Klasická á a kvantová molekulová dynamika. Pavel Jungwirth
|
|
- Karla Navrátilová
- před 8 lety
- Počet zobrazení:
Transkript
1 Klasická á a kvantová molekulová dynamika Pavel Jungwirth
2 Počítačové simulace Experiment Simulace Teorie Experimentální Výsledky simulace Předpovědi analytické výsledky teorie Porovnání výsledků a předpovědí Test simulačního modelu! Test aproximativní teorie! Test experimentu?
3 Počítačové simulace bez počítačů? Například Monte Carlo simulace - opilý námořník náhodná procházka Applets/AppletSailor/ Appl_Sailor2.html -určení π pomocí dřívka a dvou čar
4 Výhody počítačových simulací možnost studovat systémy za experimentáln nesnadno dostupných podmínek (např. extrémní teploty, tlaky, ), časové a prostorové rozlišení nedostupné v experimentu, ekonomické aspekty (Moorův zákon). le pozor jde o virtuální realitu!
5 Kde se používají počítačové simulace? Makrosvět: objekty typu hvězdných galaxií. Mezosvět: objekty velikosti přednášejícího. Mikrosvět: atomy a molekuly.
6 Simulace molekulové dynamiky Vždy je nejprve třeba znát interakční potenciál (silové pole - force field), tj. jak atomy mezi sebou interagují (implicitně předpokládáme platnost Born- Oppenheimerovy aproximace). Řešení pohybových rovnic pro systém, skládájící se z atomů. Newtonovy pohybové rovnice klasická molekulová dynamika. Schrödingerova rovnice kvantová molekulová dynamika.
7 Interakční potenciály - empirické silové pole: vazby úhly torzní úhly Lennard-Jones elektrostatika intramolekulové a intermolekulové členy plus další členy (polarizace, anharmonicita, aromaticita, ) - on the fly potenciály: ab initio (Car-Parrinello) molekulové dynamika. Energie a síly počítány podél trajektorie nejčastěji metodami funkcionálu hustoty.
8 Klasická molekulová dynamika Numerická integrace Newtonových rovnic: Řešení počáteční úlohy propagátor trajektorie: r 0, p 0 Integrace krok po kroku např. Verletovou metodou.
9 Od konečného počtu částic k nekonečným systémům Reálné systémy: ~10 23 atomů Počítačová simulace: ~ atomů Trik: periodické okrajové podmínky
10 Přechod ke kanonickému souboru římočaré řešení Newtonových rovnic: onstantní energie a počet částic mikrokanonický soubor xperiment: bvykle konstantní teplota a tlak kanonický soubor Simulaci molekulové dynamiky je možné vnutit konstantní teplotu a tlak např. občasným přeškálováním rychlostí a objemu nebo zavedením nových stupňů volnosti ( teplotní lázeň, píst )
11 Dynamické simulace Nerovnovážné procesy:
12 Termodynamické simulace Rovnovážné procesy: trajektorie vzorkuje fázový prostor (ergodický teorém)
13 Praktické aspekty I: Kde si přečíst o klasické molekulové dynamice?
14 Praktické aspekty II: Jaký molekulově dynamický program použít? Vlastní (historické důvody nebo speciální metody a aplikace). Freeware nebo komerční program:
15 Lesk a bída klasické molekulové dynamiky - Simulace je maximálně tak dobrá jako je silové pole, - Délka simulace jako limitující faktor: ~ kroků po ~1 fs, tj. nano- až mikrosekundy, - Pohyb atomů klasicky: Nemožnost popsat kvantové jevy při dynamice atomů a molekul...
16 Kdy nestačí klasická mechanika? ěřítkem "kvantovosti" objektu s hmotou m kinetickou energií E je jeho de Broglieova vlnová élka: λ = 2πћ/(2mE) 1/2 -li d charakteristický rozměr systému, pak: << d klasická mechanika, d kvantová mechanika.
17 λ vybraných objektů. Posluchač dobíhající klasik na přednášku: = 70 kg, v = 5 m/s λ ~ m. Valenční elektron: kvantový = 9x10-31 kg, E = 1 ev λ ~ 10-9 m e - Ne. Vibrující atom neonu: semi-kvantový = 2x10-26 kg, E = 0.01 ev λ ~ m
18 Dualismus částice - vlna Vlnový charakter kvantových objektů: průchod přes dvojštěrbinu
19 Kvantový pohyb atomů a molekul 1. Nulové kmity - energii nelze snížit pod hω/2 2. Tunelování - průchod pod bariérou potenciálu s dvěma minimy 3. Přenos energie přes kvantové rezonance, interference
20 Kvantové interakce. S electrony: Neadiabatické interakce - vyhnutá křížení, konické intersekce 2. S fotony: elektronické/vibrační/rotační fotoexcitace - spektroskopie, řízení reakcí optickými pulzy
21 Kvantová vs. klasická mechanika Srovnání kvantový míček a klasický míček pružné kmity (elastický odraz od podložky)
22 Časová vs. bezčasová mechanika Klasická mechanika: časová (dynamické Newtonovy rovnice) Kvantová mechanika: bezčasová: HΨ=E Ψ časová: ih Ψ/ t =HΨ stacionární vázané a rozptylové stavy Ψ j,e j ; bezčasový Hamiltonián dynamický vývoj, nestacionární odezva Ψ(t); i pro časově závislý Hamiltonián ro bezčasový Hamiltonián (v principu) ekvivalentní: Ψ(t) = j Ψ j exp[(-i/h)e j t]
23 - rozvoj na mřížce (ekvidistantní nebo neekvidistantní), n bodů, k =πh/δ Časová Schrödingerova rovnice: numericky přesné řešení 1. Diskretizace vlnové funkce: - rozvoj do báze (orthogonální polynomy) vibrace: vlastní funkce harmonického oscilátoru rotace: kulové funkce (sférické harmoniky)
24 OD: Lokální (malé t), jednoduchá, nepříliš přesná etoda, použitelná i pro časově závislé Hamiltoniány 2. Rozvoj evolučního operátoru U: h Ψ(t)/ t=hψ(t) Ψ(t+ t) = U Ψ(t) = e -ih t/ћ Ψ(t) Metoda diferencí 2. řádu (SOD) - Taylorův rozvoju U = 1 - ih t/ћ +... Ψ(t+ t) = Ψ(t) - i t H Ψ (t)/ ћ numericky nestabilní - nutná symetrizace (rozvoj +/- t ) Ψ(t+ t) = Ψ(t- t) - 2i t H Ψ (t)/ ћ podmíněně stabilní: pro t<h/e max chyba SOD metody: O( t 3 )
25 i) Metoda rozděleného Hamiltoniámu (S-O): e -it t/ћ. e -iv t/ћ...operátory T a V nekomutují! e -it t/(2h). e -iv t/(2ћ). e -iv t/(2ћ). e -it t/(2ћ) nebo e -iv t/(2h). e -it t/(2ћ). e -it t/(2ћ). e -iv t/(2ћ) (ekvival.) yba S-O metody: O( t 3 ), ale menší prefaktor než SO -O: Lokální (malé t), přesnější než SO metoda, oužitelná i pro časově závislé Hamiltoniány.
26 i) Čebyševova metoda: U = Σ a n P n (-iht/ћ)...rozvoj do orthogonálních polynomů P n = cos [n arccos(x)]...n-tý Čebyševův polynom a n = 2 J n [(E max -E min )t/(2ћ)]...besselovy funkce yba Čebyševovy metody ~ e -N ebyšev: Globální (velký krok), přesná xponencielně konvergující), použitelná jen pro asově nezávislé Hamiltoniány. i) Další globální metody: anzošova metoda orthogonální polynomy opakovaným ůsobením Hamiltoniánu na vlnovou funkci etoda tt pomocná časová proměnná t, i pro H(t)
27 . Operace Hamiltoniánu H na vlnovou funkci Ψ: = T + V...operátory kinetické a potenciální energie souřadnicové reprezentaci: Ψ= Ψ(x,t), V = V(x) (x)ψ(x,t)...lokáální násobení bod po bodu na mřižce =(-iћ/2m)..nelok. Laplaceův diferenciální operátor Ψ(x i,t) = (Ψ(x i+1,t) + Ψ(x i-1,t) - 2 Ψ(x i,t))/δx 2 milokální aproximace - porušuje relace neurčitosti ourierova transformace Ψ(x,t) Φ(k,t), násobení k 2 pětná Fourierova transformace, rychlé - FFT
28 Propagace vlnového balíku v 2D Disociace C-H vazeb v acetylénu sledem intenzivních ultrakrátkých infračervených pulzů:
29 Výpočetní náročnost Srovnej... N stupňů volnosti M bodů na mřížce (nebo funkcí báze) pro každý stupeň volnosti M N (exponencielní) škálování t Kvantová vlnová funkce: (N-dim.objekt) 1 N Klasická trajektorie (1-dimenzionální objekt)
30 Časová Schrödingerova rovnice: aproximativní přesné řešení Numericky přesně <4 atomy (do 6 stupňů volnosti) Větší systémy: APROXIMATIVNĚ -přístupy založené na metodě self-konzistentního pole, - semiklasické a kvaziklasické metody
31 Metoda self-konzistentního pole eparabilní aproximace: Ψ(q 1,...,q N,t) = e iγ(t) Π i ψ i (q i,t ih ψ i (q i,t)/ t=h i (t)ψ i (q i,t) separátní Schrödingerova rovnice pro každý mód i(t) = T i + V i (q i,t) i (q i,t) = <ψ 1... ψ i-1 ψ i+1... ψ N V(q 1,...,q N ) ψ 1... ψ i-1 ψ i+1... ψ N azba mezi módy v přiblížení self-konzistentního pole - asová závislost efektivních jednočásticových Hamiltoniánů
32 místo ~10 až ~1000 atomů Klasické separabilní potenciály ísto: i (q i,t) = <ψ 1... ψ i-1 ψ i+1... ψ N V(q 1,...,q N ) ψ 1... ψ i-1 ψ i+1... ψ N ředování přes pomocné klasické trajektorie: i CSP (q i,t) = j V(q j 1,..., q j i-1, q j i,q j i+1,...,q j N) ω j ahrazení (N-1)dimenzionální integrace sčítáním řes sadu ( ) trajektorií - výpočetně mnohem fektivnější:
33 Konfigurační interakce a multikonfigurační metody Vlnová funkce ve tvaru součtu produktů: (q 1,...,q N,t) = j c j (t)π i ψ ji (q i,t) Aplikace časově závislého variačního principu onfigurační interakce: variace pouze koeficientů c j (t) ultikonfigurační metody: variace c j (t) i ψ ji (q i,t)
34 Semiklasické metody ozvoj evolučního operátoru U=e -ih t/ћ podle h rvní kvantový člen (obsahující Planckovu konstantu) úměrný 3 V/ x 3 ynamika na konstantním, lineárním a vadratickém potenciálu je klasická ejzajímavější je kvadratický potenciál: harmonický oscilátor ešení - obecný Gaussián: (x,t) = exp{(i/ћ)[a t (x-x t ) 2 +p t (x-x t )+c t ]}
35 Pohybové rovnice pro Gaussián dx t /dt=p t /m dp t /dt=-dv(x t )/dx Klasické Newtonovy rovnice pro časový vývoj střední polohy Gaussiánu a jeho střední hybnosti da t /dt=-2a t2 /m-d 2 V(x t )/dx 2 /2 dc t /dt = iћa t /m + p t2 /2m - V(x t ) Neklasické rovnice pro časový vývoj šířky Gaussiánu a jeho fázového faktoru
36 V kvadratickém potenciálu Gaussián zůstává Gaussiánem V čase se ale mění poloha, hybnost, šířka i fáze Gaussiánu:
37 Kvaziklasické metody ignerova transformace: (q,p,t) = (1/πћ) dx e -2ipx/ћ Ψ * (q-x,t) Ψ(q+x,t) Klasické fázové proměnné q, p ohybová rovnice: F/ t=-p/m F/ q+ V/ q F/ p+o[ћ 2 3 V/ q 3 3 F/ p Klasické pohybové rovnice. Wignerovské mapování počáteční vlnové funkce na distribuci klasických počátečních podmínek q i,p. Propagace sady klasických trajektorií.
38 Analýza vlnových balíků Okometrická analýza - amplituda a fáze. Výpočet autokorelační funkce: (t) = <Ψ(0) Ψ(t)> římá souvislost se spektroskopií, např.: (ω) ~ ω 2Re C(t) e i(e + ћω) t dt 0 bsorpční spektrum jako Fourierova transformace utokorelační funkce.
39 Kvantová Dynamika: Závěr de? kvantové jevy nejen u elektronů, ale i jader nízké teploty, lehké atomy (H, He,...) o? nulové kmity, tunelování, resonanční přenos energie neadiabatické interakce s elektrony spektroskopie ak? časový vs. bezčasový přístup k řešení Schr. rovnice numericky přesné řešení pro malé systémy
40 Praktické aspekty I: Kde si přečíst o kvantové molekulové dynamice?
41 Praktické aspekty II: Jaký molekulově dynamický program použít? Vlastní (obvyklá volba). Freeware:
Kvantová molekulová dynamika Pavel Jungwirth
Kvantová molekulová dynamika Pavel Jungwirth Ústav organické chemie a biochemie AV ČR a Centrum pro komplexní molekulové systémy a biomolekuly, Flemingovo nám. 2, 166 10 Praha 6 tel.: 220 410 314 FAX:
Od kvantové mechaniky k chemii
Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi
Vibrace atomů v mřížce, tepelná kapacita pevných látek
Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární
Fyzika IV. g( ) Vibrace jader atomů v krystalové mříži
Vibrace jader atomů v krystalové mříži v krystalu máme N základních buněk, v každé buňce s atomů, které kmitají kolem rovnovážných poloh výchylky kmitů jsou malé (Taylorův rozvoj): harmonická aproximace
Fyzika IV Dynamika jader v molekulách
Dynamika jader v molekulách vibrace rotace Dynamika jader v molekulách rotační energetické hladiny (dvouatomová molekula) moment setrvačnosti kolem osy procházející těžištěm osa těžiště m2 m1 r2 r1 R moment
Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15
Obsah PŘEDMLUVA...9 ÚVOD...11 1. TEORETICKÁ MECHANIKA...15 1.1 INTEGRÁLNÍ PRINCIPY MECHANIKY... 16 1.1.1 Základní pojmy z mechaniky... 16 1.1.2 Integrální principy... 18 1.1.3 Hamiltonův princip nejmenší
PLANCK EINSTEIN BOHR de BROGLIE
KVANTOVÁ MECHANIKA PLANCK 1858-1947 EINSTEIN 1879-1955 BOHR 1885-1962 de BROGLIE 1892-1987 HEISENBERG 1901-1976 SCHRÖDINGER 1887-1961 BORN 1882-1970 JORDAN 1902-1980 PAULI 1900-1958 DIRAC 1902-1984 VŠECHNO
Vybrané podivnosti kvantové mechaniky
Vybrané podivnosti kvantové mechaniky Pole působnosti kvantové mechaniky Středem zájmu KM jsou mikroskopické objekty Typické rozměry 10 10 až 10 16 m Typické energie 10 22 až 10 12 J Studované objekty:
Operátory obecně (viz QMCA s. 88) je matematický předpis který, pokud je aplikován na funkci, převádí ji na
4 Matematická vsuvka: Operátory na Hilbertově prostoru. Popis vlastností kvantové částice. Operátory rychlosti a polohy kvantové částice. Princip korespondence. Vlastních stavy a spektra operátorů, jejich
1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.
. Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární
Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO
1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu
Kvantová fyzika atomárních soustav letní semestr VIII. KOTLÁŘSKÁ 23. DUBNA 2014
F40 Kvantová fyzika atomárních soustav letní semestr 03-04 VIII. Vibrace víceatomových molekul cvičení KOTLÁŘSKÁ 3. DUBNA 04 Úvodem capsule o maticích a jejich diagonalisaci definice "vibračních módů"
Singulární charakter klasické limity
Singulární charakter klasické limity obecná speciální Teorie O Teorie S Parametr δ : δ ) O S) O S Pieter Bruegel starší +569) Velké ryby jedí malé ryby 556) obecná speciální Teorie O Teorie S Parametr
Optické spektroskopie 1 LS 2014/15
Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)
Kvantová mechanika - model téměř volných elektronů. model těsné vazby
Kvantová mechanika - model téměř volných elektronů model těsné vazby Částice (elektron) v periodickém potenciálu- Blochův teorém Dále už nebudeme považovat elektron za zcela volný (Sommerfeld), ale připustíme
Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování
eideální plyny b H Q(, V, T )... e dp 3... dpdr... dr! h Integrace přes hybnosti QVT (,, ) pmkt! h 3 / e dr dr dr /... U kt... eideální chování p kt r B ( T) r B ( T) r 3 3 Vyšší koeficinety velice složité
Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce
Příklady na cvičení k přednášce NMMA334 Úvod do parciálních diferenciálních rovnic 1 Kanonický tvar lineárních PDR 2. řádu pro funkce dvou proměnných 1. Určete typ parciální diferenciální rovnice u xx
Laserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura
Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model
Elementární částice 1. Leptony 2. Baryony 3. Bosony 4. Kvarkový model 5. Slabé interakce 6. Partonový model I.S. Hughes: Elementary Particles M. Leon: Particle Physics W.S.C. Williams Nuclear and Particle
elektrony v pevné látce verze 1. prosince 2016
F6122 Základy fyziky pevných látek seminář elektrony v pevné látce verze 1. prosince 2016 1 Drudeho model volných elektronů 1 1.1 Mathiessenovo pravidlo............................................... 1
Příklad 1: Komutační relace [d/dx, x] Příklad 2: Operátor B = i d/dx
1 Příklad 1: Komutační relace [d/, x] Mějme na dva operátory: ˆ d/ a ˆ 5 D X x, například na prvek x působí takto Určeme jejich komutátor ˆ 5 d 5 4 ˆ 5 5 6 D x x 5 x, X x xx x ˆ ˆ ˆ ˆ ˆ ˆ d d [ DX, ] f
Maturitní témata fyzika
Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený
Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů
Elektronová struktura pevných látek model volných elektronů 1897: J.J. Thomson - elektron jako částice 1900: P. Drude: kinetická teorie plynů - kov jako plyn elektronů Drudeho model elektrony se mezi srážkami
Nerovnovážné systémy Onsagerova hypotéza, fluktuačně disipační teorém
Nerovnovážné systémy Onsagerova hypotéza, fluktuačně disipační teorém Omezení se na nerovnážné systémy v blízkosti rovnováhy Chování systému lze popsat v rámci linear response theory (teorie lineární odezvy)
Úvod do analytické mechaniky
Úvod do analytické mechaniky Vektorová mechanika, která je někdy nazývána jako Newtonova, vychází bezprostředně z principů, které jsou vyjádřeny vztahy mezi vektorovými veličinami. V tomto případě např.
Kvantová informatika pro komunikace v budoucnosti
Kvantová informatika pro komunikace v budoucnosti Antonín Černoch Regionální centrum pokročilých technologií a materiálů Společná laboratoř optiky University Palackého a Fyzikálního ústavu Akademie věd
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných. Operátor momentu hybnosti a kvadrátu momentu hybnosti.
6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných Operátor momentu hybnosti a kvadrátu momentu hybnosti Víme už tedy téměř vše o operátorech Jsou to vlastně měřící přístroje v kvantové
VÝPOČETNÍ CHEMIE V ANALÝZE STRUKTURY
VÝPOČETNÍ CHEMIE V ANALÝZE STRUKTURY A VLASTNOSTÍ MOLEKUL Michal Čajan Katedra anorganické chemie PřF UP v Olomouci MOLEKULOVÉ MODELOVÁNÍ V CHEMII MOLEKULOVÉ MODELOVÁNÍ aplikace zobrazení a analýza strukturních
Lehký úvod do kvantové teorie II
1 Lehký úvod do kvantové teorie II 5 Harmonický oscilátor Na příkladu harmonického oscilátoru, jehož klasické řešení známe z Fyziky 1, si ukážeme typické postupy při hledání vlastních hodnot operátoru
Elektronový obal atomu
Elektronový obal atomu Ondřej Havlíček.ročník F-Vt/SŠ Jsoucno je vždy něco, co jsme si sami zkonstruovali ve své mysli. Podstata takovýchto konstrukcí nespočívá v tom, že by byly odvozeny ze smyslových
Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:
Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly
Slapový vývoj oběžné dráhy. Michaela Káňová, Marie Běhounková Geodynamický seminář
Slapový vývoj oběžné dráhy Michaela Káňová, Marie Běhounková Geodynamický seminář 20. 5. 2015 Problém dvou těles v nebeské mechanice: dva hmotné body + gravitační síla = Keplerova úloha m keplerovská rychlost
Parciální diferenciální rovnice
Parciální diferenciální rovnice Obsah kurzu Co bude obsahovat... úvod do PDR odvození některých PDR klasická teorie lineárních PDR 1. a 2. řádu řešení poč. a okraj. úloh vlastnosti řešení souvislost s
METODY VÝPOČETNÍ CHEMIE
METODY VÝPOČETNÍ CHEMIE Metody výpočetní chemie Ab initio metody Semiempirické metody Molekulová mechanika Molekulová simulace Ab initio metody Ab initio - od počátku Metody kvantově-mechanické vycházejí
Fyzika - Sexta, 2. ročník
- Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence
Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření
Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou
15 Experimentální základy kvantové hypotézy
5 Experimentální základy kvantové hypotézy Částicové vlastnosti světla a vlnové vlastnosti částic. Planckova kvantová hypotéza, foton, fotoelektrický jev. De Broglieova hypotéza, relace neurčitosti. 5.
Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.
Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky
X3EO - Elektrické obvody Kmitočtové charakteristiky Doc. Ing. Petr Pollák, CSc. Letní semestr 5/6!!! Volné šíření není povoleno!!! Fázory a spektra Fázor harmonického průběhu Û m = U m e jϕ ut) = U m sinωt
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Předmět: LRR/CHPB1/Chemie pro biology 1 Elektronový obal Mgr. Karel Doležal Dr. Cíl přednášky: seznámit posluchače se stavbou
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie
PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy
MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA
MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ
Oddělení pohybu elektronů a jader
Oddělení pohybu elektronů a ader Adiabatická aproximace Born-Oppenheimerova aproximace Důležité vztahy sou 4, 5, 7, 0,,, udělal sem to zbytečně podrobně, e to samostatný okruh Separace translačního pohybu:
Integrace. Numerické metody 7. května FJFI ČVUT v Praze
Integrace Numerické metody 7. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Kvadraturní vzorce Gaussovy kvadratury Více dimenzí Programy 1 Úvod Úvod - Úloha Máme funkci f( x) a snažíme se najít určitý integrál
Počítačová chemie. výpočetně náročné simulace chemických a biomolekulárních systémů. Zora Střelcová
Počítačová chemie výpočetně náročné simulace chemických a biomolekulárních systémů Zora Střelcová Národní centrum pro výzkum biomolekul, Masarykova univerzita, Kotlářská 2, 611 37 Brno, Česká Republika
VÍTEJTE V MIKROSVĚTĚ
VÍTEJTE V MIKROSVĚTĚ Klasická vs. Moderní fyzika Klasická fyzika fyzika obyčejných věcí viditelných pouhým okem Moderní fyzika Relativita zabývá se tím co se pohybuje rychle nebo v silovém gravitačním
Kovy - model volných elektronů
Kovy - model volných elektronů Kovová vazba 1. Preferuje ji většina prvků vyskytujících se v přírodě. Kov je tvořen kladně nabitými ionty (s konfigurací vzácného plynu) a relativně velmi volnými elektrony.
I a II. Kvantová mechanika. JSF094 Akademický rok
Kvantová mechanika JSF094 kademický rok 017-018 I a II Čas a místo Úterý 13:10-14:40 Středa 10:40-1:10 cvičení posluchárna ÚČJF3/945 Čtvrtek 10:40-1:10 Přednášející prof. Pavel Cejnar ÚČJF místnost: 934
1 Modelování systémů 2. řádu
OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka
MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.
MKI -00 Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. V jakém rozmezí se může pohybovat poloměr konvergence regulární
Úvod do kvantového počítání
2. přednáška Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 17. března 2005 Opakování Část I Přehled z minulé hodiny Opakování Alternativní výpočetní modely Kvantové počítače
Matematické metody kvantové mechaniky
Matematické metody kvantové mechaniky Seminář současné matematiky Ing. Tomáš Kalvoda tomas.kalvoda@fit.cvut.cz KM FJFI & KTI FIT ČVUT místnost M102, FIT 11. listopadu 2010 Kalvoda (ČVUT) Seminář současné
Úvod do laserové techniky
Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické
Maturitní témata profilová část
SEZNAM TÉMAT: Kinematika hmotného bodu mechanický pohyb, relativnost pohybu a klidu, vztažná soustava hmotný bod, trajektorie, dráha klasifikace pohybů průměrná a okamžitá rychlost rovnoměrný a rovnoměrně
Okruhy k maturitní zkoušce z fyziky
Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální
2. Elektrotechnické materiály
. Elektrotechnické materiály Předpokladem vhodného využití elektrotechnických materiálů v konstrukci elektrotechnických součástek a zařízení je znalost jejich vlastností. Elektrické vlastnosti materiálů
KLASICKÁ A KVANTOVÁ MOLEKULOVÁ DYNAMIKA
KLASICKÁ A KVANTOVÁ MOLEKULOVÁ DYNAMIKA "Je práce učit druhé to, co umíme. A což teprve to, co neumíme." Pavel Jungwirth Ústav organické chemie a biochemie Akademie věd České republiky Flemingovo nám.
Numerická matematika. Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou
Numerická matematika Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou Václav Bubník, xbubni01, sk. 60 FIT VUT v Brně, 2004 Obsah Numerická matematika...1 1. Teorie... 3 1.1 Diferenciální
Poznámky k Fourierově transformaci
Poznámky k Fourierově transformaci V těchto poznámkách jsou uvedeny základní vlastnosti jednorozměrné Fourierovy transformace a její aplikace na jednoduché modelové případy. Pro určitost jsou sdružené
Řešit atom vodíku znamená nalézt řešení Schrödingerovy rovnice s příslušným hamiltoniánem. 1 4πǫ 0. 2m e
8 Atom vodíku Správné řešení atomu vodíku je jedním z velkých vítězství kvantové mechaniky. Podle klasické fyziky náboj, který se pohybuje se zrychlením (elektron obíhající vodíkové jádro proton), by měl
ÚVOD DO TERMODYNAMIKY
ÚVOD DO TERMODYNAMIKY Termodynamika: Nauka o obecných zákonitostech, kterými se se řídí transformace CELKOVÉ energie makroskopických systémů v její různé formy. Je založena na výsledcích experimentílních
Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn
Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10
Atomové a molekulové orbitaly Ion molekuly vodíku. Molekula vodíku Heitler-Londonovou metodou. Metoda LCAO. Báze atomových orbitalů.
Atomové a molekulové orbitaly Ion molekuly vodíku. Molekula vodíku Heitler-Londonovou metodou. Metoda LCAO. Báze atomových orbitalů. Ion molekuly vodíku H + 2 První použití metody je demonstrováno při
6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207
6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.
Vlnění, optika a atomová fyzika (2. ročník)
Vlnění, optika a atomová fyzika (2. ročník) Vlnění 1. Kmity soustav hmotných bodů (6 hod.) 1.1 Netlumené malé kmity kolem stabilní rovnovážné polohy: linearita pohybových rovnic, princip superpozice, obecné
Obr. 141: První tři Bernsteinovy iontové módy. Na vodorovné ose je bezrozměrný vlnový vektor a na svislé ose reálná část bezrozměrné frekvence.
Mikronestability 33 m Re( ) ( m1) m1,,3, (5.18) ci Imaginární část frekvence, která je zodpovědná za útlum, razantně roste, pokud se vlny nešíří kolmo na magnetické pole. Útlum také roste s číslem módu
Modelování a simulace Lukáš Otte
Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast
Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.
Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),
Metody nelineární optiky v Ramanově spektroskopii
Metody nelineární optiky v Ramanově spektroskopii Využití optických nelinearit umožňuje přejít od tradičního studia rozptylu světla na fluktuacích, teplotních elementárních excitacích, ke studiu rozptylu
Profilová část maturitní zkoušky 2017/2018
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2017/2018 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: FYZIKA
Fyzika IV. Pojem prvku. alchymie. Paracelsus (16.st) Elektronová struktura atomů
Elektronová struktura atomů Pojem prvku alchymie Paracelsus (16.st) Elektronová struktura atomů alchymie 17.-18.století - při hoření látky ztrácí těkavou součást - flogiston. látka = flogiston + popel
B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Fyzika.
4.8.13. Fyzikální seminář Předmět Fyzikální seminář je vyučován v sextě, septimě a v oktávě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Fyzikální seminář vychází ze vzdělávací oblasti
7.4 Domácíúkol-Hopík. mgz z >0 z <0. 1. Řešení pomocí WKB metody:
7.4 Domácíúkol-Hopík Částice o hmotnosti m hopká v homogennímnapř. gravitačním) poli, přičemž od podložky se odráží bez ztráty energie. Uvažovaný potenciál je { mgz z > Vz) z
Fourierovské metody v teorii difrakce a ve strukturní analýze
Osnova přednášky na 31 kolokviu Krystalografické společnosti Výpočetní metody v rtg a neutronové strukturní analýze Nové Hrady, 16 20 6 2003 Fourierovské metody v teorii difrakce a ve strukturní analýze
Elektronový obal atomu
Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h
VAROVÁNÍ Přemýšlení o kvantové mechanice způsobuje nespavost
VAROVÁNÍ Přemýšlení o kvantové mechanice způsobuje nespavost Od atomů (a molekul) ke kvantové mechanice Vojtěch Kapsa 1 Od atomů (a molekul) ke kvantové mechanice Od atomů (a molekul) ke kvantové mechanice
Počítačové simulace a statistická mechanika
Počítačové simulace a statistická mechanika Model = soubor aproximaci přijatých za účelem popisu určitého systému okrajové podmínky mezimolekulové interakce Statistické zpracování průměrování ve fázovém
Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013
1. a) Kinematika hmotného bodu klasifikace pohybů poloha, okamžitá a průměrná rychlost, zrychlení hmotného bodu grafické znázornění dráhy, rychlosti a zrychlení na čase kinematika volného pádu a rovnoměrného
Tepelná vodivost pevných látek
Tepelná vodivost pevných látek Přenos tepla vedení mřížková část tepelné vodivosti Dvouatomový lineární řetězec přiblížení např. NaCl (1) u -1 (A) u s-1 (B) u (A) u s (B) u s+1 (B) u +1 (A) Např. = příčné
ÚVOD DO KVANTOVÉ MECHANIKY
ÚVOD DO KVANTOVÉ MECHANIKY KM popisuje vlastnosti hmoty a světla a fyzikální děje na úrovni atomů KVANTOVÁNÍ (fyzikální veličiny mohou mít pouze některé hodnoty) jedna z nejobecnějších vlastností našeho
October 1, Interpretujte význam jejích parametrů. Vypočítejte jeho momenty. Napište vzorec pro. I(n, a, b) :=
Kvantová fyzika cvičení s návody a výsledky October 1, 007 Návody zde uvedené jsou záměrně uváděny ve stručné formě, jako nápověda a vodítko, jak při řešení úloh postupovat; nepředstavují a nenahrazují
Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků
Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2014 Obsah Variační principy
Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15
Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření
POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY
POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)
Počátky: už jsme potkali
KVANTOVÁ MECHANIKA Počátky: už jsme potkali Záření černého tělesa Kvantování energie Fotoefekt PLANCK 1858-1947 EINSTEIN 1879-1955 Model atomu Vlnové vlastnosti částic BOHR 1885-1962 de BROGLIE 1892-1987
VYPOUŠTĚNÍ KVANTOVÉHO DŽINA
VYPOUŠTĚNÍ KVANTOVÉHO DŽINA ÚSPĚŠNÉ OMYLY V HISTORII KVANTOVÉ FYZIKY Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK Praha Prosinec 2009 1) STARÁ KVANTOVÁ TEORIE Světlo jsou částice! (1900-1905) 19.
Kombinatorická minimalizace
Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny
přičemž předpokládáme A malé, U zahrnuje coulombické členy. Když roznásobíme závorku, p 2 reprezentuje kinetickou energii nabitých částic, člen
Výběrová pravidla Absorpce/stim. emise Kde se výběrová pravidla vezmou? Použijeme semiklasické přiblížení, tzn. s nabitými částicemi (s indexy 1...N) zacházíme kvantově, s vnějším elektromagnetickým polem
Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)
Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr.
Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014
Harmonogram výuky předmětu Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Vedoucí cvičení: ing. Václav Klika, Ph.D. & MSc. Karolína Korvasová & & ing. Matěj Tušek, Ph.D. Katedra
Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012
Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 1. Kinematika pohybu hmotného bodu pojem hmotný bod, vztažná soustava, určení polohy, polohový vektor trajektorie, dráha, rychlost (okamžitá,
Kmity a rotace molekul
Kmity a rotace moleul Svět moleul je neustále v pohybu l eletrony se pohybují oolo jader l jádra mitají olem rovnovážných poloh l moleuly rotují a přesouvají se Ion H + podrobněji Kmity vibrace moleul
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.
I. část - úvod. Iva Petríková
Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,
Born-Oppenheimerova aproximace
Born-Oppenheimerova aproximace Oddělení elektronického a jaderného pohybu Jádra 2000 x těžší než elektrony elektrony kvantová chemie, popis systému (do 100 atomů) na základě vlastností elektronů (jádra
Ab initio výpočty v chemii a biochemii
Ab initio výpočty v chemii a biochemii Doc. RNDr. Ing. Jaroslav Burda, CSc., jaroslav.burda@mff.cuni.cz Dr. Vladimír Sychrovský vladimir.sychrovsky@uochb.cas.cz Studijní literatura Szabo A., Ostlund N.S.