Klasická á a kvantová molekulová dynamika. Pavel Jungwirth

Rozměr: px
Začít zobrazení ze stránky:

Download "Klasická á a kvantová molekulová dynamika. Pavel Jungwirth"

Transkript

1 Klasická á a kvantová molekulová dynamika Pavel Jungwirth

2 Počítačové simulace Experiment Simulace Teorie Experimentální Výsledky simulace Předpovědi analytické výsledky teorie Porovnání výsledků a předpovědí Test simulačního modelu! Test aproximativní teorie! Test experimentu?

3 Počítačové simulace bez počítačů? Například Monte Carlo simulace - opilý námořník náhodná procházka Applets/AppletSailor/ Appl_Sailor2.html -určení π pomocí dřívka a dvou čar

4 Výhody počítačových simulací možnost studovat systémy za experimentáln nesnadno dostupných podmínek (např. extrémní teploty, tlaky, ), časové a prostorové rozlišení nedostupné v experimentu, ekonomické aspekty (Moorův zákon). le pozor jde o virtuální realitu!

5 Kde se používají počítačové simulace? Makrosvět: objekty typu hvězdných galaxií. Mezosvět: objekty velikosti přednášejícího. Mikrosvět: atomy a molekuly.

6 Simulace molekulové dynamiky Vždy je nejprve třeba znát interakční potenciál (silové pole - force field), tj. jak atomy mezi sebou interagují (implicitně předpokládáme platnost Born- Oppenheimerovy aproximace). Řešení pohybových rovnic pro systém, skládájící se z atomů. Newtonovy pohybové rovnice klasická molekulová dynamika. Schrödingerova rovnice kvantová molekulová dynamika.

7 Interakční potenciály - empirické silové pole: vazby úhly torzní úhly Lennard-Jones elektrostatika intramolekulové a intermolekulové členy plus další členy (polarizace, anharmonicita, aromaticita, ) - on the fly potenciály: ab initio (Car-Parrinello) molekulové dynamika. Energie a síly počítány podél trajektorie nejčastěji metodami funkcionálu hustoty.

8 Klasická molekulová dynamika Numerická integrace Newtonových rovnic: Řešení počáteční úlohy propagátor trajektorie: r 0, p 0 Integrace krok po kroku např. Verletovou metodou.

9 Od konečného počtu částic k nekonečným systémům Reálné systémy: ~10 23 atomů Počítačová simulace: ~ atomů Trik: periodické okrajové podmínky

10 Přechod ke kanonickému souboru římočaré řešení Newtonových rovnic: onstantní energie a počet částic mikrokanonický soubor xperiment: bvykle konstantní teplota a tlak kanonický soubor Simulaci molekulové dynamiky je možné vnutit konstantní teplotu a tlak např. občasným přeškálováním rychlostí a objemu nebo zavedením nových stupňů volnosti ( teplotní lázeň, píst )

11 Dynamické simulace Nerovnovážné procesy:

12 Termodynamické simulace Rovnovážné procesy: trajektorie vzorkuje fázový prostor (ergodický teorém)

13 Praktické aspekty I: Kde si přečíst o klasické molekulové dynamice?

14 Praktické aspekty II: Jaký molekulově dynamický program použít? Vlastní (historické důvody nebo speciální metody a aplikace). Freeware nebo komerční program:

15 Lesk a bída klasické molekulové dynamiky - Simulace je maximálně tak dobrá jako je silové pole, - Délka simulace jako limitující faktor: ~ kroků po ~1 fs, tj. nano- až mikrosekundy, - Pohyb atomů klasicky: Nemožnost popsat kvantové jevy při dynamice atomů a molekul...

16 Kdy nestačí klasická mechanika? ěřítkem "kvantovosti" objektu s hmotou m kinetickou energií E je jeho de Broglieova vlnová élka: λ = 2πћ/(2mE) 1/2 -li d charakteristický rozměr systému, pak: << d klasická mechanika, d kvantová mechanika.

17 λ vybraných objektů. Posluchač dobíhající klasik na přednášku: = 70 kg, v = 5 m/s λ ~ m. Valenční elektron: kvantový = 9x10-31 kg, E = 1 ev λ ~ 10-9 m e - Ne. Vibrující atom neonu: semi-kvantový = 2x10-26 kg, E = 0.01 ev λ ~ m

18 Dualismus částice - vlna Vlnový charakter kvantových objektů: průchod přes dvojštěrbinu

19 Kvantový pohyb atomů a molekul 1. Nulové kmity - energii nelze snížit pod hω/2 2. Tunelování - průchod pod bariérou potenciálu s dvěma minimy 3. Přenos energie přes kvantové rezonance, interference

20 Kvantové interakce. S electrony: Neadiabatické interakce - vyhnutá křížení, konické intersekce 2. S fotony: elektronické/vibrační/rotační fotoexcitace - spektroskopie, řízení reakcí optickými pulzy

21 Kvantová vs. klasická mechanika Srovnání kvantový míček a klasický míček pružné kmity (elastický odraz od podložky)

22 Časová vs. bezčasová mechanika Klasická mechanika: časová (dynamické Newtonovy rovnice) Kvantová mechanika: bezčasová: HΨ=E Ψ časová: ih Ψ/ t =HΨ stacionární vázané a rozptylové stavy Ψ j,e j ; bezčasový Hamiltonián dynamický vývoj, nestacionární odezva Ψ(t); i pro časově závislý Hamiltonián ro bezčasový Hamiltonián (v principu) ekvivalentní: Ψ(t) = j Ψ j exp[(-i/h)e j t]

23 - rozvoj na mřížce (ekvidistantní nebo neekvidistantní), n bodů, k =πh/δ Časová Schrödingerova rovnice: numericky přesné řešení 1. Diskretizace vlnové funkce: - rozvoj do báze (orthogonální polynomy) vibrace: vlastní funkce harmonického oscilátoru rotace: kulové funkce (sférické harmoniky)

24 OD: Lokální (malé t), jednoduchá, nepříliš přesná etoda, použitelná i pro časově závislé Hamiltoniány 2. Rozvoj evolučního operátoru U: h Ψ(t)/ t=hψ(t) Ψ(t+ t) = U Ψ(t) = e -ih t/ћ Ψ(t) Metoda diferencí 2. řádu (SOD) - Taylorův rozvoju U = 1 - ih t/ћ +... Ψ(t+ t) = Ψ(t) - i t H Ψ (t)/ ћ numericky nestabilní - nutná symetrizace (rozvoj +/- t ) Ψ(t+ t) = Ψ(t- t) - 2i t H Ψ (t)/ ћ podmíněně stabilní: pro t<h/e max chyba SOD metody: O( t 3 )

25 i) Metoda rozděleného Hamiltoniámu (S-O): e -it t/ћ. e -iv t/ћ...operátory T a V nekomutují! e -it t/(2h). e -iv t/(2ћ). e -iv t/(2ћ). e -it t/(2ћ) nebo e -iv t/(2h). e -it t/(2ћ). e -it t/(2ћ). e -iv t/(2ћ) (ekvival.) yba S-O metody: O( t 3 ), ale menší prefaktor než SO -O: Lokální (malé t), přesnější než SO metoda, oužitelná i pro časově závislé Hamiltoniány.

26 i) Čebyševova metoda: U = Σ a n P n (-iht/ћ)...rozvoj do orthogonálních polynomů P n = cos [n arccos(x)]...n-tý Čebyševův polynom a n = 2 J n [(E max -E min )t/(2ћ)]...besselovy funkce yba Čebyševovy metody ~ e -N ebyšev: Globální (velký krok), přesná xponencielně konvergující), použitelná jen pro asově nezávislé Hamiltoniány. i) Další globální metody: anzošova metoda orthogonální polynomy opakovaným ůsobením Hamiltoniánu na vlnovou funkci etoda tt pomocná časová proměnná t, i pro H(t)

27 . Operace Hamiltoniánu H na vlnovou funkci Ψ: = T + V...operátory kinetické a potenciální energie souřadnicové reprezentaci: Ψ= Ψ(x,t), V = V(x) (x)ψ(x,t)...lokáální násobení bod po bodu na mřižce =(-iћ/2m)..nelok. Laplaceův diferenciální operátor Ψ(x i,t) = (Ψ(x i+1,t) + Ψ(x i-1,t) - 2 Ψ(x i,t))/δx 2 milokální aproximace - porušuje relace neurčitosti ourierova transformace Ψ(x,t) Φ(k,t), násobení k 2 pětná Fourierova transformace, rychlé - FFT

28 Propagace vlnového balíku v 2D Disociace C-H vazeb v acetylénu sledem intenzivních ultrakrátkých infračervených pulzů:

29 Výpočetní náročnost Srovnej... N stupňů volnosti M bodů na mřížce (nebo funkcí báze) pro každý stupeň volnosti M N (exponencielní) škálování t Kvantová vlnová funkce: (N-dim.objekt) 1 N Klasická trajektorie (1-dimenzionální objekt)

30 Časová Schrödingerova rovnice: aproximativní přesné řešení Numericky přesně <4 atomy (do 6 stupňů volnosti) Větší systémy: APROXIMATIVNĚ -přístupy založené na metodě self-konzistentního pole, - semiklasické a kvaziklasické metody

31 Metoda self-konzistentního pole eparabilní aproximace: Ψ(q 1,...,q N,t) = e iγ(t) Π i ψ i (q i,t ih ψ i (q i,t)/ t=h i (t)ψ i (q i,t) separátní Schrödingerova rovnice pro každý mód i(t) = T i + V i (q i,t) i (q i,t) = <ψ 1... ψ i-1 ψ i+1... ψ N V(q 1,...,q N ) ψ 1... ψ i-1 ψ i+1... ψ N azba mezi módy v přiblížení self-konzistentního pole - asová závislost efektivních jednočásticových Hamiltoniánů

32 místo ~10 až ~1000 atomů Klasické separabilní potenciály ísto: i (q i,t) = <ψ 1... ψ i-1 ψ i+1... ψ N V(q 1,...,q N ) ψ 1... ψ i-1 ψ i+1... ψ N ředování přes pomocné klasické trajektorie: i CSP (q i,t) = j V(q j 1,..., q j i-1, q j i,q j i+1,...,q j N) ω j ahrazení (N-1)dimenzionální integrace sčítáním řes sadu ( ) trajektorií - výpočetně mnohem fektivnější:

33 Konfigurační interakce a multikonfigurační metody Vlnová funkce ve tvaru součtu produktů: (q 1,...,q N,t) = j c j (t)π i ψ ji (q i,t) Aplikace časově závislého variačního principu onfigurační interakce: variace pouze koeficientů c j (t) ultikonfigurační metody: variace c j (t) i ψ ji (q i,t)

34 Semiklasické metody ozvoj evolučního operátoru U=e -ih t/ћ podle h rvní kvantový člen (obsahující Planckovu konstantu) úměrný 3 V/ x 3 ynamika na konstantním, lineárním a vadratickém potenciálu je klasická ejzajímavější je kvadratický potenciál: harmonický oscilátor ešení - obecný Gaussián: (x,t) = exp{(i/ћ)[a t (x-x t ) 2 +p t (x-x t )+c t ]}

35 Pohybové rovnice pro Gaussián dx t /dt=p t /m dp t /dt=-dv(x t )/dx Klasické Newtonovy rovnice pro časový vývoj střední polohy Gaussiánu a jeho střední hybnosti da t /dt=-2a t2 /m-d 2 V(x t )/dx 2 /2 dc t /dt = iћa t /m + p t2 /2m - V(x t ) Neklasické rovnice pro časový vývoj šířky Gaussiánu a jeho fázového faktoru

36 V kvadratickém potenciálu Gaussián zůstává Gaussiánem V čase se ale mění poloha, hybnost, šířka i fáze Gaussiánu:

37 Kvaziklasické metody ignerova transformace: (q,p,t) = (1/πћ) dx e -2ipx/ћ Ψ * (q-x,t) Ψ(q+x,t) Klasické fázové proměnné q, p ohybová rovnice: F/ t=-p/m F/ q+ V/ q F/ p+o[ћ 2 3 V/ q 3 3 F/ p Klasické pohybové rovnice. Wignerovské mapování počáteční vlnové funkce na distribuci klasických počátečních podmínek q i,p. Propagace sady klasických trajektorií.

38 Analýza vlnových balíků Okometrická analýza - amplituda a fáze. Výpočet autokorelační funkce: (t) = <Ψ(0) Ψ(t)> římá souvislost se spektroskopií, např.: (ω) ~ ω 2Re C(t) e i(e + ћω) t dt 0 bsorpční spektrum jako Fourierova transformace utokorelační funkce.

39 Kvantová Dynamika: Závěr de? kvantové jevy nejen u elektronů, ale i jader nízké teploty, lehké atomy (H, He,...) o? nulové kmity, tunelování, resonanční přenos energie neadiabatické interakce s elektrony spektroskopie ak? časový vs. bezčasový přístup k řešení Schr. rovnice numericky přesné řešení pro malé systémy

40 Praktické aspekty I: Kde si přečíst o kvantové molekulové dynamice?

41 Praktické aspekty II: Jaký molekulově dynamický program použít? Vlastní (obvyklá volba). Freeware:

Kvantová molekulová dynamika Pavel Jungwirth

Kvantová molekulová dynamika Pavel Jungwirth Kvantová molekulová dynamika Pavel Jungwirth Ústav organické chemie a biochemie AV ČR a Centrum pro komplexní molekulové systémy a biomolekuly, Flemingovo nám. 2, 166 10 Praha 6 tel.: 220 410 314 FAX:

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

Fyzika IV. g( ) Vibrace jader atomů v krystalové mříži

Fyzika IV. g( ) Vibrace jader atomů v krystalové mříži Vibrace jader atomů v krystalové mříži v krystalu máme N základních buněk, v každé buňce s atomů, které kmitají kolem rovnovážných poloh výchylky kmitů jsou malé (Taylorův rozvoj): harmonická aproximace

Více

Fyzika IV Dynamika jader v molekulách

Fyzika IV Dynamika jader v molekulách Dynamika jader v molekulách vibrace rotace Dynamika jader v molekulách rotační energetické hladiny (dvouatomová molekula) moment setrvačnosti kolem osy procházející těžištěm osa těžiště m2 m1 r2 r1 R moment

Více

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15 Obsah PŘEDMLUVA...9 ÚVOD...11 1. TEORETICKÁ MECHANIKA...15 1.1 INTEGRÁLNÍ PRINCIPY MECHANIKY... 16 1.1.1 Základní pojmy z mechaniky... 16 1.1.2 Integrální principy... 18 1.1.3 Hamiltonův princip nejmenší

Více

PLANCK EINSTEIN BOHR de BROGLIE

PLANCK EINSTEIN BOHR de BROGLIE KVANTOVÁ MECHANIKA PLANCK 1858-1947 EINSTEIN 1879-1955 BOHR 1885-1962 de BROGLIE 1892-1987 HEISENBERG 1901-1976 SCHRÖDINGER 1887-1961 BORN 1882-1970 JORDAN 1902-1980 PAULI 1900-1958 DIRAC 1902-1984 VŠECHNO

Více

Vybrané podivnosti kvantové mechaniky

Vybrané podivnosti kvantové mechaniky Vybrané podivnosti kvantové mechaniky Pole působnosti kvantové mechaniky Středem zájmu KM jsou mikroskopické objekty Typické rozměry 10 10 až 10 16 m Typické energie 10 22 až 10 12 J Studované objekty:

Více

Operátory obecně (viz QMCA s. 88) je matematický předpis který, pokud je aplikován na funkci, převádí ji na

Operátory obecně (viz QMCA s. 88) je matematický předpis který, pokud je aplikován na funkci, převádí ji na 4 Matematická vsuvka: Operátory na Hilbertově prostoru. Popis vlastností kvantové částice. Operátory rychlosti a polohy kvantové částice. Princip korespondence. Vlastních stavy a spektra operátorů, jejich

Více

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o. . Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Kvantová fyzika atomárních soustav letní semestr VIII. KOTLÁŘSKÁ 23. DUBNA 2014

Kvantová fyzika atomárních soustav letní semestr VIII. KOTLÁŘSKÁ 23. DUBNA 2014 F40 Kvantová fyzika atomárních soustav letní semestr 03-04 VIII. Vibrace víceatomových molekul cvičení KOTLÁŘSKÁ 3. DUBNA 04 Úvodem capsule o maticích a jejich diagonalisaci definice "vibračních módů"

Více

Singulární charakter klasické limity

Singulární charakter klasické limity Singulární charakter klasické limity obecná speciální Teorie O Teorie S Parametr δ : δ ) O S) O S Pieter Bruegel starší +569) Velké ryby jedí malé ryby 556) obecná speciální Teorie O Teorie S Parametr

Více

Optické spektroskopie 1 LS 2014/15

Optické spektroskopie 1 LS 2014/15 Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)

Více

Kvantová mechanika - model téměř volných elektronů. model těsné vazby

Kvantová mechanika - model téměř volných elektronů. model těsné vazby Kvantová mechanika - model téměř volných elektronů model těsné vazby Částice (elektron) v periodickém potenciálu- Blochův teorém Dále už nebudeme považovat elektron za zcela volný (Sommerfeld), ale připustíme

Více

Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování

Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování eideální plyny b H Q(, V, T )... e dp 3... dpdr... dr! h Integrace přes hybnosti QVT (,, ) pmkt! h 3 / e dr dr dr /... U kt... eideální chování p kt r B ( T) r B ( T) r 3 3 Vyšší koeficinety velice složité

Více

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce Příklady na cvičení k přednášce NMMA334 Úvod do parciálních diferenciálních rovnic 1 Kanonický tvar lineárních PDR 2. řádu pro funkce dvou proměnných 1. Určete typ parciální diferenciální rovnice u xx

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura

Více

Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model

Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model Elementární částice 1. Leptony 2. Baryony 3. Bosony 4. Kvarkový model 5. Slabé interakce 6. Partonový model I.S. Hughes: Elementary Particles M. Leon: Particle Physics W.S.C. Williams Nuclear and Particle

Více

elektrony v pevné látce verze 1. prosince 2016

elektrony v pevné látce verze 1. prosince 2016 F6122 Základy fyziky pevných látek seminář elektrony v pevné látce verze 1. prosince 2016 1 Drudeho model volných elektronů 1 1.1 Mathiessenovo pravidlo............................................... 1

Více

Příklad 1: Komutační relace [d/dx, x] Příklad 2: Operátor B = i d/dx

Příklad 1: Komutační relace [d/dx, x] Příklad 2: Operátor B = i d/dx 1 Příklad 1: Komutační relace [d/, x] Mějme na dva operátory: ˆ d/ a ˆ 5 D X x, například na prvek x působí takto Určeme jejich komutátor ˆ 5 d 5 4 ˆ 5 5 6 D x x 5 x, X x xx x ˆ ˆ ˆ ˆ ˆ ˆ d d [ DX, ] f

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů

Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů Elektronová struktura pevných látek model volných elektronů 1897: J.J. Thomson - elektron jako částice 1900: P. Drude: kinetická teorie plynů - kov jako plyn elektronů Drudeho model elektrony se mezi srážkami

Více

Nerovnovážné systémy Onsagerova hypotéza, fluktuačně disipační teorém

Nerovnovážné systémy Onsagerova hypotéza, fluktuačně disipační teorém Nerovnovážné systémy Onsagerova hypotéza, fluktuačně disipační teorém Omezení se na nerovnážné systémy v blízkosti rovnováhy Chování systému lze popsat v rámci linear response theory (teorie lineární odezvy)

Více

Úvod do analytické mechaniky

Úvod do analytické mechaniky Úvod do analytické mechaniky Vektorová mechanika, která je někdy nazývána jako Newtonova, vychází bezprostředně z principů, které jsou vyjádřeny vztahy mezi vektorovými veličinami. V tomto případě např.

Více

Kvantová informatika pro komunikace v budoucnosti

Kvantová informatika pro komunikace v budoucnosti Kvantová informatika pro komunikace v budoucnosti Antonín Černoch Regionální centrum pokročilých technologií a materiálů Společná laboratoř optiky University Palackého a Fyzikálního ústavu Akademie věd

Více

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při

Více

6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných. Operátor momentu hybnosti a kvadrátu momentu hybnosti.

6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných. Operátor momentu hybnosti a kvadrátu momentu hybnosti. 6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných Operátor momentu hybnosti a kvadrátu momentu hybnosti Víme už tedy téměř vše o operátorech Jsou to vlastně měřící přístroje v kvantové

Více

VÝPOČETNÍ CHEMIE V ANALÝZE STRUKTURY

VÝPOČETNÍ CHEMIE V ANALÝZE STRUKTURY VÝPOČETNÍ CHEMIE V ANALÝZE STRUKTURY A VLASTNOSTÍ MOLEKUL Michal Čajan Katedra anorganické chemie PřF UP v Olomouci MOLEKULOVÉ MODELOVÁNÍ V CHEMII MOLEKULOVÉ MODELOVÁNÍ aplikace zobrazení a analýza strukturních

Více

Lehký úvod do kvantové teorie II

Lehký úvod do kvantové teorie II 1 Lehký úvod do kvantové teorie II 5 Harmonický oscilátor Na příkladu harmonického oscilátoru, jehož klasické řešení známe z Fyziky 1, si ukážeme typické postupy při hledání vlastních hodnot operátoru

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Ondřej Havlíček.ročník F-Vt/SŠ Jsoucno je vždy něco, co jsme si sami zkonstruovali ve své mysli. Podstata takovýchto konstrukcí nespočívá v tom, že by byly odvozeny ze smyslových

Více

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli: Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly

Více

Slapový vývoj oběžné dráhy. Michaela Káňová, Marie Běhounková Geodynamický seminář

Slapový vývoj oběžné dráhy. Michaela Káňová, Marie Běhounková Geodynamický seminář Slapový vývoj oběžné dráhy Michaela Káňová, Marie Běhounková Geodynamický seminář 20. 5. 2015 Problém dvou těles v nebeské mechanice: dva hmotné body + gravitační síla = Keplerova úloha m keplerovská rychlost

Více

Parciální diferenciální rovnice

Parciální diferenciální rovnice Parciální diferenciální rovnice Obsah kurzu Co bude obsahovat... úvod do PDR odvození některých PDR klasická teorie lineárních PDR 1. a 2. řádu řešení poč. a okraj. úloh vlastnosti řešení souvislost s

Více

METODY VÝPOČETNÍ CHEMIE

METODY VÝPOČETNÍ CHEMIE METODY VÝPOČETNÍ CHEMIE Metody výpočetní chemie Ab initio metody Semiempirické metody Molekulová mechanika Molekulová simulace Ab initio metody Ab initio - od počátku Metody kvantově-mechanické vycházejí

Více

Fyzika - Sexta, 2. ročník

Fyzika - Sexta, 2. ročník - Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou

Více

15 Experimentální základy kvantové hypotézy

15 Experimentální základy kvantové hypotézy 5 Experimentální základy kvantové hypotézy Částicové vlastnosti světla a vlnové vlastnosti částic. Planckova kvantová hypotéza, foton, fotoelektrický jev. De Broglieova hypotéza, relace neurčitosti. 5.

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky

X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky X3EO - Elektrické obvody Kmitočtové charakteristiky Doc. Ing. Petr Pollák, CSc. Letní semestr 5/6!!! Volné šíření není povoleno!!! Fázory a spektra Fázor harmonického průběhu Û m = U m e jϕ ut) = U m sinωt

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Předmět: LRR/CHPB1/Chemie pro biology 1 Elektronový obal Mgr. Karel Doležal Dr. Cíl přednášky: seznámit posluchače se stavbou

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání

Více

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy

Více

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ

Více

Oddělení pohybu elektronů a jader

Oddělení pohybu elektronů a jader Oddělení pohybu elektronů a ader Adiabatická aproximace Born-Oppenheimerova aproximace Důležité vztahy sou 4, 5, 7, 0,,, udělal sem to zbytečně podrobně, e to samostatný okruh Separace translačního pohybu:

Více

Integrace. Numerické metody 7. května FJFI ČVUT v Praze

Integrace. Numerické metody 7. května FJFI ČVUT v Praze Integrace Numerické metody 7. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Kvadraturní vzorce Gaussovy kvadratury Více dimenzí Programy 1 Úvod Úvod - Úloha Máme funkci f( x) a snažíme se najít určitý integrál

Více

Počítačová chemie. výpočetně náročné simulace chemických a biomolekulárních systémů. Zora Střelcová

Počítačová chemie. výpočetně náročné simulace chemických a biomolekulárních systémů. Zora Střelcová Počítačová chemie výpočetně náročné simulace chemických a biomolekulárních systémů Zora Střelcová Národní centrum pro výzkum biomolekul, Masarykova univerzita, Kotlářská 2, 611 37 Brno, Česká Republika

Více

VÍTEJTE V MIKROSVĚTĚ

VÍTEJTE V MIKROSVĚTĚ VÍTEJTE V MIKROSVĚTĚ Klasická vs. Moderní fyzika Klasická fyzika fyzika obyčejných věcí viditelných pouhým okem Moderní fyzika Relativita zabývá se tím co se pohybuje rychle nebo v silovém gravitačním

Více

Kovy - model volných elektronů

Kovy - model volných elektronů Kovy - model volných elektronů Kovová vazba 1. Preferuje ji většina prvků vyskytujících se v přírodě. Kov je tvořen kladně nabitými ionty (s konfigurací vzácného plynu) a relativně velmi volnými elektrony.

Více

I a II. Kvantová mechanika. JSF094 Akademický rok

I a II. Kvantová mechanika. JSF094 Akademický rok Kvantová mechanika JSF094 kademický rok 017-018 I a II Čas a místo Úterý 13:10-14:40 Středa 10:40-1:10 cvičení posluchárna ÚČJF3/945 Čtvrtek 10:40-1:10 Přednášející prof. Pavel Cejnar ÚČJF místnost: 934

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. MKI -00 Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. V jakém rozmezí se může pohybovat poloměr konvergence regulární

Více

Úvod do kvantového počítání

Úvod do kvantového počítání 2. přednáška Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 17. března 2005 Opakování Část I Přehled z minulé hodiny Opakování Alternativní výpočetní modely Kvantové počítače

Více

Matematické metody kvantové mechaniky

Matematické metody kvantové mechaniky Matematické metody kvantové mechaniky Seminář současné matematiky Ing. Tomáš Kalvoda tomas.kalvoda@fit.cvut.cz KM FJFI & KTI FIT ČVUT místnost M102, FIT 11. listopadu 2010 Kalvoda (ČVUT) Seminář současné

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické

Více

Maturitní témata profilová část

Maturitní témata profilová část SEZNAM TÉMAT: Kinematika hmotného bodu mechanický pohyb, relativnost pohybu a klidu, vztažná soustava hmotný bod, trajektorie, dráha klasifikace pohybů průměrná a okamžitá rychlost rovnoměrný a rovnoměrně

Více

Okruhy k maturitní zkoušce z fyziky

Okruhy k maturitní zkoušce z fyziky Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální

Více

2. Elektrotechnické materiály

2. Elektrotechnické materiály . Elektrotechnické materiály Předpokladem vhodného využití elektrotechnických materiálů v konstrukci elektrotechnických součástek a zařízení je znalost jejich vlastností. Elektrické vlastnosti materiálů

Více

KLASICKÁ A KVANTOVÁ MOLEKULOVÁ DYNAMIKA

KLASICKÁ A KVANTOVÁ MOLEKULOVÁ DYNAMIKA KLASICKÁ A KVANTOVÁ MOLEKULOVÁ DYNAMIKA "Je práce učit druhé to, co umíme. A což teprve to, co neumíme." Pavel Jungwirth Ústav organické chemie a biochemie Akademie věd České republiky Flemingovo nám.

Více

Numerická matematika. Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou

Numerická matematika. Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou Numerická matematika Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou Václav Bubník, xbubni01, sk. 60 FIT VUT v Brně, 2004 Obsah Numerická matematika...1 1. Teorie... 3 1.1 Diferenciální

Více

Poznámky k Fourierově transformaci

Poznámky k Fourierově transformaci Poznámky k Fourierově transformaci V těchto poznámkách jsou uvedeny základní vlastnosti jednorozměrné Fourierovy transformace a její aplikace na jednoduché modelové případy. Pro určitost jsou sdružené

Více

Řešit atom vodíku znamená nalézt řešení Schrödingerovy rovnice s příslušným hamiltoniánem. 1 4πǫ 0. 2m e

Řešit atom vodíku znamená nalézt řešení Schrödingerovy rovnice s příslušným hamiltoniánem. 1 4πǫ 0. 2m e 8 Atom vodíku Správné řešení atomu vodíku je jedním z velkých vítězství kvantové mechaniky. Podle klasické fyziky náboj, který se pohybuje se zrychlením (elektron obíhající vodíkové jádro proton), by měl

Více

ÚVOD DO TERMODYNAMIKY

ÚVOD DO TERMODYNAMIKY ÚVOD DO TERMODYNAMIKY Termodynamika: Nauka o obecných zákonitostech, kterými se se řídí transformace CELKOVÉ energie makroskopických systémů v její různé formy. Je založena na výsledcích experimentílních

Více

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10

Více

Atomové a molekulové orbitaly Ion molekuly vodíku. Molekula vodíku Heitler-Londonovou metodou. Metoda LCAO. Báze atomových orbitalů.

Atomové a molekulové orbitaly Ion molekuly vodíku. Molekula vodíku Heitler-Londonovou metodou. Metoda LCAO. Báze atomových orbitalů. Atomové a molekulové orbitaly Ion molekuly vodíku. Molekula vodíku Heitler-Londonovou metodou. Metoda LCAO. Báze atomových orbitalů. Ion molekuly vodíku H + 2 První použití metody je demonstrováno při

Více

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207 6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.

Více

Vlnění, optika a atomová fyzika (2. ročník)

Vlnění, optika a atomová fyzika (2. ročník) Vlnění, optika a atomová fyzika (2. ročník) Vlnění 1. Kmity soustav hmotných bodů (6 hod.) 1.1 Netlumené malé kmity kolem stabilní rovnovážné polohy: linearita pohybových rovnic, princip superpozice, obecné

Více

Obr. 141: První tři Bernsteinovy iontové módy. Na vodorovné ose je bezrozměrný vlnový vektor a na svislé ose reálná část bezrozměrné frekvence.

Obr. 141: První tři Bernsteinovy iontové módy. Na vodorovné ose je bezrozměrný vlnový vektor a na svislé ose reálná část bezrozměrné frekvence. Mikronestability 33 m Re( ) ( m1) m1,,3, (5.18) ci Imaginární část frekvence, která je zodpovědná za útlum, razantně roste, pokud se vlny nešíří kolmo na magnetické pole. Útlum také roste s číslem módu

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),

Více

Metody nelineární optiky v Ramanově spektroskopii

Metody nelineární optiky v Ramanově spektroskopii Metody nelineární optiky v Ramanově spektroskopii Využití optických nelinearit umožňuje přejít od tradičního studia rozptylu světla na fluktuacích, teplotních elementárních excitacích, ke studiu rozptylu

Více

Profilová část maturitní zkoušky 2017/2018

Profilová část maturitní zkoušky 2017/2018 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2017/2018 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: FYZIKA

Více

Fyzika IV. Pojem prvku. alchymie. Paracelsus (16.st) Elektronová struktura atomů

Fyzika IV. Pojem prvku. alchymie. Paracelsus (16.st) Elektronová struktura atomů Elektronová struktura atomů Pojem prvku alchymie Paracelsus (16.st) Elektronová struktura atomů alchymie 17.-18.století - při hoření látky ztrácí těkavou součást - flogiston. látka = flogiston + popel

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Fyzika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Fyzika. 4.8.13. Fyzikální seminář Předmět Fyzikální seminář je vyučován v sextě, septimě a v oktávě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Fyzikální seminář vychází ze vzdělávací oblasti

Více

7.4 Domácíúkol-Hopík. mgz z >0 z <0. 1. Řešení pomocí WKB metody:

7.4 Domácíúkol-Hopík. mgz z >0 z <0. 1. Řešení pomocí WKB metody: 7.4 Domácíúkol-Hopík Částice o hmotnosti m hopká v homogennímnapř. gravitačním) poli, přičemž od podložky se odráží bez ztráty energie. Uvažovaný potenciál je { mgz z > Vz) z

Více

Fourierovské metody v teorii difrakce a ve strukturní analýze

Fourierovské metody v teorii difrakce a ve strukturní analýze Osnova přednášky na 31 kolokviu Krystalografické společnosti Výpočetní metody v rtg a neutronové strukturní analýze Nové Hrady, 16 20 6 2003 Fourierovské metody v teorii difrakce a ve strukturní analýze

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h

Více

VAROVÁNÍ Přemýšlení o kvantové mechanice způsobuje nespavost

VAROVÁNÍ Přemýšlení o kvantové mechanice způsobuje nespavost VAROVÁNÍ Přemýšlení o kvantové mechanice způsobuje nespavost Od atomů (a molekul) ke kvantové mechanice Vojtěch Kapsa 1 Od atomů (a molekul) ke kvantové mechanice Od atomů (a molekul) ke kvantové mechanice

Více

Počítačové simulace a statistická mechanika

Počítačové simulace a statistická mechanika Počítačové simulace a statistická mechanika Model = soubor aproximaci přijatých za účelem popisu určitého systému okrajové podmínky mezimolekulové interakce Statistické zpracování průměrování ve fázovém

Více

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013 1. a) Kinematika hmotného bodu klasifikace pohybů poloha, okamžitá a průměrná rychlost, zrychlení hmotného bodu grafické znázornění dráhy, rychlosti a zrychlení na čase kinematika volného pádu a rovnoměrného

Více

Tepelná vodivost pevných látek

Tepelná vodivost pevných látek Tepelná vodivost pevných látek Přenos tepla vedení mřížková část tepelné vodivosti Dvouatomový lineární řetězec přiblížení např. NaCl (1) u -1 (A) u s-1 (B) u (A) u s (B) u s+1 (B) u +1 (A) Např. = příčné

Více

ÚVOD DO KVANTOVÉ MECHANIKY

ÚVOD DO KVANTOVÉ MECHANIKY ÚVOD DO KVANTOVÉ MECHANIKY KM popisuje vlastnosti hmoty a světla a fyzikální děje na úrovni atomů KVANTOVÁNÍ (fyzikální veličiny mohou mít pouze některé hodnoty) jedna z nejobecnějších vlastností našeho

Více

October 1, Interpretujte význam jejích parametrů. Vypočítejte jeho momenty. Napište vzorec pro. I(n, a, b) :=

October 1, Interpretujte význam jejích parametrů. Vypočítejte jeho momenty. Napište vzorec pro. I(n, a, b) := Kvantová fyzika cvičení s návody a výsledky October 1, 007 Návody zde uvedené jsou záměrně uváděny ve stručné formě, jako nápověda a vodítko, jak při řešení úloh postupovat; nepředstavují a nenahrazují

Více

Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků

Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2014 Obsah Variační principy

Více

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15 Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření

Více

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)

Více

Počátky: už jsme potkali

Počátky: už jsme potkali KVANTOVÁ MECHANIKA Počátky: už jsme potkali Záření černého tělesa Kvantování energie Fotoefekt PLANCK 1858-1947 EINSTEIN 1879-1955 Model atomu Vlnové vlastnosti částic BOHR 1885-1962 de BROGLIE 1892-1987

Více

VYPOUŠTĚNÍ KVANTOVÉHO DŽINA

VYPOUŠTĚNÍ KVANTOVÉHO DŽINA VYPOUŠTĚNÍ KVANTOVÉHO DŽINA ÚSPĚŠNÉ OMYLY V HISTORII KVANTOVÉ FYZIKY Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK Praha Prosinec 2009 1) STARÁ KVANTOVÁ TEORIE Světlo jsou částice! (1900-1905) 19.

Více

Kombinatorická minimalizace

Kombinatorická minimalizace Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny

Více

přičemž předpokládáme A malé, U zahrnuje coulombické členy. Když roznásobíme závorku, p 2 reprezentuje kinetickou energii nabitých částic, člen

přičemž předpokládáme A malé, U zahrnuje coulombické členy. Když roznásobíme závorku, p 2 reprezentuje kinetickou energii nabitých částic, člen Výběrová pravidla Absorpce/stim. emise Kde se výběrová pravidla vezmou? Použijeme semiklasické přiblížení, tzn. s nabitými částicemi (s indexy 1...N) zacházíme kvantově, s vnějším elektromagnetickým polem

Více

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr.

Více

Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014

Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Harmonogram výuky předmětu Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Vedoucí cvičení: ing. Václav Klika, Ph.D. & MSc. Karolína Korvasová & & ing. Matěj Tušek, Ph.D. Katedra

Více

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 1. Kinematika pohybu hmotného bodu pojem hmotný bod, vztažná soustava, určení polohy, polohový vektor trajektorie, dráha, rychlost (okamžitá,

Více

Kmity a rotace molekul

Kmity a rotace molekul Kmity a rotace moleul Svět moleul je neustále v pohybu l eletrony se pohybují oolo jader l jádra mitají olem rovnovážných poloh l moleuly rotují a přesouvají se Ion H + podrobněji Kmity vibrace moleul

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.

Více

I. část - úvod. Iva Petríková

I. část - úvod. Iva Petríková Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,

Více

Born-Oppenheimerova aproximace

Born-Oppenheimerova aproximace Born-Oppenheimerova aproximace Oddělení elektronického a jaderného pohybu Jádra 2000 x těžší než elektrony elektrony kvantová chemie, popis systému (do 100 atomů) na základě vlastností elektronů (jádra

Více

Ab initio výpočty v chemii a biochemii

Ab initio výpočty v chemii a biochemii Ab initio výpočty v chemii a biochemii Doc. RNDr. Ing. Jaroslav Burda, CSc., jaroslav.burda@mff.cuni.cz Dr. Vladimír Sychrovský vladimir.sychrovsky@uochb.cas.cz Studijní literatura Szabo A., Ostlund N.S.

Více