Chyby přímých měření. Úvod
|
|
- Kamil Neduchal
- před 8 lety
- Počet zobrazení:
Transkript
1 Chyby přímých měřeí Úvod Př zjšťováí velkost sledovaé velčy dochází k růzým chybám, které ovlvňují celkový výsledek. V pra eestuje žádá metoda měřeí a měřcí zařízeí, které by bylo absolutě přesé, což zameá, že aměřeá a skutečá hodota sledovaé velčy jsou dva rozdílé pojmy. Rozdíl mez skutečou a aměřeou hodotou je tvoře moha rozlčým faktory, případě růzým kombacem dílčích faktorů. Přesost provedeého měřeí závsí a růzých faktorech, apř.: - a použtých měřcích přístrojích (krejčovský metr / mlmetrové měřítko / mkrometr) - a zvoleé měřící metodě - a vlvu vějších podmíek (teplota, tlak, vlhkost ) - a osobě, která měřeí provádí (růzá reakčí doba, růzá zručost ) Chyby se zapsují dvojím způsobem: a. Absolutí chyba: rozdíl mez aměřeou a správou hodotou, apř. ± mm b. Relatví chyba: podíl absolutí chyby a správé hodoty, apř. ± %. Zavádí se, aby bylo možé porovávat přesost růzých měřcích metod. Přesost měřeí s rostoucí relatví chybou klesá. Korektost měřeí = souhrý termí pro přesost a správost, vymezuje chybu jedotlvých měřeí. V běžém hovoru je často zaměňováa správost a přesost měřeí. Ve skutečost ale ezameají totéž. Obrázky íže lustrují rozdíly mez těmto dvěma pojmy. Správost měřeí se vztahuje a odchylku mez výsledkem a skutečou hodotou. Správost kombuje přesost a pravdvost (tj. vlvy áhodých a systematckých faktorů). Přesost měřeí se vztahuje a rozdíly mez hodotam proměých rozptýleí hodot proměých okolo jeho středí hodoty. Mírou přesost je stadardí odchylka.
2 Chyby přímých měřeí Úkol: co ejpřesěj treft žlutý střed terče třem šípy střed terče představuje skutečou hodotu, zásahy šípů aměřeé hodoty. Nepřesé a esprávé Přesé ale esprávé Nepřesé ale správé Přesé a správé Chyby podle původu Výsledek měřeí se vždy pohybuje v jstém rozmezí kolem skutečé hodoty, kterou praktcky kdy ezáme. Skutečou hodotu měřeé velčy ejsme schop určt, jelkož změřeý výsledek je vždy ovlvě estecí chyby měřeí. Podle původu můžeme chyby měřeí rozdělt a:. Hrubé chyby Naměřeá hodota zatížeá touto chybou se výrazě lší od ostatích hodot. K odhaleí hrubé chyby můžeme použít tzv. 3s krtérum (vz dále). Vzká př esprávém měřeí, omylech, defektech přístrojů Neměly by se vyskytovat!!! Hrubé chyby měřeí zehodocují a musí být vyloučey ze systému měřeí, stejě jako výsledky měřeí touto chybou prokazatelě zatížeé. Pokud je to možé, provedeme měřeí zovu.
3 Chyby přímých měřeí. Systematcké chyby Zkreslují výsledek s jstou pravdelostí, apř. epřesý měřcí přístroj, reakčí doba epermetátora, vlv vějších podmíek (teplota, tlak, elektromagetcké rušeí, vítr ), cejchováí měřdla, použtá měřcí metoda (současé měřeí U a I apod.) Př opakovaých měřeích téže velčy, prováděých za stejých podmíek, mají systematcké chyby stejou hodotu (tj. stejé zaméko), ebo se jejch hodota měí podle určtých zákotostí v přímé závslost a změě určtých podmíek měřeí. Proto se systematcké chyby ezjstí pouhým opakováím téhož měřeí; k jejch zjštěí a vysvětleí je zapotřebí změt podmíky měřeí. Většou je možé určt, z jakých příč systematcké chyby vzkají, proto můžeme odhadout jejch velkost a tím elmovat výsledou chybu měřeí. Všechy systematcké chyby, jejchž hodoty lze staovt výpočtem ebo odhadem, se z výsledků měřeí vyloučí patřčou korekcí. 3. Náhodé chyby I př použtí deálího měřdla, deálí měřcí metody (pokud možo a člověku ezávslé) aplkovaé za deálích podmíek, emůžeme očekávat shodu všech výsledků opakovaých měřeí téže velčy. Tyto chyby emůžeme př měřeí kotrolovat a defovat, jelkož vzkají spolupůsobeím velkého počtu áhodých vlvů. Neestuje měřící proces, který eí zatížeou áhodou chybou. Tyto chyby ovlvňují přesost měřeí. Náhodá chyba je áhodá velča a řídí se zákoy pravděpodobost. Př vyhodocováí výsledků epermetálího měřeí je uté staovt ejpravděpodobější hodotu měřeé velčy a zároveň staovt její přesost vymezt vlv áhodých chyb a kvattatvě vyhodott, jak áhodé chyby ovlvňují výsledek měřeí. 3
4 Chyby přímých měřeí Vyhodoceí áhodých chyb Opakovaým měřeím daé velčy získáme statstcký soubor hodot, ze kterého pak vypočítáme pravděpodobou hodotu. Tu určíme jako artmetcký průměr všech aměřeých hodot:... Následě vypočítáme středí kvadratckou chybu artmetckého průměru: ( ) ( ) Kalkulačky a ěkteré programy, apř. EXCEL, však počítají výběrovou směrodatou odchylku (jedoho měřeí): ( ) ( ) Proč právě tyto velčy? Příklad: Předpokládejme, že jsme provedl za stejých podmíek velký počet (apř. = 00) měřeí průměru kulčky. V ásledující tabulce jsou aměřeé hodoty společě s jejch četostí, tyto údaje jsou pak zakresley v grafu. d [mm],76,77,78,79,80,8,8,83,84,85,86 [] [] ,76,77,78,79,8,8,8,83,84,85,86 d [mm] 4
5 Chyby přímých měřeí Pro velký počet velm přesých měřeí přejde graf v tzv. Gaussovu křvku (v obrázku výše červeá křvka). Její tvar a poloha závsí právě a parametrech a. Pro přesější měřeí bude křvka vyšší a užší, pro méě přesá měřeí bude žší a šrší (vz obrázek dále). [] 0,8 σ (červeá) σ (žlutá) ,75,76,77,78,79,8,8,8,83,84,85,86 d [mm] Iterval spolehlvost je terval, ve kterém bude ležet hodota měřeé velčy se zvoleou pravděpodobostí P: t P, ; t P, Koefcet t P, je tzv. Studetův součtel, jehož hodota závsí a pravděpodobost P a a počtu měřeí (vz tabulka dále). Souč středí kvadratcké chyby artmetckého průměru a Studetova součtele krají chyba artmetckého průměru (pro P 95 %). t P, je 5
6 Chyby přímých měřeí Vyhodoceí výsledků měřeí Ideálem je měřeí bez chyb. Praktcky dosažtelé je však pouze měřeí bez hrubých chyb, s přesě staoveým korekcem chyb systematckých a statstcky kotrolovaým áhodým chybam. Chyby Hrubé Systematcké ovlvňují správost Náhodé ovlvňují přesost vyloučt odstrat ebo korgovat statstcky vyhodott 6
7 Chyby přímých měřeí K vyloučeí hrubých chyb používáme tzv. 3s krtérum: Za hrubou chybu považujeme všechy hodoty, které eleží v tervalu určeém trojásobkem výběrové směrodaté odchylky σ -, tj. ( 3 ; 3 ). Postup měřeí a jeho zpracováí:. krát zopakujeme měřeí téže velčy za stejých podmíek.. Spočteme artmetcký průměr. 3. Spočteme středí kvadratckou odchylku artmetckého průměru. 4. Vyloučíme hrubé chyby a zopakujeme pak zovu kroky Zvolíme pravděpodobost P, určíme hodotu Studetova součtele t P, a spočteme krají chybu artmetckého průměru. Nejčastěj se používá P = 95 %. 6. Zapíšeme výsledek měřeí ve tvaru X t ) jedotek. ( P, Záps výsledku měřeí V mezvýpočtech zásadě ezaokrouhlujeme!!!! Postup př zaokrouhlováí výsledku: Krají chybu artmetckého průměru zaokrouhlíme a platou číslc. Artmetcký průměr zaokrouhlíme a stejý počet desetých (desítkových) míst jako má krají chyba. Platým číslcem rozumíme všechy číslce,, 9, včetě uly. Nulu však počítáme za platou číslc pouze tehdy, je-l uprostřed ebo a koc čísla. 7
8 Chyby přímých měřeí Číslo Počet platých číslc Zaokrouhleí a platou číslc 5, , ,3 0,3 0,0036 0,004 8, Výsledý záps zaokrouhleých hodot musí být co ejpřehledější. Volíme proto vhodý tvar, stejé jedotky u artmetckého průměry a u chyby... V ásledující tabulce jsou uvedey příklady ejčastěj se vyskytujících esprávých zápsů výsledků. Nesprávý záps Co je špatě Správý záps k = (9,433 ±,45066) N/m eí zaokrouhleo k = (9 ± ) N/m b = (0,00460 ± 0,000044) m eí zaokrouhleo, přílš moho ul b = (4,60 ± 0,04) mm b = (4,60 ± 0,04) 0-3 m R = (653, ± 9,3) Ω eí zaokrouhleo R = (650 ± 0) Ω m = (98,435 ± 0,04) g eí zaokrouhleo m m = (98,44 ± 0,04) g E = (, ± 3) MPa růzé řády E = (639 ± 3) MPa k B = (, ± ) J/K růzé řády k B = (,39± 0,007) 0-3 J/K d = 35 ± 6 m chybí závorky d = (35 ± 6) m a = 4,038 cm ± 0,0 mm růzé jedotky a = (40,38 ± 0,0) mm F = 35 ± 3 % N za ± se uvádí absolutí chyba F = (35 ± 7) N R = ( ± ) Ω přílš moho ul R = (,6 ± 0,3) MΩ 8
9 Chyby přímých měřeí Zpracováí dat pomocí programu EXCEL co se počítá vztah pro výpočet EXCEL artmetcký průměr = PRŮMĚR( ) výběrová směrodatá odchylka (jedoho měřeí) ( ) ( ) = SMODCH.VÝBĚR( ) středí kvadratcká chyba artmetckého průměru ( ) ( ) = SMODCH.VÝBĚR( )/ODMOCNINA(POČET( )) Studetův součtel t P, = TINV(-P/00; POČET( )-) Příklad: Za stejých podmíek byl opakovaě změře průměr kulčky. V ásledující tabulce jsou aměřeé hodoty. Zpracujte měřeí s pomocí EXCELu. d [mm],76,83,79,79,85,79,84,8,8,84,77,8,8,79,79,8,8,79,83,8,78,8,78,83,84,8,8,83,8,85,8,78,8,8,8,8,8,84,8,8,83,8,79,84,8,8,8,8,8,8,77,8,8,78,8,8,79,8,8,8,79,78,78,8,79,8,8,8,8,83,86,8,8,83,8,8,83,8,83,8,78,84,83,79,83,79,85,8,8,8,8,8,8,8,8,8,83,83,8,8 9
[ jednotky ] Chyby měření
Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá
Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A
Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota
VY_52_INOVACE_J 05 01
Název a adresa školy: Středí škola průmyslová a umělecká, Opava, příspěvková orgazace, Praskova 399/8, Opava, 74601 Název operačího programu: OP Vzděláváí pro kokureceschopost, oblast podpory 1.5 Regstračí
3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě.
3. Hodoceí přesost měřeí a vytyčováí. Odchylky a tolerace ve výstavbě. 3.1 Úvod o měřeí obecě 3.2 Chyby měřeí a jejch děleí 3.2.1 Omyly a hrubé chyby 3.2.2 Systematcké chyby 3.2.3 Náhodé chyby 3.3 Výpočet
P1: Úvod do experimentálních metod
P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu
LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY Jméo: Petr Česák Datum měřeí:.3.000 Studjí rok: 999-000, Ročík: Datum odevzdáí: 6.3.000 Studjí skupa: 5 Laboratorí skupa:
Chyby měření: 1. hrubé chyby - nepozornost, omyl, únava pozorovatele... - významně převyšuje rozptyl náhodné chyby 2. systematické chyby - chybné
CHYBY MĚŘENÍ Opakovaé měřeí téže fyzkáí večy evede vždy k přesě stejým výsedkům. Této skutečost bychom se evyhu, kdybychom měřeí provádě s ejvětší důkadostí a precsostí aopak, čím ctvější a přesější jsou
OVMT Přesnost měření a teorie chyb
Přesost měřeí a teorie chyb Základí pojmy Naměřeé údaje ejsou ikdy absolutě přesé, protože skutečé podmíky pro měřeí se odlišují od ideálích. Při každém měřeí vzikají odchylky od správých hodot chyby.
Přednáška č. 10 Analýza rozptylu při jednoduchém třídění
Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě
a další charakteristikou je četnost výběrového souboru n.
Předáška č. 8 Testováí rozptylu, testy relatví četost, testy dobré shody, test ezávslost kvaltatvích zaků Testy rozptylu Testy se používají k ověřeí hypotézy o určté velkost rozptylu a k ověřeí vztahu
6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.
6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola
Lineární regrese ( ) 2
Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující
, jsou naměřené a vypočtené hodnoty závisle
Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,
Geodézie 3 (154GD3) Téma č. 9: Hodnocení a rozbory přesnosti výškových měření.
Geodéze 3 (54GD3) Téma č. 9: Úvod o měřeí obecě. V geodéz měříme především déky, úhy, a dáe také apř. čas, vekost síy tíže apod. Výsedek měřeí je charakterzová čísem, závsým též a vobě jedotek. Ze zkušeost
4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností
4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.
Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i
: ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru
Spolehlivost a diagnostika
Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore
Metody zkoumání závislosti numerických proměnných
Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy
Úvod do zpracování měření
Úvod do zpracováí měřeí Teore chb Opakujeme-l měřeí téže fzkálí velč za stejých podmíek ěkolkrát za sebou, dostáváme zpravdla růzé hodot. Měřeé velčě přísluší však jedá správá hodota. Každou odchlku aměřeé
Odhady parametrů základního. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme
Odhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
Mendelova univerzita v Brně Statistika projekt
Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4
jsou varianty znaku) b) při intervalovém třídění (hodnoty x
Výběr z eřeštelých příkladů ze zkouškových testů Jde o výběr z tpů příkladů, jejchž úspěšost řešeí u zkoušek se blíží ule. Itervalové versus bodové tříděí V tabulce je uvedeo rozděleí četostí a) př bodovém
11. Časové řady. 11.1. Pojem a klasifikace časových řad
. Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé
veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou
1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i
PRAVDĚPODOBNOST A STATISTIKA
Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru
Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky).
Statstka. Základí pojmy Statstcký soubo - daá koečá, epázdá moža M předmětů pozoováí, majících jsté společé vlastost (událost, věc,.) Jedotlvé pvky této možy se azývají pvky statstckého soubou (statstcké
III. METODY MĚŘENÍ A ZPRACOVÁNÍ MĚŘENÍ
III. METODY MĚŘENÍ A ZPRACOVÁNÍ MĚŘENÍ Způsob, jímž se provádí fzkálí měřeí, závsí jedak a povaze měřeé velč, jedak a tom, ze kterých vztahů pro měřeou velču vjdeme a jakých přístrojů použjeme. Všech měřcí
Zhodnocení přesnosti měření
Zhodoceí přesosti měřeí 1. Chyby měřeí Měřeím emůžeme ikdy zjistit skutečou (pravou) hodotu s měřeé veličiy. To je způsobeo edokoalostí metod měřeí, měřicích přístrojů, lidských smyslů i proměých podmíek
Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
Úvod do korelační a regresní analýzy
Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou
Úloha II.S... odhadnutelná
Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ KATEDRA SPECIÁLNÍ GEODÉZIE DIPLOMOVÁ PRÁCE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ KATEDRA SPECIÁLNÍ GEODÉZIE DIPLOMOVÁ PRÁCE Praha 8 Pavel Třasák ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ KATEDRA SPECIÁLNÍ GEODÉZIE DIPLOMOVÁ
ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)
ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti
9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost
Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,
Doc. Ing. Dagmar Blatná, CSc.
PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj
Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt
Náhodný výběr 1. Náhodný výběr
Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti
1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru
Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v
Generování dvojrozměrných rozdělení pomocí copulí
Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta
Testování statistických hypotéz
Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím
Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:
Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám
Přednáška č. 2 náhodné veličiny
Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující
P2: Statistické zpracování dat
P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu
Úvod do teorie měření
Uverzta Jaa Evagelsty Purkyě v Ústí ad Labem Přírodovědecká fakulta Úvod do teore měřeí Prof. Chlář emář 0 Průměr, rozptyl a směrodatá odchylka X = X = ( X X ) = = = Výpočty pomocí vzorců a pomocí statstckých
Základní požadavky a pravidla měření
Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu
T e c h n i c k á z p r á v a. Pokyn pro vyhodnocení nejistoty měření výsledků kvantitativních zkoušek. Technická zpráva č.
Evropská federace árodích asocací měřcích, zkušebích a aalytckých laboratoří Techcká zpráva č. /006 Srpe 006 Poky pro vyhodoceí ejstoty měřeí výsledků kvattatvích zkoušek T e c h c k á z p r á v a EUROLAB
S1P Popisná statistika. Popisná statistika. Libor Žák
SP Popsá statstka Popsá statstka Lbor Žák SP Popsá statstka Lbor Žák Základí zdroje : skrpta Mateatka IV - doc. RNDr. Z. Karpíšek, CSc. ateatka o le - http://athole.fe.vutbr.cz/ Základ ateatcké statstk
VYSOCE PŘESNÉ METODY OBRÁBĚNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,
Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT
Základy práce s tabulkou Výukový modul III. Iovace a zkvaltěí výuky prostředctvím IC éma III..3 echcká měřeí v MS Excel Pracoví lst 5 Měřeí teploty. Ig. Jří Chobot VY_3_INOVACE_33_5 Aotace Iovace a zkvaltěí
12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
PRAVDĚPODOBNOST A STATISTIKA. Bodové a intervalové odhady
SP Bodové a tervalové odhady PRAVDĚPODOBNOST A STATISTIKA Bodové a tervalové odhady Lbor Žák SP Bodové a tervalové odhady Lbor Žák Bodové a tervalové odhady Nechť je áhodá proměá, která má dstrbučí fukc
1. Základy měření neelektrických veličin
. Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost
Deskriptivní statistika 1
Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky
Intervalové odhady parametrů
Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf
Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
Úloha III.S... limitní
Úloha III.S... limití 10 bodů; průměr 7,81; řešilo 6 studetů a) Zkuste vlastími slovy popsat postup kostrukce itervalových odhadů středí hodoty v případě obecého rozděleí měřeých dat (postačí vlastími
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,
Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT
Základy práce s tabulkou Výukový modul III. Iovace a zkvalitěí výuky prostředictvím ICT Téma III..3, pracoví list 3 Techická měřeí v MS Ecel Průměry a četosti, odchylky změřeých hodot. Ig. Jiří Chobot
odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.
10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé
USTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH
USTÁLENÉ POUDĚNÍ V OTEVŘENÝCH KOYTECH ovoměré prouděí Charakterstka:. Hloubka vod v kortě, průtočá plocha a průřezová rchlost jsou v každém příčém řezu kostatí.. Čára eerge, vodí hlada a do korta jsou
Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
Univerzita Karlova v Praze Pedagogická fakulta
Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách
Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním
Lekce Itervalový odhad Itervalový odhad je jedou ze stadardích statistických techik Cílem je sestrojit iterval (kofidečí iterval, iterval spolehlivosti, který s vysokou a avíc předem daou pravděpodobostí
2 STEJNORODOST BETONU KONSTRUKCE
STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů
STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson
STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,
14. Korelace Teoretické základy korelace Způsoby měření závislostí pro různé typy dat
4. Korelace 4. Teoretcké základy korelace 4. Způsoby měřeí závslostí pro růzé typy dat Př prác se statstckým údaj se velm často setkáváme s daty, která jsou tvořea dvojcem, trojcem hodot. Složky takovýchto
ZPRACOVÁNÍ VÝSLEDKŮ MĚŘENÍ
ZPRACOVÁNÍ VÝSLEDKŮ MĚŘENÍ 1. CHYBY MĚŘENÍ Nedokoalost metod měřeí, přístroů ldských smslů a emožost regstrace a kotrol všech podmíek, které určuí stav měřeého obektu způsobuí, že měřeím emůžeme zstt skutečou
Intervalové odhady parametrů některých rozdělení.
4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:
vají statistické metody v biomedicíně Literatura Statistika v biomedicínsk nském výzkumu a ve zdravotnictví
Statistika v biomedicísk ském výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Literatura Edice Biomedicísk ská statistika vydáva vaá a Uiverzitě
Optimalizace portfolia
Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí
SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek
SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO Statstka I dstačí studjí opora Mla Křápek Soukromá vysoká škola ekoomcká Zojmo Dube 3 Statstka I Vydala Soukromá vysoká škola ekoomcká Zojmo. vydáí Zojmo, 3 ISBN
jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých
9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie
UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy
UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0 VYBRANÉ NEPARAMETRICKÉ
10.3 GEOMERTICKÝ PRŮMĚR
Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo
Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu
Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý
1 Úvod { }.[ ] A= A A, (1.1)
Obsah Obsah... Úvod... 3 Základí pojmy počtu pravděpodobosti... 7. Základí statistické pojmy... 7. Fukce áhodých veliči... 8.3 Charakteristiky áhodých veliči... 0.4 Některá rozděleí pravděpodobosti....5
Příloha č. 7 Dodatku ke Smlouvě o službách Systém měření kvality Služeb
Příloha č. 7 Dodatku ke Smlouvě o službách Systém měřeí kvality Služeb Dodavatel a Objedatel se dohodli a ahrazeí Přílohy C - Systém měřeí kvality Služeb Obchodích podmíek Smlouvy o službách touto Přílohou
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr
Digitální učební materiál
Dgtálí učebí materál Číslo projetu CZ..07/.5.00/34.080 Název projetu Zvaltěí výuy prostředctvím ICT Číslo a ázev šabloy líčové atvty III/ Iovace a zvaltěí výuy prostředctvím ICT Příjemce podpory Gymázum,
vají statistické metody v biomedicíně
Statistika v biomedicísk ském m výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Proč se používaj vají statistické metody v biomedicíě Biomedicísk
MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ
PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION 0/008 MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ STATISTICAL ASSESSMENT
8 NELINEÁRNÍ REGRESNÍ MODELY
8 NELINEÁRNÍ REGRESNÍ MODELY 8 Tvorba eleárího regresího modelu Postup tvorby eleárího regresího modelu se dá rozčlet do těchto kroků: Návrh regresího modelu Obvykle se jako eleárí regresí model používá
Statistika - vícerozměrné metody
Statstka - vícerozměré metody Mgr. Mart Sebera, Ph.D. Katedra kezologe Masarykova uverzta Fakulta sportovích studí Bro 0 Obsah Obsah... Sezam obrázků... 4 Sezam tabulek... 4 Úvod... 6 Pojmy... 7 Náhodé
Elementární zpracování statistického souboru
Elemetárí zpracováí statistického souboru Obsah kapitoly 4. Elemetárí statistické zpracováí - parametrizace vhodými empirickými parametry Studijí cíle Naučit se výsledky měřeí parametrizovat vhodými empirickými
L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.
Vliv měřicí techniky na kvalitu regulace
Proceedgs of Iteratoal Scetfc Coferece of FME Sesso 4: Automato Cotrol ad Appled Iformatcs Paper 43 Vlv měřcí techky a kvaltu regulace VDOLEČEK, Fratšek & SOUKUP, Karel Ig., CSc., Ústav automatzace a formatky,
1 ROVNOMĚRNOST BETONU KONSTRUKCE
ROVNOMĚRNOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí rovoměrosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů
(2.1) = = (2.2) (2.3)
. NEJISTOTY MĚŘENÍ. PŘESNOST A CHYBY MĚŘENÍ A PŘÍSTROJŮ V prax ejso žádá měřeí, žádá měřcí metoda a žádý přístroj absoltě přesé. Nejrůzější egatví vlvy, které se v reálém měřcím proces vyskytjí, se projeví
Závislost slovních znaků
Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví
Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).
STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,
APLIKOVANÁ STATISTIKA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4
Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem
Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme
Pravděpodobnostní model doby setrvání ministra školství ve funkci
Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí
1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL
Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,
7 LIMITNÍ VĚTY. Čas ke studiu kapitoly: 70 minut. Cíl:
7 LIMITNÍ VĚTY Čas ke studu kaptoly: 70 mut Cíl: o prostudováí tohoto odstavce budete umět formulovat a používat lmtí věty aproxmovat já rozděleí rozděleím ormálím - 96 - Výklad: V této kaptole adefujeme
- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.
MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je
V. Normální rozdělení
V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru
1. Základy měření neelektrických veličin
. Základy měřeí eelektrických veliči.. Měřicí řetězec Měřicí řetězec (měřicí soustava) je soubor měřicích čleů (jedotek) účelě uspořádaých tak, aby bylo ožě split požadovaý úkol měřeí, tj. získat iformaci