Aritmetická posloupnost

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Aritmetická posloupnost"

Transkript

1 /65

2 /65 Obsh Obsh... Aritmetická posloupost.... Soustv rovic, součet.... AP - předpis AP - součet AP - prvoúhlý trojúhelík Součet čísel v itervlu... 8 Geometrická posloupost Soustv rovic I Soustv rovic II Součet geometrické poslouposti I Součet geometrické poslouposti II Součet ekoečé řdy Užití geometrické poslouposti... Souřdice bodů v roviě v prostoru.... Vzdáleost bodů v roviě.... Vzdáleost bodů v prostoru.... Střed úsečky v roviě.... Střed úsečky v prostoru Určeí souřdice bodu v roviě pro dou vzdáleost Určeí bodu úsečky pro dý střed Užití vzdáleosti středu úsečky... 6 Vektory v roviě v prostoru Délk těžice v trojúhelíku, obsh prvoúhlého trojúhelík Vektory v roviě z dých bodů, vektory kolmé Sklárí souči vektorů - kolmost Úhel vektorů v roviě Úhel vektorů v prostoru Úhel v trojúhelíku Vektory v prostoru z dých bodů, ásobeí vektoru číslem... 9 Rovice přímky v roviě.... Prmetrická rce přímky stry trojúhelík.... Prmetrická rce přímky t c Prmetrická rce přímky v c Prmetrická rce osy stry trojúhelík Obecá rce přímky stry trojúhelík Obecá rce přímky t bc Obecá rce přímky v bc Obecá rce osy stry trojúhelík Prmetrická rce rovoběžky se strou trojúhelík Obecá rce rovoběžky se strou trojúhelík Prmetrická obecá rce přímky t c Prmetrická rce přímky dé bodem směrem Prmetrická rce přímky dé bodem ormálou Prmetrická rce přímky dé dvěm body Obecá rce přímky dé bodem ormálou Obecá rce přímky dé bodem směrem Obecá rce přímky dé dvěm body Úhel vektorů... 9 Vzájemá poloh dvou přímek v roviě Růzoběžé - obecá obecá přímk Růzoběžé - prmetrická obecá přímk Rovoběžé - prmetrická obecá Totožé - prmetrická obecá...

3 /65. Totožé - prmetrická prmetrická... Těžiště, střed kružice opsé, vzdáleost bodu od přímky.... Těžiště trojúhelík Střed kružice opsé Vzdáleost bodu od přímky... 5 Obsh trojúhelík Obsh trojúhelík... 6 Výrzy s fktoriálem Úprvy čísel Kráceí zlomků Sčítáí zlomků Úprvy kombičích čísel Důkzy... Rovice s fktoriálem.... Rovice s fktoriálem.... Rovice s kombičími čísly.... Rovice s vytýkáím.... Růzé... Permutce, vrice, kombice Vrice bez opkováí Vljk Permutce Vrice s opkováím Vrice bez, s opkováím - čísl s ulou či podmíkou Dělitelost Kombice Kombice bodů Permutce s opkováím Kombice s opkováím Růzé... 5 Biomická vět (5) Obecá biomická vět Zákldí biomický rozvoj I Zákldí biomický rozvoj II Užití biomické věty I Užití biomické věty II Určeí biomického čleu Určeí biomického koeficietu... 5 Klsická prvděpodobost Mice ebo děti Prvděpodobost výběru ze skupiy Prvděpodobost výběru ze skupiy se součiem Kostk kostičky Prvděpodobost výběru dvojciferého čísl Prvděpodobost výběru čísl Hod dvěm kostkmi Hod třemi kostkmi Růzé... 6 Podmíěá prvděpodobost () Prvděpodobost doplňkového jevu - vrice Prvděpodobost doplňkového jevu - kombice Násobeí prvděpodobostí Násobeí prvděpodobostí Sčítáí prvděpodobostí - vrice Sčítáí prvděpodobostí - kombice Růzé... 6 Mgr. Václv Horský, 006

4 /65 Aritmetická posloupost. Soustv rovic, součet ) Určete součet deseti čleů ritmetické poslouposti, je-li dáo: 6 VH:, d, S0 5 ) Určete součet deseti čleů ritmetické poslouposti, je-li dáo: VH: 0, d, S0 90 ) Určete součet dvácti čleů ritmetické poslouposti, je-li dáo: 6 5, d, S VH: 96 ) Určete součet deseti čleů ritmetické poslouposti, je-li dáo: VH:, d, S0 5 5) Určete součet osmi čleů ritmetické poslouposti, je-li dáo: VH:, d, S8 6) Určete součet dvácti čleů ritmetické poslouposti, je-li dáo: VH:, d, S 0 7) Určete součet jedeácti čleů ritmetické poslouposti, je-li dáo: , d, S VH: 8) Určete součet třiácti čleů ritmetické poslouposti, je-li dáo: VH:, d, S 60 9) V ritmetické poslouposti určete osmý čle, je-li dáo: 7 88 VŠE:, d, 8 0) V ritmetické poslouposti určete jedeáctý čle, je-li dáo: VŠE:, d, 9 ) V ritmetické poslouposti určete desátý čle, je-li dáo: VŠE:, d, 0 ) V ritmetické poslouposti určete devátý čle, je-li dáo: 7 9 VŠE:, d, 9 5

5 5/65 ) V ritmetické poslouposti určete S 8, je-li dáo: 8 d 5 5 Rdl: 7 5, d 5, S8 5 ) V ritmetické poslouposti určete S, je-li dáo: d 6 d, 69 Rdl:, S 5) V ritmetické poslouposti určete S 9, je-li dáo: d 9 87 Rdl: 5, d, S9 6) V ritmetické poslouposti určete S, je-li dáo: d 8 7 Rdl: 9, d 8, S 7) V ritmetické poslouposti určete S 5, je-li dáo: 7 8 5, d 5, S5 Rdl: 570 8) V ritmetické poslouposti určete S 7, je-li dáo: , d 7, S7 Rdl: 57 9) V ritmetické poslouposti určete S, je-li dáo: 0 0, d 6, S Rdl: 76 0) V ritmetické poslouposti určete S, je-li dáo: 5 0, d, S Rdl: 57 ) V ritmetické poslouposti určete prví čle, je-li dáo: Rdl:, d ) V ritmetické poslouposti určete prví čle, je-li dáo: Rdl: 7, d ) V ritmetické poslouposti určete prví čle, je-li dáo: 9 9 Rdl:, d ) V ritmetické poslouposti určete prví čle, je-li dáo: 5 7 Rdl: 8, d. AP - předpis ) Je-li dá posloupost ritmetická, určete d S 5:

6 6/65 75 Rdl: 7, d, S5 ) Je-li dá posloupost ritmetická, určete d S 5: 5 Rdl: d, S 80 5, 5 5 ) Je-li dá posloupost ritmetická, určete d S 5: Rdl: eí ritmetick á ) Je-li dá posloupost ritmetická, určete d S 5: 5 5, 5 5 Rdl: d, S 0 5) Je-li dá posloupost ritmetická, určete d S 5: 65 Rdl:, d, S5 6) Je-li dá posloupost ritmetická, určete d S 5: Sb-MM:, d, S 875 str.89/.-) 5 7) Je-li dá posloupost ritmetická, určete d S 5: Sb-MM: eí ritmetick á str.89/.-b) 8) Je-li dá posloupost ritmetická, určete d S 5: Sb-MM: eí ritmetick á str.89/.-c) 9) Je-li dá posloupost ritmetická, určete d S 5: Sb-MM: eí ritmetick á str.89/.-d). AP - součet ) Určete, je-li dáo: 0, d, S 65 Sb-MM: 0 0, 0, str.89/.-b) ) Určete, je-li dáo:

7 7/65, d, S 0 VH: 0 0,, 0 ) Určete, je-li dáo: 0, d, S 56 VH: 56 0,, ) Určete, je-li dáo:, d, S 5 VH: 90 0, 0, 9 5) Určete, d, je-li dáo:,, S 87 Sb-MM:, d str.89/.-) 6) Určete, je-li dáo:, d, S 0 0 0, 0, VH: 7) Určete, je-li dáo:, d, S 7 0,, VH: 8) Určete, je-li dáo:, d, S ,, VH: 9 9) Určete, je-li dáo:, d, S 7 6 0,, VH: 9 0) Určete, je-li dáo:, d, S VH: 0,, ) Určete, je-li dáo:, d, S 8 8 0, 8, UO: 6 ) Určete, je-li dáo: 0, d, S 56 VH: 8 0,, 7. AP - prvoúhlý trojúhelík ) Délky str prvoúhlého trojúhelík tvoří ritmetickou posloupost. Delší odvěs je m. Určete délky zbývjících str. Rdl: 9m, m, 5m ) Délky str prvoúhlého trojúhelík tvoří ritmetickou posloupost. Delší odvěs je dm. Určete délky zbývjících str. Sb-MM: 8dm, dm, 0dm str.89/.5 ) Délky str prvoúhlého trojúhelík tvoří ritmetickou posloupost. Nejkrtší str je cm. Určete délky zbývjících str.

8 8/65 VH: cm, 6cm, 0cm ) Délky str prvoúhlého trojúhelík tvoří ritmetickou posloupost. Přepo má délku 0 mm. Určete délky zbývjících str. VH: 6mm, 8mm, 0mm 5) Délky str prvoúhlého trojúhelík tvoří ritmetickou posloupost. Přepo má délku 5 cm. Určete délky zbývjících str. VH: cm, 8cm, 5cm 6) Délky str prvoúhlého trojúhelík tvoří ritmetickou posloupost. Nejkrtší str je cm. Určete délky zbývjících str. VH: cm, cm, 5cm 7) Délky str prvoúhlého trojúhelík tvoří ritmetickou posloupost. Delší odvěs je 6 cm. Určete délky zbývjících str. VH: cm, 6cm, 0cm 8) Délky str prvoúhlého trojúhelík tvoří ritmetickou posloupost. Krtší odvěs je 6 cm. Určete délky zbývjících str. Rdl: 6cm, 8cm, 0cm 9) Délky str prvoúhlého trojúhelík tvoří ritmetickou posloupost. Rozdíl délek odvěse je 5 cm.. Určete délky zbývjících str. Rdl: 5cm, 0cm, 5cm. Součet čísel v itervlu ) Určete součet všech sudých přirozeých čísel meších ež 50. Rdl: 7, S ) Určete součet všech lichých přirozeých čísel meších ež 50. Rdl: 75, S ) Určete součet všech přirozeých dvojciferých čísel. Rdl: 90, S ) Určete součet všech přirozeých trojciferých čísel. Rdl: 900, S ) Určete součet všech přirozeých dvojciferých čísel, dělitelých pěti. Rdl: 8, S ) V ritmetické poslouposti,,..., 7 je, d Vypočtěte: S 7, S7, Rdl: 7) Vypočtěte, když i je imgiárí jedotk: 6 i i i i... i 080 Rdl: S 6 080, i 8) Určete součet ritmetické poslouposti Nydl: S ) Určete součet ritmetické poslouposti Nydl: S ) Njděte součet všech sudých přirozeých čísel v itervlu 5 ;

9 9/65 VH: 0; S 0 80 ) Njděte součet všech lichých přirozeých čísel v itervlu 5 ; VH: =, S = 8 7 ) Njděte součet všech sudých přirozeých čísel v itervlu 5 ; VH: = 0, S 0 = 8 90 ) Njděte součet všech lichých přirozeých čísel v itervlu 5 ; VH: =, S = 8 77 ) Njděte součet všech sudých přirozeých čísel v itervlu ; VH: = 5, S 5 = ) Njděte součet všech lichých přirozeých čísel v itervlu ; VH: = 6, S 6 = 9 96

10 0/65 Geometrická posloupost. Soustv rovic I. ) Určete prvích šest čleů geometrické poslouposti, jestliže je dáo:, 8 5 VH:, q ) Určete prvích šest čleů geometrické poslouposti, jestliže je dáo: 8, 5 VH:, q ) Určete prvích šest čleů geometrické poslouposti, jestliže je dáo:, 6 96 VH:, q ) Určete prvích šest čleů geometrické poslouposti, jestliže je dáo:, 8 6 VH:, q 5) Určete prvích šest čleů geometrické poslouposti, jestliže je dáo:, VH:, q 6) Určete prvích šest čleů geometrické poslouposti, jestliže je dáo:, Sb-MM:, q str.89/.7-) 7) Určete prvích šest čleů geometrické poslouposti, jestliže je dáo: 6 q, Sb-MM: 6, q str.89/.7-b) 8) Určete prvích šest čleů geometrické poslouposti, jestliže je dáo:, Sb-MM:, q str.89/.7-d). Soustv rovic II. ) Určete prvích šest čleů geometrické poslouposti, jestliže je dáo: 5, 60 Sb-MM: 5, q str.89/.7-e) ) Určete součet devíti čleů geometrické poslouposti, jestliže je dáo:, 6 7, q, S9 VH: 7 ) Určete součet pěti čleů geometrické poslouposti, jestliže je dáo:, , q, S5 VH: 9 ) Určete součet pěti čleů geometrické poslouposti, jestliže je dáo: 5, 6 5, q, S5 VH: 5) Určete součet pěti čleů geometrické poslouposti, jestliže je dáo:

11 /65 8, VH:, q, S5 6) Určete součet deseti čleů geometrické poslouposti, jestliže je dáo:, 6, q, S0 VH: 7) Určete součet sedmi čleů geometrické poslouposti, jestliže je dáo: 7 6 8, 6 VH:, q, S7 5 8) Určete součet pěti čleů geometrické poslouposti, jestliže je dáo: 6,, q, S5 VH:. Součet geometrické poslouposti I. ) V geometrické poslouposti je, q 5. Určete ejmeší přirozeé číslo, pro které je S. VŠE: ) V geometrické poslouposti je, q. Určete ejmeší přirozeé číslo, pro které je S 55. VŠE: 5 ) V geometrické poslouposti je, q. Určete ejmeší přirozeé číslo, pro které je S 6. VŠE: ) V geometrické poslouposti je 5, q 6. Určete ejmeší přirozeé číslo, pro které je S 5. VŠE: 5) V geometrické poslouposti je, q. Určete ejmeší přirozeé číslo, pro které je S. VŠE: 6 5. Součet geometrické poslouposti II. ) Určete druhý čle geometrické poslouposti v íž je dáo: q, S VH: ) Určete druhý čle geometrické poslouposti v íž je dáo: q, S 8 VH: ) Určete druhý čle geometrické poslouposti v íž je dáo: q, S 5 5 VH: 7 ) Určete druhý čle geometrické poslouposti v íž je dáo: q, S

12 /65 9 VH: 7 5) Určete třetí čle geometrické poslouposti v íž je dáo: q, S VH: 8 6) Určete třetí čle geometrické poslouposti v íž je dáo: q, S VH: 6 7) Určete třetí čle geometrické poslouposti v íž je dáo: q, S 5 VH: 5 7 8) Určete třetí čle geometrické poslouposti v íž je dáo: q, S VH: Součet ekoečé řdy ) Určete součet ekoečé řdy: UO: 6, q, S ) Určete součet ekoečé řdy: 0 0, 0,0 0,00... VH: 0, q 0, S 9 ) Určete součet ekoečé řdy: , q 0, 00 VH: 00 S 9 ) Určete součet ekoečé řdy: VH: 0, q, S 5 5) Určete součet ekoečé řdy: VH: 0, q, S 0 6) Vypočtěte:... Rdl:, q, S 7) Vypočtěte:... Rdl:, q, S 8) Vypočtěte: 8 log log log log... Rdl: log, q, S log 9) Vypočtěte:

13 /65 Rdl: 5, q, S 0 0) Vypočtěte: Rdl:, q, S 0 7. Užití geometrické poslouposti ) Kolik si půjčil kliet od bky, jestliže po letech dluží částku 097 8,- Kč při % úroku? = ,- Kč ) Město má obyvtel předpokládý ročí přírůstek, %. Kolik obyvtel lze očekávt z 0 let? = 8 69 ) Částk ,- Kč je vlože účet s %-ím ročím úročeím. Jká částk bude účtu z 0 let? = 7 0,- Kč ) Automobil ztrácí kždý rok 5 % své hodoty. Jká bude hodot utomobilu po letech, jestliže jeho původí ce čií ,- Kč? = 0,- Kč 5) Stroj ztrácí kždý rok 0 % své hodoty. Jká byl jeho ákupí ce, jestliže po -ti letech má hodotu 0 68 Kč,-? = 0 00,- Kč 6) Jká bude po 7 letech výše vkldu ,- Kč účtu se složeým ročím úročeím %? 8 = 68 96,- Kč 7) Jká byl výše vkldu, jestliže po 6-ti letech je účtě 569 9,- Kč, při ročím úročeí %? = ,- Kč 8) Porodost v České republice klesá průměrě o,5 % ročě. V roce 998 se rodilo 8 8 dětí. Jký bude předpokládý počet rozeých dětí v roce 00? = 00 9) V bce si půjčíte ,- Kč s úrokem %. Kolik bude váš dluh po 5-ti letech? 6 = 88 7,- Kč

14 /65 Souřdice bodů v roviě v prostoru. Vzdáleost bodů v roviě ) Vypočítejte vzdáleost bodů C=[; ] D=[; -]. CD = 7 ) Vypočítejte vzdáleost bodů R=[-; 5] S=[; ]. RS = 6 ) Vypočítejte vzdáleost bodů X=[-; -] Y=[-; ]. XY = 9 ) Vypočítejte vzdáleost bodů B=[-; ] D=[5; -]. BD = 65 5) Vypočítejte vzdáleost bodů P=[7; ] Q=[-5; -]. PQ = 6) Vypočítejte vzdáleost bodů K=[5; 7] L=[; ]. KL = 5 7) Vypočítejte vzdáleost bodů U=[; ] V=[; -]. UV = 5 8) Vypočítejte vzdáleost bodů M=[; -] N=[; -]. MN = 0. Vzdáleost bodů v prostoru ) Vypočítejte vzdáleost bodů A=[-; ; 6] B=[-; -; ]. AB = 7 ) Vypočítejte vzdáleost bodů X=[; ; 0] Y=[; 5; ]. XY = ) Vypočítejte vzdáleost bodů B=[; ; -] D=[-; ; ]. BD = ) Vypočítejte vzdáleost bodů U=[-; -; 5] V=[-5; -; ]. UV = 5) Vypočítejte vzdáleost bodů K=[; ; -5] L=[; ; -]. KL = 6) Vypočítejte vzdáleost bodů C=[; ; ] D=[; ; ]. CD = 7) Vypočítejte vzdáleost bodů R=[5; -; -] S=[; 0; ]. RS = 7 8) Vypočítejte vzdáleost bodů P=[-; -; -5] Q=[; ; -]. PQ = 0. Střed úsečky v roviě ) Jsou dáy body A=[; ] B=[8; 5]. Vypočítejte souřdice středu úsečky AB. S AB =[5; ] ) Jsou dáy body U=[; -] V=[; 5]. Vypočítejte souřdice středu úsečky UV. S UV =[; ] ) Jsou dáy body C=[; -] D=[5; ]. Vypočítejte souřdice středu úsečky CD. S CD =[; ]

15 5/65 ) Jsou dáy body M=[-; ] N=[5; ]. Vypočítejte souřdice středu úsečky MN. S MN =[; ] 5) Jsou dáy body K=[-; -] L=[; -]. Vypočítejte souřdice středu úsečky KL. S KL =[-/; -] 6) Jsou dáy body X=[0; 5] Y=[-; -]. Vypočítejte souřdice středu úsečky XY. S XY =[-/; ] 7) Jsou dáy body P=[; -] Q=[; ]. Vypočítejte souřdice středu úsečky PQ. S PQ =[5/; 0]. Střed úsečky v prostoru ) Jsou dáy body A=[; -; ] B=[0; 5; -9]. Vypočítejte souřdice středu úsečky AB. S AB =[; ; -] ) Jsou dáy body U=[; 0; 5] V=[-; ; -]. Vypočítejte souřdice středu úsečky UV. S UV =[; ; -] ) Jsou dáy body K=[; 5; ] L=[0; -; -9]. Vypočítejte souřdice středu úsečky KL. S KL =[; ; -] ) Jsou dáy body C=[; -; ] D=[; 5; 7]. Vypočítejte souřdice středu úsečky CD. S CD =[; ; 5] 5) Jsou dáy body X=[-8; ; ] Y=[; 5; 0]. Vypočítejte souřdice středu úsečky XY. S XY =[-; ; ] 6) Jsou dáy body P=[0; -7; ] Q=[-8; 5; -]. Vypočítejte souřdice středu úsečky PQ. S PQ =[-; -; 0] 5. Určeí souřdice bodu v roviě pro dou vzdáleost ) Jsou dáy body A=[; ], B=[-; ]. Určete číslo tk, by AB = 5. =, = ) Jsou dáy body R=[; ], S=[; ]. Určete číslo tk, by RS = 8. =, = 5 ) Jsou dáy body Q=[; -], P=[; -]. Určete číslo tk, by QP = 0. = -, = 5 ) Jsou dáy body E=[-; ], F=[; ]. Určete číslo tk, by EF = 5. =, = - 5) Jsou dáy body A=[-; ], B=[; ]. Určete číslo tk, by AB =. NŘ 6) Jsou dáy body X=[; ], Y=[; ]. Určete číslo tk, by XY =., = 7) Jsou dáy body A=[-; ], C=[; -]. Určete číslo tk, by AC = 7. NŘ 8) Jsou dáy body U=[; -], V=[; -]. Určete číslo tk, by UV =. = 0, = 9) Jsou dáy body G=[7; ], H=[-5; ]. Určete číslo tk, by GH =. = -, = 6 0) Jsou dáy body T=[; -], U=[-; ]. Určete číslo tk, by TU =6., = - 6. Určeí bodu úsečky pro dý střed ) Jsou dáy bodu A=[; -; ] S=[; ; 0]. Určete bod B tk, by bod S byl střed úsečky AB.

16 6/65 B=[; ; -] ) Jsou dáy bodu K=[; ; ] S=[-; 0; ]. Určete bod L tk, by bod S byl střed úsečky KL. L=[-; -; -] ) Jsou dáy bodu U=[-; -6; -5] S=[-; -; -]. Určete bod V tk, by bod S byl střed úsečky UV. V=[; 0; ] ) Jsou dáy bodu P=[; -; ] S=[; ; 0]. Určete bod Q tk, by bod S byl střed úsečky PQ. Q=[; 6; -] 5) Jsou dáy bodu C=[-; ; -] S=[-; ; ]. Určete bod D tk, by bod S byl střed úsečky CD. D=[-; 5; ] 6) Jsou dáy bodu R=[-; ; 7] S=[-/; ; 5/]. Určete bod T tk, by bod S byl střed úsečky RT. T=[; 5; -] 7) Jsou dáy bodu M=[; ; -] S=[; ; -]. Určete bod N tk, by bod S byl střed úsečky MN. N=[-; 5; -] 7. Užití vzdáleosti středu úsečky ) N ose určete bod P, který má od bodů A=[8; -5; 0] B=[; -; ] stejou vzdáleost. P=[7; 0; 0] ) V trojúhelíku A=[; -], B=[7; -], C=[; ] určete délku těžice t c. S AB =[; -], CS AB = 0 ) Vypočtěte obvod trojúhelíku ABC o vrcholech A=[-; ], B=[0; -], C=[; ]. o = 0 +5 ) Dokžte, že trojúhelík o vrcholech K=[0; 0], L=[; ], M=[; 7] je prvoúhlý. pro délky str musí pltit Pythgorov vět 5) Dokžte, že trojúhelík o vrcholech A=[; ], B=[6; ], C=[; ] je prvoúhlý. pro délky str musí pltit Pythgorov vět 6) N ose z určete bod R, který má od bodů K=[; -; -5] třikrát větší vzdáleost ež od bodu L=[; ; ]. R =[0; 0; ], R =[0; 0; /] 7) N ose z určete bod R, který je stejě vzdále od bodů P=[-; ; 7], Q=[; 5; -]. R=[0; 0; /9] 8) V trojúhelíku A=[-; -], B=[; -], C=[; ] určete délku těžice t. S BC =[; -], AS BC = 5 9) V trojúhelíku A=[-; -], B=[; -], C=[; ] určete délku těžice t b. S AC =[0; 0], BS AC = 5 0) V trojúhelíku A=[-; -], B=[; -], C=[; ] určete délku těžice t c. S AB =[; -], CS AB = 0 ) Vypočtěte obsh prvoúhlého trojúhelíku o vrcholech K=[0; 0], L=[; ], M=[; 7]. S = / 0 0 = 0 ) Vypočtěte obsh prvoúhlého trojúhelíku o vrcholech A=[; ], B=[6; ], C=[; ]. S = / 5 0 = 5

17 7/65 Vektory v roviě v prostoru. Délk těžice v trojúhelíku, obsh prvoúhlého trojúhelík ) V trojúhelíku A=[; -], B=[7; -], C=[; ] určete délku těžice t c. S AB =[; -], CS AB = 0 ) V trojúhelíku A=[-; 5], B=[-6; -], C=[0; -] určete délku těžice t. S BC =[-; -], AS BC = 50 5) V trojúhelíku A=[-; 5], B=[-6; -], C=[0; -] určete délku těžice t b. S AC =[-; ], BS AC = 0 6) V trojúhelíku A=[-; 5], B=[-6; -], C=[0; -] určete délku těžice t c. S AB =[-5; ], CS AB = 50 7) V trojúhelíku A=[-; -], B=[; -], C=[; ] určete délku těžice t. S BC =[; -], AS BC = 5 8) V trojúhelíku A=[-; -], B=[; -], C=[; ] určete délku těžice t b. S AC =[0; 0], BS AC = 5 9) V trojúhelíku A=[-; -], B=[; -], C=[; ] určete délku těžice t c. S AB =[; -], CS AB = 0 0) Vypočtěte obsh prvoúhlého trojúhelíku o vrcholech K=[0; 0], L=[; ], M=[; 7]. S = / 0 0 = 0 ) Vypočtěte obsh prvoúhlého trojúhelíku o vrcholech A=[; ], B=[6; ], C=[; ]. S = / 5 0 = 5. Vektory v roviě z dých bodů, vektory kolmé ) Jsou dáy body A=[; ], B=[; ], C=[; 0], D=[-; ]. Určete souřdice vektorů vektory k im kolmé: r CA s DC v BC w AC r CA (-; ), s DC (; -), v BC (-; -), w AC (; -) ) Jsou dáy body T=[; 0], U=[-; ], V=[; ], W=[; ]. Určete souřdice vektorů vektory k im kolmé: TU b VT c TW d WT TU (-; ), b VT (0; -), c TW (; ), d WT (-; -) ) Jsou dáy body E=[-; ], F=[0; ], G=[; ], H=[; -]. Určete souřdice vektorů vektory k im kolmé: u GF v HF w EG s GH

18 8/65 u GF (-; ), v HF (-; 5), w EG (; 0), s GH (; -) ) Jsou dáy body P=[-; 0], Q=[; ], R=[; ], T=[; ]. Určete souřdice vektorů vektory k im kolmé: RT b PQ u QP s PR RT (-; ), b PQ (; ), u QP (-; -), s PR (6; ). Sklárí souči vektorů - kolmost ) Vypočítejte sklárí souči dých vektorů rozhoděte zd jsou vzájem kolmé. u = (; ), v = (-; ) u = (; -5), v = (-5; -) u = (; 0; ), v = (; ; ) u = (-; -; -), v = (-; -; -) VH: -; 0; 6; ) Vypočítejte sklárí souči dých vektorů rozhoděte zd jsou vzájem kolmé. = (-; -), b = (-; -) = (; ), b = (-; -) = (; -; ), b = (-; ; ) = (; ; ), b = (; 6; -) VH: ; -0; -; 0 ) Vypočítejte sklárí souči dých vektorů rozhoděte zd jsou vzájem kolmé. s = (; ), = (-; ) s = (; -), = (-; -) s = (; 5; 9), = (-5; ; 0) s = (-; -; ), = (; -; -) VH: -; 0; 0; 0 ) Vypočítejte sklárí souči dých vektorů rozhoděte zd jsou vzájem kolmé. v = (-; -), w = (; -) v = (; 5), w = (-; ) v = (; 5; ), w = (0; -; 0) v = (-; ; ), w = (; ; -) VH: 0; 7; -5; 0. Úhel vektorů v roviě ) Vypočítejte velikost úhlů vektorů: = (-; -), b = (-; -),7 ) Vypočítejte velikost úhlů vektorů:

19 9/65 s = (; ), = (-; ) 98, ) Vypočítejte velikost úhlů vektorů: v = (; 5), w = (-; ) 67,6 ) Vypočítejte velikost úhlů vektorů: u = (; ), v = (-; ) 9,7 5. Úhel vektorů v prostoru ) Vypočítejte velikost úhlů vektorů: = (; -; ), b = (-; ; ) 0,5 ) Vypočítejte velikost úhlů vektorů: u = (-; -; -), v = (-; -; -) 8, ) Vypočítejte velikost úhlů vektorů: v = (; 5; ), w = (0; -; 0) 55,9 ) Vypočítejte velikost úhlů vektorů: u = (; 0; ), v = (; ; ) 59,5 6. Úhel v trojúhelíku 5) Vypočítejte velikost úhlu v trojúhelíku A=[-; -5], B=[-7; 5], C=[-; ]. = (-; -), b = (-; -),7 6) Vypočítejte velikost úhlů vektorů: s = (; ), = (-; ) 98, 7) Vypočítejte velikost úhlů vektorů: v = (; 5), w = (-; ) 67,6 8) Vypočítejte velikost úhlů vektorů: u = (; ), v = (-; ) 9,7 7. Vektory v prostoru z dých bodů, ásobeí vektoru číslem ) Jsou dáy body K= [-; ; 0], L= [; ; ]. Určete: ) souřdice vektorů u LK b) souřdice vektorů v KL c) délku úsečky KL d) střed úsečky KL VH: u LK (6; -; ), v LK (-6; ; -), KL = 56, S KL = [; ; ] ) Jsou dáy body A=[-; ; ], B=[; 0; ]. Určete:

20 0/65 ) souřdice vektorů s AB b) souřdice vektorů u BA c) délku úsečky AB d) střed úsečky AB VH: s AB (; -; ), u BA (-; ; -), AB =, S AB = [-; ; ] ) Jsou dáy body P=[; -; 5], Q=[6; 0; -]. Určete: e) souřdice vektorů PQ f) souřdice vektorů b QP g) délku úsečky PQ h) střed úsečky PQ PQ (; ; -6), b QP (-; -; 6), PQ =, S PQ = [5; -; ] ) Jsou dáy body D=[; 6; -5], E=[; 0; -]. Určete: i) souřdice vektorů DE j) souřdice vektorů w ED k) délku úsečky ED l) střed úsečky ED DE (; -6; ), w ED (-; 6; -) ), ED = 56, S PQ = [; ; -]

21 /65 Rovice přímky v roviě. Prmetrická rce přímky stry trojúhelík ) Jsou dáy vrcholy trojúhelíku A=[; ], B=[-; ], C=[-5; 6]. Npište prmetrickou rovici přímky BC. : = - - t, y = + t. ) Jsou dáy vrcholy trojúhelíku A=[; ], B=[-; ], C=[-5; 6]. Npište prmetrickou rovici přímky AC. b: = - t, y = + t. ) Jsou dáy vrcholy trojúhelíku A=[; ], B=[-; ], C=[-5; 6]. Npište prmetrickou rovici přímky AB. c: = - t, y = - t. ) Jsou dáy vrcholy trojúhelíku A=[; ], B=[; -], C=[6; -5]. Npište prmetrickou rovici přímky BC. : = + t, y = - - t. 5) Jsou dáy vrcholy trojúhelíku A=[; ], B=[; -], C=[6; -5]. Npište prmetrickou rovici přímky AC. b: = + t, y = - t. 6) Jsou dáy vrcholy trojúhelíku A=[; ], B=[; -], C=[6; -5]. Npište prmetrickou rovici přímky AB. c: = - t, y = - t. 7) Jsou dáy vrcholy trojúhelíku A=[-; 0], B=[-; -], C=[5; ]. Npište prmetrickou rovici přímky BC. : = 5 + t, y = + t. 8) Jsou dáy vrcholy trojúhelíku A=[-; 0], B=[-; -], C=[5; ]. Npište prmetrickou rovici přímky AC. b: = 5 + t, y = + t. 9) Jsou dáy vrcholy trojúhelíku A=[-; 0], B=[-; -], C=[5; ]. Npište prmetrickou rovici přímky AB. Speciál c: = - + 0t, y = - - t. 0) Jsou dáy vrcholy trojúhelíku A=[-; ], B=[-; -5], C=[; 5]. Npište prmetrickou rovici přímky BC. : = + t, y = 5 + 5t. ) Jsou dáy vrcholy trojúhelíku A=[-; ], B=[-; -5], C=[; 5]. Npište prmetrickou rovici přímky AC. b: = + t, y = 5 + t. ) Jsou dáy vrcholy trojúhelíku A=[-; ], B=[-; -5], C=[; 5]. Npište prmetrickou rovici přímky AB. c: = - + t, y = - t.. Prmetrická rce přímky t c - ) Jsou dáy vrcholy trojúhelíku A=[-; 0], B=[-; -], C=[5; ]. Npište prmetrickou rovici přímky íž leží těžice t b. S AC = [, ], t b : = + t, y = + 5t. ) Jsou dáy vrcholy trojúhelíku A=[-; 0], B=[-; -], C=[5; ]. Npište prmetrickou rovici přímky íž leží těžice t. S BC = [, -], t : = + t, y = - - t. ) Jsou dáy vrcholy trojúhelíku A=[-; 0], B=[-; -], C=[5; ]. Npište prmetrickou rovici přímky íž leží těžice t c.

22 /65 S AB = [-, -], t c : = 5 + t, y = + t. ) Jsou dáy vrcholy trojúhelíku A=[; ], B=[-; ], C=[-5; 6]. Npište prmetrickou rovici přímky íž leží těžice t c. S AB = [-, ], t c : = - - t, y = + t. 5) Jsou dáy vrcholy trojúhelíku A=[; ], B=[-; ], C=[-5; 6]. Npište prmetrickou rovici přímky íž leží těžice t b. S AC = [-, 5], t b : = - + t, y = + t. 6) Jsou dáy vrcholy trojúhelíku A=[; ], B=[-; ], C=[-5; 6]. Npište prmetrickou rovic přímky íž leží těžice t. Speciál S BC = [-, ], t : = + t, y =. 7) Jsou dáy vrcholy trojúhelíku A=[; ], B=[; -], C=[6; -5]. Npište prmetrickou rovici přímky íž leží těžice t c. S AB = [, -], t c : = + t, y = - - t. 8) Jsou dáy vrcholy trojúhelíku A=[; ], B=[; -], C=[6; -5]. Npište prmetrickou rovici přímky íž leží těžice t b. S AC = [5, -], t b : = + t, y = - + t. 9) Jsou dáy vrcholy trojúhelíku A=[; ], B=[; -], C=[6; -5]. Npište prmetrickou obecou rovici přímky íž leží těžice t. Speciál S BC = [, -], t : =, y = + t. 0) Jsou dáy vrcholy trojúhelíku A=[-; ], B=[-; -5], C=[; 5]. Npište prmetrickou rovici přímky íž leží těžice t. S BC = [, 0], t : = - - t, y = + t. ) Jsou dáy vrcholy trojúhelíku A=[-; ], B=[-; -5], C=[; 5]. Npište prmetrickou rovici přímky íž leží těžice t b. S AC = [0, ], t b : = - + t, y = t. ) Jsou dáy vrcholy trojúhelíku A=[-; ], B=[-; -5], C=[; 5]. Npište prmetrickou rovici přímky íž leží těžice t c. S AB = [-, -], t c : = + 5t, y = 5 + 7t.. Prmetrická rce přímky v c - ) Jsou dáy vrcholy trojúhelíku A=[; ], B=[-; ], C=[-5; 6]. Npište prmetrickou rovici přímky íž leží výšky v b. v b : = - + t, y = + t. ) Jsou dáy vrcholy trojúhelíku A=[; ], B=[-; ], C=[-5; 6]. Npište prmetrickou rovici přímky íž leží výšky v. v : = + t, y = + t. ) Jsou dáy vrcholy trojúhelíku A=[; ], B=[-; ], C=[-5; 6]. Npište prmetrickou rovici přímky íž leží výšky v c. v c : = -5 + t, y = 6 - t. ) Jsou dáy vrcholy trojúhelíku A=[; ], B=[; -], C=[6; -5]. Npište prmetrickou rovici přímky íž leží výšky v b. v b : = + t, y = - + t. 5) Jsou dáy vrcholy trojúhelíku A=[; ], B=[; -], C=[6; -5]. Npište prmetrickou rovici přímky íž leží výšky v. v : = - t, y = + t. 6) Jsou dáy vrcholy trojúhelíku A=[; ], B=[; -], C=[6; -5]. Npište prmetrickou rovici přímky íž leží výšky v c. v c : = 6 - t, y = -5 + t.

23 /65 7) Jsou dáy vrcholy trojúhelíku A=[-; 0], B=[-; -], C=[5; ]. Npište prmetrickou rovici přímky íž leží výšky v b. v b : = - + t, y = - + t. 8) Jsou dáy vrcholy trojúhelíku A=[-; 0], B=[-; -], C=[5; ]. Npište prmetrickou rovici přímky íž leží výšky v. Speciál v : = - + t, y = 0 - t. 9) Jsou dáy vrcholy trojúhelíku A=[-; 0], B=[-; -], C=[5; ]. Npište prmetrickou rovici přímky íž leží výšky v c. Speciál v c : = 5 + t, y = + 0t. 0) Jsou dáy vrcholy trojúhelíku A=[-; ], B=[-; -5], C=[; 5]. Npište prmetrickou rovici přímky íž leží výšky v. v : = - + 5t, y = - t. ) Jsou dáy vrcholy trojúhelíku A=[-; ], B=[-; -5], C=[; 5]. Npište prmetrickou rovici přímky íž leží výšky v b. v b : = - + t, y = -5 - t. ) Jsou dáy vrcholy trojúhelíku A=[-; ], B=[-; -5], C=[; 5]. Npište prmetrickou rovici přímky íž leží výšky v c. v c : = + t, y = 5 + t.. Prmetrická rce osy stry trojúhelík ) Jsou dáy vrcholy trojúhelíku A=[; ], B=[-; ], C=[-5; 6]. Npište prmetrickou rovici osy stry AC. S AC = [-, 5], o b : = + t, y = + t. ) Jsou dáy vrcholy trojúhelíku A=[; ], B=[-; ], C=[-5; 6]. Npište prmetrickou rovici osy stry BC. S BC = [, -], o : = + t, y = - - t. ) Jsou dáy vrcholy trojúhelíku A=[; ], B=[-; ], C=[-5; 6]. Npište prmetrickou rovici osy stry AB. S AB = [-, -], o c : = - + t, y = - - t. ) Jsou dáy vrcholy trojúhelíku A=[; ], B=[; -], C=[6; -5]. Npište prmetrickou rovici osy stry AC. S AB = [-, ], o b : = - + t, y = + t. 5) Jsou dáy vrcholy trojúhelíku A=[; ], B=[; -], C=[6; -5]. Npište prmetrickou rovici osy stry BC. S AC = [-, 5], o : = - - t, y = 5 + t. 6) Jsou dáy vrcholy trojúhelíku A=[; ], B=[; -], C=[6; -5]. Npište prmetrickou rovici osy stry AB. S BC = [-, ], o c : = - - t, y = + t. 7) Jsou dáy vrcholy trojúhelíku A=[-; 0], B=[-; -], C=[5; ]. Npište prmetrickou rovici osy stry AC. S AB = [, -], o b : = + t, y = - + t. 8) Jsou dáy vrcholy trojúhelíku A=[-; 0], B=[-; -], C=[5; ]. Npište prmetrickou rovici osy stry BC. S AC = [5, -], o : = 5 + t, y = - - t. 9) Jsou dáy vrcholy trojúhelíku A=[-; 0], B=[-; -], C=[5; ]. Npište prmetrickou rovici osy stry AB. S BC = [, -], Speciál o c : = + t, y = - + 0t. 0) Jsou dáy vrcholy trojúhelíku A=[-; ], B=[-; -5], C=[; 5]. Npište prmetrickou rovici osy stry BC.

24 /65 S BC = [, 0], o : = + 5t, y = 0 - t. ) Jsou dáy vrcholy trojúhelíku A=[-; ], B=[-; -5], C=[; 5]. Npište prmetrickou rovici osy stry AC. S AC = [0, ], o b : = 0 + t, y = - t. ) Jsou dáy vrcholy trojúhelíku A=[-; ], B=[-; -5], C=[; 5]. Npište prmetrickou rovici osy stry AB. S AB = [-, -], o c : = - + t, y = - - t. 5. Obecá rce přímky stry trojúhelík ) Jsou dáy vrcholy trojúhelíku A=[; ], B=[-; ], C=[-5; 6]. Npište obecou rovici přímky BC. : + y + = 0. ) Jsou dáy vrcholy trojúhelíku A=[; ], B=[-; ], C=[-5; 6]. Npište obecou rovici přímky AC. b: + y - = 0. ) Jsou dáy vrcholy trojúhelíku A=[; ], B=[-; ], C=[-5; 6]. Npište obecou rovici přímky AB. c: - y + 7 = 0. ) Jsou dáy vrcholy trojúhelíku A=[; ], B=[; -], C=[6; -5]. Npište obecou rovici přímky BC. : + y + = 0. 5) Jsou dáy vrcholy trojúhelíku A=[; ], B=[; -], C=[6; -5]. Npište obecou rovici přímky AC. b: + y - = 0. 6) Jsou dáy vrcholy trojúhelíku A=[; ], B=[; -], C=[6; -5]. Npište obecou rovici přímky AB. c: - y + 7 = 0. 7) Jsou dáy vrcholy trojúhelíku A=[-; ], B=[-; -5], C=[; 5]. Npište obecou rovici přímky BC. : 5 - y - 5 = 0. 8) Jsou dáy vrcholy trojúhelíku A=[-; ], B=[-; -5], C=[; 5]. Npište obecou rovici přímky AC. b: - y + 9 = 0. 9) Jsou dáy vrcholy trojúhelíku A=[-; ], B=[-; -5], C=[; 5]. Npište obecou rovici přímky AB. c: y + 8 = Obecá rce přímky t bc. ) Jsou dáy vrcholy trojúhelíku A=[; ], B=[-; ], C=[-5; 6]. Npište obecou rovici přímky íž leží těžice t c. S AB = [-, ], t c : + y - 9 = 0 ) Jsou dáy vrcholy trojúhelíku A=[; ], B=[-; ], C=[-5; 6]. Npište obecou rovici přímky íž leží těžice t b. S AC = [-, 5], t b : - y + = 0 ) Jsou dáy vrcholy trojúhelíku A=[; ], B=[; -], C=[6; -5]. Npište obecou rovici přímky íž leží těžice t c. S AB = [, -], t c : + y - 9 = 0

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ, p. o. MATEMATIKA Ig. Rudolf PŠENICA 6 OBSAH:. SHRNUTÍ A PROHLOUBENÍ UČIVA... 5.. Zákldí možiové pojmy... 5.. Číselé možiy... 6.. Itervly... 6.. Absolutí

Více

KOMBINATORIKA. Způsob řešení b)

KOMBINATORIKA. Způsob řešení b) / KOMBINATORIKA Příld Určete počet všech přirozeých dvojciferých čísel, v jejichž dedicém zápisu se ždá číslice vysytuje ejvýše jedou. Způsob řešeí ) Kombitoricé prvidlo součiu: Počet všech uspořádých

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e M t i c e v e s t ř e d o š k o l s k é m t e m t i c e P t r i k K v e c k ý M e d e l o v o g y m á z i u m v O p v ě S t u d i j í m t e r i á l - M t i c e v e s t ř e d o š k o l s k é m t e m t i

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

P(n) = n * (n - 1) * (n - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál:

P(n) = n * (n - 1) * (n - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál: PERMUTACE a VARIACE 2.1 Permutace P() = * ( - 1) * ( - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál: ( )! P = Jedá se o vzorec pro počet permutací z prvků bez opakováí. 2.2 Variace bez

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šblony Mendelov střední škol, Nový Jičín NÁZEV MATERIÁLU: Trojúhelník zákldní pozntky Autor: Mgr. Břetislv Mcek Rok vydání: 2014 Tento projekt je spolufinncován

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26 Zákld mtemtik Číselé oor ČÍSELNÉ OBORY 0 Některé pojm z mtemtické logik 0 Výroková logik 0 Moži vzth mezi imi Možiové operce Grfické zázorěí moži Číselé oor Čísl ázv jejich chrkteristik Chrkteristik číselých

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení TYPY VÝBĚRŮ Uspořádanost výběru uspořádaný výběr = VARIACE, záleží na pořadí vybraných prvků neuspořádaný výběr = KOMBINACE, nezáleží na pořadí vybraných prvků Opakované zařazení

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMBINATORIKA Gymázium Jiřího Wolera v Prostějově Výuové materiály z matematiy pro vyšší gymázia Autoři projetu Studet a prahu. století - využití ICT ve vyučováí matematiy a gymáziu INVESTICE DO ROZVOJE

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 5. Konstruke trojúhelníků Konstruke trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 1. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

1. Opakování učiva 6. ročníku

1. Opakování učiva 6. ročníku . Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla

Více

VARIACE BEZ OPAKOVÁNÍ

VARIACE BEZ OPAKOVÁNÍ VARIACE BEZ OPAKOVÁNÍ (1) Trezor má 6 otočných zámků s číslicemi 0 9. O kódu víme pouze to, že v něm žádná z číslic není dvakrát. O kolik možných nastavení se může jednat? Analogicky odvoďte obecné řešení.

Více

Petr Otipka Vladislav Šmajstrla

Petr Otipka Vladislav Šmajstrla VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA PRAVDĚPODOBNOST A STATISTIKA Petr Otipka Vladislav Šmajstrla Vytv ořeo v rámci projektu Operačího programu Rozv oje lidských zdrojů CZ.04..03/3..5./006

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

U každé úlohy je uveden maximální počet bodů.

U každé úlohy je uveden maximální počet bodů. MATEMATIKA MPZD1C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 1 Maximální bodové hodnocení: 0 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 0 minut.

Více

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna 16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole MATEMATIKA MATEMATIKA DIDAKTICKÝ TEST DIDAKTICKÝ TEST DIDAKTICKÝ TEST MAMZD14C0T01 MAMZD14C0T01 MAMZD14C0T01 Maximální bodové hodnocení: 50 bodů 2.1 Pokyny k otevřeným úlohám Maximální Hranice úspěšnosti:

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Prioritní osa: 1 Počáteční vzdělávání Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918 Název projektu:inovace vzdělávání v

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA RVDĚODONOST STTISTIK Gymázium Jiřího Wolkera v rostějově Výukové materiály z matematiky pro vyšší gymázia utoři projektu Studet a prahu. století - využití ICT ve vyučováí matematiky a gymáziu Teto projekt

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

R e á l n á č í s l a - R

R e á l n á č í s l a - R Č Í S E L N É M N O Ž I N Y R e á l n á č í s l - R R c i o n á l n í č í s l - Q Ircionální čísl π ;,99 C e l á č í s l - Z Seznm některých mtemtických smbolů znček kulté ; hrnté ; úhlové ;{ složené závork

Více

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m . Když od neznámého čísla odečtete 54, výsledek vydělíte 3 a následně přičtete 6, získáte číslo 9. Jaká je hodnota tohoto neznámého čísla? (A) 0 (B) 03 (C) 93 (D) 89 2. Na úsečce SV, jejíž délka je 3 cm,

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

MATEMATIKA 2 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006

MATEMATIKA 2 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006 Krok za krokem k nové maturitě Maturita nanečisto 006 MAACZMZ06DT MATEMATIKA didaktický test Testový sešit obsahuje 0 úloh. Na řešení úloh máte 10 minut. Úlohy řešte v testovém sešitu. Odpovědi pište do

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Alternace 2012/13 ALTERNACE MATEMATIKA 4. ROČNÍK 2012/13

Alternace 2012/13 ALTERNACE MATEMATIKA 4. ROČNÍK 2012/13 ALTERNACE MATEMATIKA 4. ROČNÍK 01/13-1- Obsah Posloupnosti... 4 Aritmetická posloupnost... 5 Geometrická posloupnost... 6 Geometrické řady... 7 Finanční matematika... 8 Vektor, operace s vektory... 9 Vzdálenosti

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 22 úloh. Časový limit pro

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

Základní poznatky z matematiky

Základní poznatky z matematiky Zákldní pozntky z mtemtiky Obsh. Zákldní pozntky z mtemtiky.... Číselné obory..... Celá čísl..... Reálná čísl.... Odmocniny.... Mocniny... 5.. Mocniny se zákldem 0... 5.. Mocniny s přirozeným mocnitelem...

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011 MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB.

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. 8. Trojúhelník 6. ročník 8. Trojúhelník 8.1. Základní pojmy 8.1.1. Trojúhelník Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. Trojúhelník popisujeme proti chodu hodinových

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

Základní pojmy kombinatoriky

Základní pojmy kombinatoriky Základí pojy kobiatoriky Začee příklade Příklad Máe rozesadit lidí kole kulatého stolu tak, aby dva z ich, osoby A a B, eseděly vedle sebe Kolika způsoby to lze učiit? Pro získáí odpovědi budee potřebovat

Více

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY Daniel Nechvátal :: maturitní otázky z matematiky 008 :: MOCNINY A ODMOCNINY ) Zjednodušte následující výrazy a určete, pro které hodnoty proměnných mají smysl a) ( ) ( ) [ ] ( ) ( ) [ ] : n n n n b) [

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04

PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 PLANIMETRIE Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Název školy Název šablony Předmět Tematický celek

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Matematický KLOKAN 2005 kategorie Junior

Matematický KLOKAN 2005 kategorie Junior Matematický KLOKAN 2005 kategorie Junior Vážení přátelé, v následujících 75 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě dalších evropských zemí. V níže uvedeném testu je zadáno čtyřiadvacet

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

PRAVDĚPODOBNOST A JEJÍ UŽITÍ PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

Opakování na 2. trimestrální test z MATEMATIKY PRIMA. Dělitelnost. 3. Rozložte daná čísla na součin prvočísel: 128; 96; 78; 105; 150.

Opakování na 2. trimestrální test z MATEMATIKY PRIMA. Dělitelnost. 3. Rozložte daná čísla na součin prvočísel: 128; 96; 78; 105; 150. Opakování na 2. trimestrální test z MATEMATIKY PRIMA Dělitelnost 1. Z čísel 1800; 356; 168; 855; 380; 768; 2880; 435; 2000 vyberte čísla: a) dělitelná dvěma: b) dělitelná třemi: c) dělitelná čtyřmi: d)

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti ILUSTRAČNÍ DIDAKTICKÝ TEST MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST Didaktický test obsahuje 0 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky:

Více

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA DIDAKTICKÝ TEST MAHZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

Výroková logika (5) 1. Základní pojmy Ke každé větě dopište do závorky, zda věta je pravda, či nepravda.

Výroková logika (5) 1. Základní pojmy Ke každé větě dopište do závorky, zda věta je pravda, či nepravda. m_1_vyrok_priklady 6.5.011 1/9 m_1_vyrok_priklady 6.5.011 /9 Výroková logika (5) 1. Základní pojmy Ke každé větě dopište do závorky, zda věta je pravda, či nepravda. A: Číslo 6 je dělitelné 5-ti. (nepravda)

Více

53. ročník matematické olympiády. q = 65

53. ročník matematické olympiády. q = 65 53. ročník matematické olympiády! 1. V rovině je dán obdélník ABCD, kde AB = a < b = BC. Na jeho straně BC eistuje bod K a na straně CD bod L tak, že daný obdélník je úsečkami AK, KL a LA rozdělen na čtyři

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Přehled vzorců z matematiky

Přehled vzorců z matematiky ) Výz: Přehled vzoů z tetik ( + ) + + ( ) + ( + ) ( ) ( + ) + + + ( ) + ( ) ( ) + + + ( ) ( ) + + ) Moi:....... s + s (. ). s ( ) s s.s ) Odoi: ( ).p... p ( ). 4) Kvdtiká ovie: 5) Kopleí čísl: + + 0 kde

Více

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel Ročník: I. - vytváří si názoru představu o čísle 5, 10, 20 - naučí se vidět počty prvků do 5 bez počítání po jedné - rozpozná a čte čísla 0 5 - pozná a čte čísla 0 10 - určí a čte čísla 0 20 Číselná řada

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109 9.1.11 Kombinatorické úlohy bez opakování Předpoklady: 9109 Pedagogická poznámka: Tato hodina slouží jednak ke zopakování probraného, ale zejména k praktickému nácviku kombinatoriky v situaci, ve které

Více