5) U = 3: (1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5) Podmožiami se čtyřmi uzly se emusíme zabývat: mimo tuto podmožiu by byl je jede zbývající uzel, kde cyklus vzikout emůže. Podmíka vlastě říká, že mezi uzly daé podmožiy musíme jet méěkrát, ež kolik jich v této podmožiě je. Například mezi třemi uzly emůžeme jet třikrát, ale ejvýše dvakrát. A to musí platit pro všechy podmožiy o velikosti alespoň 2 a ejvýše 2. Tak třeba v podmožiě (1,2,3) díky tomu emůže vzikout parciálí cyklus, protože pokud by vzikl apříklad cyklus jako a obrázku výše, pak by x 12 + x 23 + x 13 = 3 ebylo meší ebo rovo U 1 = 2. Podmíku můžeme zapsat i takto: x 1, U V, 2 U 2 iu ij jv U V této formě podmíka říká, že aspoň mezi jedím uzlem z daé podmožiy a jedím uzlem mimo daou podmožiu musí existovat hraa, po které pojedeme. Například parciálí cykly (1,2,3) a (4,5) tudíž emohou vzikout, protože ai jeda z proměých x 14, x 15, x 51, x 41, x 24, x 42, x 25, x 52, x 34, x 43, x 35,x 53 eí rova jedé, takže jejich součet eí větší ebo rove 1. Leka Fiřtová (2014)
4 Úloha obchodího cestujícího!uvažujme výše uvedeý příklad zázorěý v grafu. Naším úkolem je formulovat úlohu jako esymetrický model obchodího cestujícího spustitelý v Ligu (šlo by to formulovat i jako symetrická úloha). model: sets: uzel/1..5/:poradi; cesta(uzel,uzel):aklady,x; edsets data:!pracujeme s celou maticí ákladů (formulovao jako esymetrická úloha); aklady = ; eddata mi aklady*x); x(i,j)) = 1);!do každého uzlu jedou vjedeme a jedou z x(i,j)) = j#ne#1#and#i#ne#j: poradi(i) - poradi(j) + 5*x(i,j) <=4);!smyčkové @for(cesta(i,j) i#eq#j: x(i,j) = 0); ed Leka Fiřtová (2014)
5 Úloha obchodího cestujícího MODEL PRO SYMETRICKOU ÚLOHU FORMULUJEME NÁSLEDOVNĚ: Zavedeme opět proměou x ij, která se bude rovat 1, pokud pojedeme z uzlu i do j, jiak 0. Pracujeme ale pouze s proměými, kde i = 1,2-1, j = i+1,i+2. 1 z = i=1 j=i+1 c ij x ij mi Sažíme se, aby byl součet ujeté vzdáleosti miimálí. Pracujeme pouze s horí trojúhelíkovou maticí. i 1 j=1 x ji + k=i+1 x ik = 2 i = 1,2 (1) Pro každý uzel musí platit, že do ěj právě jedou vjedeme a jedou z ěj vyjedeme. Proto apříklad pro 5 uzlů musí mezi proměými x12,x13,x14,x15 být právě dvě rovy jedé, protože do uzlu 1 musíme jedou přijet a jedou z ěj vyjet. x ij {0, 1} i = 1,2-1, j = i+1,i+2 (2) Pojedeme z uzlu i do uzlu j? xij U 1, U V, 3 U 3, iu ju i j (3) Posledí podmíkou je opět aticyklická podmíka. Ad podmíka (1): apříklad pro 5 uzlů bychom v matici proměých sčítali takto: Ad podmíka (3): Aticyklická podmíka odpovídá jedé z aticyklických podmíek esymetrické úlohy, je v í jsou trojky místo dvojek. Důvod je te, že ai mezi dvěma uzly emůže v symetrické úloze vzikout parciálí cyklus, protože v modelu jsou orietovaé hray, takže pro vzik cyklu potřebujeme uzly alespoň tři. Existují určité speciálí typy úlohy obchodího cestujícího. V metrické úloze obchodího cestujícího musí pro všecha i, j, k platit erovost c ij + c jk c ik. V Euklidovské úloze obchodího cestujícího musí platit vztah c ij = (X i X j ) 2 + (Y i Y j ) 2, kde X i, X j jsou souřadice uzlu X, Y i, Y j pak souřadice bodu Y. V otevřeé úloze obchodího cestujícího se vozidlo evrací do výchozího místa. Leka Fiřtová (2014)
6 Úloha obchodího cestujícího V úloze s časovými oky avíc obchodí cestující musí avštívit zákazíky pouze v určitém časovém itervalu. Začátek a koec itervalu požadovaé doby ávštěvy pro i-tého zákazíka ozačme a i, b i, tz. zákazíka musíme avštívit v časovém okě <a i,b i>. K matici c ij musíme mít tudíž avíc k dispozici matici d ij, v íž budou iformace o době přejezdu mezi jedotlivými uzly. Zavedeme proměou x ij, která se bude rovat 1, pokud pojedeme z uzlu i do j, jiak 0. Dále zavedeme proměou t i, což bude čas, v ěmž je avštíve uzel i. Celý model má tvar: z = i=1 j=1 c ij x ij mi Sažíme se, aby součet vzdáleostí byl miimálí. j=1 x ij = 1 i = 1,2 (1) Pro každý uzel musí platit, že z ěj právě jedou vyjedeme. i=1 x ij = 1 j = 1,2 (2)Pro každý uzel musí platit, že do ěj právě jedou vjedeme. x ij {0, 1} i, j = 1,2 (3) Pojedeme přes z uzlu i do uzlu j? t1 = 0 (4) Čas výjezdu astavíme a ulu. ai ti bi i = 2,3 (5) Pro všechy uzly (kromě prvího) musí platit, že čas, ve kterém jej avštívíme, spadá do požadovaého časového oka. ti + dij M(1 xij) tj i = 1,2, j = 2,3, i j (6) M je ějaké velké číslo, apříklad by to mohlo být Pokud ejedeme z i do j, pak bude xij = 0 a podmíka bude splěa vždy. Pokud ale pojedeme z i do j, pak musí platit, že uzel j eavštívíme dříve, ež kolik čií čas ávštěvy uzlu i plus doba přejezdu z i do j. ZDROJE: Ig. J. Fábry, Ph.D.: předášky 4EK314 Diskrétí modely, Leka Fiřtová (2014)
ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF
Úloha číského listooše ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF Uvažujme situaci, kdy exstuje ějaký výchozí uzel a další uzly spojeé hraami (může jít o cesty, ulice
MATICOVÉ HRY MATICOVÝCH HER
MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem
je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí
Kapitola 5 - Matice (nad tělesem)
Kapitola 5 - Matice (ad tělesem) 5.. Defiice matice 5... DEFINICE Nechť T je těleso, m, N. Maticí typu m, ad tělesem T rozumíme zobrazeí možiy {, 2,, m} {, 2,, } do T. 5..2. OZNAČENÍ Možiu všech matic
TOKY V GRAFU MAXIMÁLNÍ TOK SÍTÍ, MINIMALIZACE NÁKLADŮ SPOJENÝCH S DANOU HODNOTOU TOKU, FIXNÍ NÁKLADY, PŘEPRAVNÍ (TRANSHIPMENT) PROBLÉM.
TOKY V GRAFU MAXIMÁLNÍ TOK SÍTÍ, MINIMALIZACE NÁKLADŮ SPOJENÝCH S DANOU HODNOTOU TOKU, FIXNÍ NÁKLADY, PŘEPRAVNÍ (TRANSHIPMENT) PROBLÉM. Graf je útvar, terý je možo zázorit obrázem v roviě pomocí bodů (uzly
je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že
HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO
HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO Heuristické algoritmy jsou speciálními algoritmy, které byly vyvinuty pro obtížné úlohy, jejichž řešení je obtížné získat v rozumném čase. Mezi
VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ
Vlastosti úloh celočíselého programováí VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ PRINCIP ZESILOVÁNÍ NEROVNOSTÍ A ZÁKLADNÍ METODY. METODA VĚTVENÍ A HRANIC. TYPY ÚLOH 1. Úloha lieárího programováí: max{c
DISTRIBUČNÍ ÚLOHY. Cílem pokrývacího problému je vybrat firmy tak, aby byly co nejlevněji pokryty všechny úkoly.
Distribučí úlohy DISTRIBUČNÍ ÚLOHY KONTEJNEROVÝ DOPRAVNÍ PROBLÉM, ROZŠÍŘENÁ ÚLOHA BATOHU (BIN PACKING PROBLEM), ÚLOHA OPTIMÁLNÍHO ROZMÍSTĚNÍ ZAŘÍZENÍ, ÚLOHA O POKRYTÍ. POKRÝVACÍ A DĚLÍCÍ PROBLÉM (SET COVERING
základním prvkem teorie křivek v počítačové grafice křivky polynomiální n
Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky
6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.
6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola
3. Lineární diferenciální rovnice úvod do teorie
3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se
Komplexní čísla. Definice komplexních čísel
Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují
6. Posloupnosti a jejich limity, řady
Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme
1 Trochu o kritériích dělitelnosti
Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak
Lineární programování
Lieárí programováí Adjugovaý problém lieárího programováí V případě řešeí problému lieárího programováí LP ma{ c T : A b 0} získáváme výchozí přípustou jedotkovou bázi u doplňkových proměých a za předpokladu
2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT
2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic
1 Uzavřená Gaussova rovina a její topologie
1 Uzavřeá Gaussova rovia a její topologie Podobě jako reálá čísla rozšiřujeme o dva body a, rozšiřujeme také možiu komplexích čísel. Nepřidáváme však dva body ýbrž je jede. Te budeme začit a budeme ho
Diskrétní matematika
Diskrétí matematika Biárí relace, zobrazeí, Teorie grafů, Teorie pravděpodobosti Diskrétí matematika látka z I semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia Obsah Biárí relace2
4EK212 Kvantitativní management 4. Speciální úlohy lineárního programování
4EK212 Kvatitativí maagemet 4. Speciálí úlohy lieárího programováí 3. Typické úlohy LP Úlohy výrobího pláováí (alokace zdrojů) Úlohy fiačího pláováí (optimalizace portfolia) Směšovací problémy Nutričí
Vzorový příklad na rozhodování BPH_ZMAN
Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha
n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0
Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada
Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti
8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:
jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých
9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie
Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu):
Pricip matematické idukce PMI) se systematicky probírá v jié části středoškolské matematiky. a tomto místě je zařaze z důvodu opakováí matka moudrosti) a proto, abychom ji mohli bez uzarděí použít při
Sekvenční logické obvody(lso)
Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách
Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254
Evropský sociálí fod Praha & EU: Ivestujeme do vaší budoucosti Teto materiál vzikl díky Operačímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Maažerské kvatitativí metody II - předáška č.1 - Dyamické
DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM
Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře
1.3. POLYNOMY. V této kapitole se dozvíte:
1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí
f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )
DSM Cv 9 Vytvořující fukce Vytvořující fukcí ekoečé poslouposti a0, a,, a, reálých čísel mííme formálí ekoečou řadu =. f a i= 0 i i Příklady: f = + = + + + + + ) Platí: (biomická věta). To zameá, že fukce
Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b
Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a
Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
4EK311 Operační výzkum. 4. Distribuční úlohy LP část 2
4EK311 Operačí výzkum 4. Distribučí úlohy LP část 2 4.1 Dopraví problém obecý model miimalizovat za podmíek: m z = c ij x ij i=1 j=1 j=1 m i=1 x ij = a i, i = 1, 2,, m x ij = b j, j = 1, 2,, x ij 0, i
Spojitost a limita funkcí jedné reálné proměnné
Spojitost a limita fukcí jedé reálé proměé Pozámka Vyšetřeí spojitosti fukce je možo podle defiice převést a výpočet limity V dalším se proto soustředíme je problém výpočtu limit Pozámka Limitu fukce v
6. FUNKCE A POSLOUPNOSTI
6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat
Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
8.2.1 Aritmetická posloupnost
8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž
Iterační výpočty projekt č. 2
Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Optimalizace trasy při revizích elektrospotřebičů
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Hlavní specializace: Ekonometrie a operační výzkum Název diplomové práce Optimalizace trasy při revizích elektrospotřebičů Diplomant: Vedoucí
ŘADY Jiří Bouchala a Petr Vodstrčil
ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická
14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou
4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,
Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.
Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího
23. Mechanické vlnění
3. Mechaické vlěí Mechaické vlěí je děj, při kterém částice pružého prostředí kmitají kolem svých rovovážých poloh a teto kmitavý pohyb se přeáší (postupuje) od jedé částice k druhé vlěí může vzikout pouze
Iterační metody řešení soustav lineárních rovnic
Iteračí metody řešeí soustav lieárích rovic Matice je: diagoálě domiatí právě tehdy, když pozitivě defiití (symetrická matice) právě tehdy, když pro x platí x, Ax a ij Tyto vlastosti budou důležité pro
Vlastnosti posloupností
Vlstosti posloupostí Nekoečá posloupost je fukce defiová v oboru přirozeých čísel Z toho plye, že kždá posloupost má prví čle (zčíme ), koečé poslouposti mjí i čle posledí Př Vypište prví čtyři čley poslouposti
Přednáška 7, 14. listopadu 2014
Předáška 7, 4. listopadu 204 Uvedeme bez důkazu klasické zobecěí Leibizova kritéria (v ěmž b = ( ) + ). Tvrzeí (Dirichletovo a Abelovo kritérium). Nechť (a ), (b ) R, přičemž a a 2 a 3 0. Pak platí, že.
P. Girg. 23. listopadu 2012
Řešeé úlohy z MS - díl prví P. Girg 2. listopadu 202 Výpočet ity poslouposti reálých čísel Věta. O algebře it kovergetích posloupostí.) Necht {a } a {b } jsou kovergetí poslouposti reálých čísel a echt
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;
14. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,
DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry
MATEMATICKÁ INDUKCE. 1. Princip matematické indukce
MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost
1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL
Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,
1.7.4 Těžiště, rovnovážná poloha
74 ěžiště, rovovážá poloha Předpoklady: 00703 Př : Polož si sešit a jede prst tak, aby espadl Záleží a místě, pod kterým sešit podložíš? Proč? Musíme sešit podložit prstem přesě uprostřed, jiak spade Sešit
Užití binomické věty
9..9 Užití biomické věty Předpoklady: 98 Často ám z biomického rozvoje stačí pouze jede kokrétí čle. Př. : x Urči šestý čle biomického rozvoje xy + 4y. Získaý výraz uprav. Biomický rozvoj začíá: ( a +
3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy
3.1 Zadáí: 3. Sekvečí obvody 1. Navrhěte a realizujte obvod geerující zadaou sekveci. Postupujte ásledově: a) Vytvořte vývojovou tabulku pro zadaou sekveci b) Miimalizujte budící fukce pomocí Karaughovy
2. Náhodná veličina. je konečná nebo spočetná množina;
. Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité
SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU
SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU Matematické modelováí (KMA/MM Téma: Model pohybu mraveců Zdeěk Hazal (A8N18P, zhazal@sezam.cz 8/9 Obor: FAV-AVIN-FIS 1. ÚVOD Model byl převzat z kihy Spojité modely v biologii
Znegujte následující výroky a rozhodněte, jestli platí výrok, nebo jeho negace:
. cvičeí Příklady a matematickou idukci Dokažte:.! . Návody:. + +. + i i i i + + 4. + + + + + + + + Operace s možiami.
DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY
DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH IVAN KŘIVÝ ČÍSLO OPERAČNÍHO PROGRAMU: CZ..07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST
I. TAYLORŮV POLYNOM. Taylorovy řady některých funkcí: Pro x R platí: sin(x) =
Taylorovy řady ěkterých fukcí: I. TAYLORŮV POLYNOM Pro R platí: si) = 2+ = ), cos) = 2 2+)! = ), 2)! e = =.! Pro, : log + ) = = ) Pro, ) a a R: + ) a = a ) =, kde ) a = a a ) a 2) a +).!. Nalezěte Taylorův
9.1.12 Permutace s opakováním
9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.
5. Posloupnosti a řady
Matematická aalýza I předášky M. Málka cvičeí A. Hakové a R. Otáhalové Zimí semestr 2004/05 5. Poslouposti a řady 5.1 Limita a hromadé hodoty. Mějme posloupost x ) prvků Hausdorffova topologického prostoru
Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém
Obsah přednášky Mgr. Květuše Sýkorová Optimalizace Lineární programování Distribuční úlohy Okružní problém KI Př UJEP Ústí nad Labem Nederivační metody Metody 1D optimalizace Derivační metody Optimalizace
Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat
Komplexí čísla Hoza Krejčí Abstrakt. Co jsou to komplexí čísla? K čemu se používají? Dá se s imi dělat ěco cool? Na tyto a další otázky se a předášce/v příspěvku pokusíme odpovědět. Proč vzikla komplexí
Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.
2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se
Matematická analýza I
1 Matematická aalýza ity posloupostí, součty ekoečých řad, ity fukce, derivace Matematická aalýza I látka z I. semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia a další 2 Matematická
Masarykova univerzita Přírodovědecká fakulta
Masarykova uiverzita Přírodovědecká fakulta Zuzaa Došlá, Vítězslav Novák NEKONEČNÉ ŘADY Bro 00 c Zuzaa Došlá, Vítězslav Novák, Masarykova uiverzita, Bro, 998, 00 ISBN 80-0-949- 3 Kapitola 3 Řady absolutě
Testování statistických hypotéz
Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím
8.2.1 Aritmetická posloupnost I
8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu
EKONOMETRIE 9. přednáška Zobecněný lineární regresní model
EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ
Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem
Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme
IAJCE Přednáška č. 12
Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích
Rozhodovací stromy. Úloha klasifikace objektů do tříd. Top down induction of decision trees (TDIDT) - metoda divide and conquer (rozděl a panuj)
Rozhodovací stromy Úloha klasifikace objektů do tříd. Top dow iductio of decisio trees (TDIDT) - metoda divide ad coquer (rozděl a pauj) metoda specializace v prostoru hypotéz stromů (postup shora dolů,
odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.
10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé
Plochy počítačové grafiky
II Iterpolačí plochy Bezierovy pláty ad obdélíkovou a trojúhelíkovou sítí Recioálí Bezierovy pláty B-splie NURBS Kostrukce a zadáí plochy hraičí křivky sítí bodů Kiematicky vytvořeé křivky rotačí plochy
Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková
Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují
f B 6. Funkce a posloupnosti 3 patří funkci dané předpisem y = 2 x + 3. [všechny] 1) Rozhodněte, která z dvojic [ ;9][, 0;3 ][, 2;7]
6. Fukce a poslouposti ) Rozoděte, která z dvojic [ ;9[, 0; [, ; patří fukci daé předpisem y +. [všecy ) Auto má spotřebu 6 l beziu a 00 km. Na začátku jízdy mělo v plé ádrži 6 l beziu. a) Vyjádřete závislost
V. Normální rozdělení
V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,
Intervalové odhady parametrů
Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf
7. Analytická geometrie
7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp
3. DIFERENCIÁLNÍ ROVNICE
3 DIFERENCIÁLNÍ ROVNICE Difereciálí rovice (dále je DR) jsou veli důležitou částí ateatické aalýz, protože uožňují řešit celou řadu úloh z fzik a techické prae Občejé difereciálí rovice: rovice, v íž se
Generování dvojrozměrných rozdělení pomocí copulí
Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta
Přednáška 7: Soustavy lineárních rovnic
Předáška 7: Soustavy lieárích rovic 7.1. Příklad (geometrie v roviě) Rozhoděte o vzájemé poloze přímky p : x y 1 a přímky a) a : x y 3, b) b : 2x 2y 3, c) c :3x 3y 3. Jak víme ze středí školy, lze o vzájemé
Pravděpodobnostní modely
Pravděpodobostí modely Meu: QCEpert Pravděpodobostí modely Modul hledá metodou maimálí věrohodosti (MLE Maimum Likelihood Estimate) statistický model (rozděleí) který ejlépe popisuje data. Je přitom k
8.1.3 Rekurentní zadání posloupnosti I
8.. Rekuretí zadáí poslouposti I Předpoklady: 80, 80 Pedagogická pozámka: Podle mých zkušeostí je pro studety pochopitelější zavádět rekuretí posloupost takto (sado kotrolovatelou ukázkou), ež dosazováím
4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností
4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.
5. Lineární diferenciální rovnice n-tého řádu
5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá
8. Analýza rozptylu.
8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,
Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Ivaa Pultarová Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
11. přednáška 16. prosince Úvod do komplexní analýzy.
11. předáška 16. prosice 009 Úvod do komplexí aalýzy. Tři závěrečé předášky předmětu Matematická aalýza III (NMAI056) jsou věováy úvodu do komplexí aalýzy. Což je adeseá formulace eboť časový rozsah ám
Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení
Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází
1. Číselné obory, dělitelnost, výrazy
1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá
Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2
Iterpolace pomocí sple křvky dáo: bodů v rově úkol: alézt takovou křvku, která daým body prochází y f f 2 f 0 f x0 x... x 2 x x Iterpolace pomocí sple křvky evýhodou polyomálí terpolace změa ěkterého z
STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ
STEJNOMĚRNÁ KONVERGENCE Ztím ebylo v těchto textech věováo příliš pozorosti kovergeci fukcí, t jko limit poslouposti ebo součet řdy. Jik byl kovergece poslouposti fukcí ebo řdy brá jko bodová kovergece.
Intervalové odhady parametrů některých rozdělení.
4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:
6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte:
6.2. ČÍSELNÉ ŘADY V této kpitole se dozvíte: jk defiujeme číselou řdu; defiici kovergece řdy jejího součtu; jk vypdá ritmetická, geometrická hrmoická řd jk je to s jejich kovergecí; jk zí utá podmík kovergece
Zobrazení čísel v počítači
Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke
Kapitola 4 Euklidovské prostory
Kapitola 4 Euklidovské prostory 4.1. Defiice euklidovského prostoru 4.1.1. DEFINICE Nechť E je vektorový prostor ad tělesem reálých čísel R,, : E 2 R. E se azývá euklidovský prostor, platí-li: (I) Pro
Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus
Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová
Cvičení 1.1. Dokažte Bernoulliovu nerovnost (1 + x) n 1 + nx, n N, x 2. Platí tato nerovnost obecně pro všechna x R a n N?
1 Prví prosemiář Cvičeí 1.1. Dokažte Beroulliovu erovost (1 + x) 1 + x, N, x. Platí tato erovost obecě pro všecha x R a N? Řešeí: (a) Pokud předpokládáme x 1, pak lze řešit klasickou idukcí. Pro = 1 tvrzeí