, jsou naměřené a vypočtené hodnoty závisle
|
|
- Radim Jelínek
- před 9 lety
- Počet zobrazení:
Transkript
1 Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka, parabola, hperbola, ) eí součástí úloh, deálí je, pokud užvatel je schope odvodt tp křvk apř. z fzkálě mechackých zákotostí sledovaého procesu ebo j má ověřeou z jých obdobých aalýz, parametr b měl být terpretovatelé, ezámé parametr křvk se odhadují metodou ejmeších čtverců, která má řadu modfkací, ejedodušší je verze pro fukce leárí v parametrech (prví parcálí dervace podle všech parametrů jsou leárí fukce), pro které vžd exstuje aaltcké řešeí, pokud fukce eí leárí v parametrech, může pro exstovat learzující trasformace, což však souvsí s moha potížem, pokud fukce eí leárí v parametrech a eexstuje pro learzující trasformace, jedá se o eleárí závslost (elze řešt aaltck, pouze umerck, kd se výchozí hodot parametrů zpřesňují teratvím algortmem), zvláští problém představují vázaé parametr apř. požadujeme, ab fukce procházela počátkem ebo jým určeým bodem, přímka měla požadovaou směrc apod. Toto je skutečě velký problém a hrac korektí statstk.. Itezta závslost bezrozměrá a určtém tervalu (apř. 0;, ; + ) ormovaá charakterstka, ta je založea a porováí součtu čtverců odchlek vrovaých a aměřeých hodot závsle proměé od jejch průměru, kde platí rovce rozkladu součtu čtverců
2 + ) ( ) ( ) ( kde, jsou aměřeé a vpočteé hodot závsle proměé a dále platí 0 ) (,, dex determace je podíl (zpravdla ásobeý stem a udávaý v %) 00% 00) ( ) ( ) ( 0 dex korelace je druhá odmoca dexu determace (vjádřeého jako deseté číslo) ) ( ) ( 0 koefcet determace a korelačí koefcet jsou zvláštím případ dexu determace a dexu korelace, pokud průběh závslost měří přímka; korelačí koefcet lze alteratvě spočítat jako x x var var cov kde cov x je kovarace a var x, var jsou rozptl ezávsle a závsle proměé. rovce rozkladu součtu čtverců eplatí (a tudíž elze staovt smsluplý dex korelace) u fukce jejíž rovce bla vpočtea pomocí learzující trasformace a posléze verzí
3 trasformací vrácea do původího tvaru, apř. x b b 0 log logb0 + logb x pro přímku vzklou logartmováím expoecálí fukce rovce platí log log, po verzí trasformac už eplatí, u fukce s vázaým parametr platí protože ( ) 0,, u eleárí regrese, kde rovce platí je po určté úpravě. Dvě varat úloh o závslost (modelové případ, žvot je složtější). Je dáa jedosměrá příčá závslost (ezávsle proměá je příča a závsle proměá je úček), ezávsle proměá je řízeá, její hodot staovuje (více ebo méě vhodě) expermetátor; závsle proměá je pozorovaá (áhodá) velča Příklad katastrofálě evhodě zvoleé ezávsle proměé (s epatrou varabltou).
4 Závslost kazvost ovoce a době skladováí Vstžeá přímkou o rovc 0,9453 +, 55x s dexem determace 74,9 % (dex korelace je 0,866). Současě jde o koefcet determace a korelačí koefcet (přímka). Rozšířeím tervalů stupc a obou osách zjšťujeme, že emáme žádý důvod tvrdt, že přímka vsthuje leárí růst kazvost po celou dobu skladováí (0 až měsíců).
5 Kvadratcká fukce vsthuje závslost o ěco lépe, dex korelace je rove 0,905. Zopakujeme-l totéž co u přímk, vdíme že mmo terval měřeých hodot má fukce krajě edůvěrhodý průběh předpokládá ejprve pokles(?!) a pak strmý růst kazvost. Daleko šíleější věc vdíme, pokud používáme polom všších stupňů terpolace se zlepšuje s rostoucím stupěm
6 polomu, ovšem extrémí růst a pád mmo terval měřeých hodot, velký počet parametrů, žádá terpretace Přímk s vázaým parametr Červeá je původí přímka o oběma odhadovaým parametr. Modrá přímka je vedea tak, ab procházela počátkem (žádé skladováí, žádá kazvost). Zeleá přímka je vedea tak, ab procházela bodem o souřadcích [ ;0] (předpokládáme, že prví dva měsíce skladováí edochází k žádé změě v kazvost). U obou posledích přímek elze smsluplě určt teztu závslost (dex korelace může vjít záporě ebo větší ež jeda), součet odchlek vpočteých a aměřeých hodot závsle proměé eí ulový a rověž oba průměr se lší.
7 Výskt vbočující hodot (vlvého bodu) Ve statstce je epřípusté, ab jedá hodota výrazě změla výsledek úloh. Pokud takové měřeí v úloze exstuje, ozačuje se jako vlvý bod. Červeá přímka je vpočtea z původích dat. Modrá přímka vkazuje hodot parametrů a tudíž průběh slě ovlvěý vbočující hodotou. Dále (př splěí rovce rozkladu součtu čtverců) vkazuje podstatě žší teztu závslost. Závěr dohledat příč (apř. porušeí ochraé atmosfér, porucha klmatzace) a vlvý bod z dat vřadt..neí zřejmé, která proměá představuje příču a která úček. Obě jsou pozorovaé proměé (áhodé velč). Data tvoří tzv. elpsu rozptlu. Průběh závslost měří svazek dvou sdružeých regresích přímek, teztu závslost můžeme měřt buď dexem ebo koefcetem korelace (mají stejou absolutí hodotu, koefcet zamékem formuje o směru závslost).
8 Výška dezéu a pravém a levém kole jedé áprav př růzém počtu ujetých klometrů Obě přímk vkazují stejou teztu závslost.
9 Obě přímk (pokud je potřebujeme) zázorňujeme zpravdla do společého grafu Přímk se protíají v bodě, který má souřadce průměrů obou proměých. Úhel, který svírají, je tím meší, čím je závslost tezvější. Heterogeta v datech
10 Běžě se vsktující závada v datech, kd dojde ke spojeí souborů, které b měl být aalzová samostatě. To že data leží praktck a společé přímce (vz obrázek se třem dílčím soubor) vede k efektu zesíleí tezt závslost. Pokud ovšem aalzujeme každý soubor měřeí zvlášť, zjstíme (e utě!), že skutečost je poěkud já. Svědčí o tom teto a ásledující dva obrázk.
11 Někd to ovšem dopade podstatě hůře.
12 Doposud jsme k měřeí závslostí přstupoval popsým způsobem, tj. aalzoval jsme je kokrétí soubor měřeí bez šrších souvslostí. Iduktví úvah o závslost Naměřeé hodot (se svým chbam) jsou jedečým, eopakovatelým vzorkem realt a tak, jako je edokážeme bezezbtku reprodukovat, edokážeme přesě zopakovat a z ch vpočteé charakterstk závslost. Proto jsou z výběrového souboru vpočteé charakterstk (u regresí přímk apř. směrce) áhodým velčam s ějakou středí hodotou a směrodatou odchlkou, která se u výběrových charakterstk azývá směrodatá chba. Vedle tohoto pojmu operujeme ještě s pojmem přípustá chba, která udává kolka ásobek směrodaté chb považujeme ještě za přjatelý (svědčící o statstcké shodě) a aopak kolka ásobek jž vpovídá o statstcké eshodě vpočteých parametrů. Velkost přípusté chb u charakterstk závslost závsí a rozsahu souboru (počtu měřeí) čím je větší, tím je směrodatá chba meší,
13 a teztě závslost čím je závslost tezvější, tím je přípustá chba meší, a pravděpodobost (spolehlvost, hladě výzamost) duktví úvah čím je požadovaá pravděpodobost blžší jedé, tím je přípustá chba větší. Z úloh statstcké dukce je třeba jmeovat Bodový odhad, který slouží k určeí výběrové charakterstk v podobě jedého čísla. Jako příklad výběrových charakterstk můžeme jmeovat apř. absolutí čle ebo směrc přímk, regresí přímku jako celek ( to je výběrová charakterstka!), korelačí koefcet, ale také apř. rozdíl dvou směrc, rozdíl dvou ebo více korelačích koefcetů apod. (ted jedoduché fukce dvou ebo více charakterstk) Itervalový odhad, kd pro výběrové charakterstk sestrojujeme tzv. kofdečí terval (též terval spolehlvost), které s můžeme představt jako úsečk č polopřímk (podle potřeb volíme oboustraé č jedostraé terval), a kterých s vsokou předem zvoleou pravděpodobostí blízkou jedé výběrová charakterstka leží. Rzko tervalového odhadu pak udává pravděpodobost, s jakou výběrová charakterstka v kofdečím tervalu eleží. Poloha hrac kofdečích tervalů je odvozea od přípusté chb. Testováí hpotéz o charakterstkách závslost. Předem vsloveý předpoklad o ějaké charakterstce (rozdílu dvou charakterstk apod.) závslost se ověřuje a základě vpočteých hodot výběrových charakterstk jejch srováím s předpokládaou hodotou (ebo hodotou pocházející z jého aalogckého výběru). Výsledkem je vpočteá hodota tzv. testového krtéra, která vpovídá o udržtelost/eudržtelost původího předpokladu. Pomocí testováí hpotéz elze dokázat, že předpoklad je
14 jedozačě (s jstotou) pravdvý/epravdvý. Naopak, exstují dvě možost chbých rozhodutí pravdvý předpoklad se jeví jako eudržtelý (zamítutí pravdvé hpotéz, chba prvího druhu), epravdvý předpoklad je jeví jako udržtelý (ezamítutí epravdvé hpotéz, chba druhého druhu). Příklad: Jedou z možostí je sestrojt kofdečí terval pro regresí přímku. Te je smetrcký kolem vpočteé přímk, ejužší v oblast průměrů ezávsle a závsle proměé a postupě se a obě stra rozšřuje. Koferečí terval přímk je tím šrší, z čím mešího počtu hodot bla přímka vpočtea, čím slabší je závslost obou velč a čím větší spolehlvost (meší rzko) odhadu je požadováa. Kofdečí terval lze vužít pro ověřeí předpokladu o shodě průběhu dvou vpočteých výběrových regresích přímek. Kofdečí terval obou přímek se překrývají, předpoklad o shodě je udržtelý.
15 Obě závslost lze vjádřt společou regresí přímkou. Úlohu jsme zopakoval se stejým přímkam, vpočteým ze čtřásobého počtu měřeí. Kofdečí terval se tetokrát epřekrývají, průběh obou přímek se s vsokou pravděpodobostí lší. Obě závslost elze vjádřt společou přímkou.
16 Příklad eleárí regrese Tzv. záběrová křvka traktoru, která může být uvedea apř. ve tvaru (Grečeko, 994) b µ ( 0 + b )( bδ + 3 ( bδ ) 8) + δ + kde µ je bezrozměrý součtel záběru, δ je rověž bezrozměrý prokluz a b 0, b, b jsou parametr. Ze 8 měřeí bl po vrováí získá polom 6. stupě 5 µ 0,4 + 0,506δ 0,009δ + 4,5.0 δ 6,4.0 δ + 4,8.0 δ,4.0 δ s RSS 0, 03, který z moha důvodů evhovuje. Grečekovou metodou bl získá výchozí odhad parametrů a záběrová křvka je pak ve tvaru 0,07505 µ ( + 0,83)(3,945 δ + 3 (3,945 δ ) + δ s rezduálím součtem čtverců odchlek RSS 0, Marquartovým algortmem eleárí regrese bl výchozí hodot parametrů zlepše a záběrová křvka je ve tvaru, 0008 µ ( 0 + 0, 580)( 7, 4685δ + 3 ( 7, 4685 ) 8) + δ δ + s rezduálím součtem čtverců odchlek RSS 0, 048. Testováím parametrů bla zjštěa statstcká evýzamost parametru b 0. Výsledý tvar křvk je pak + µ 0,587(7,4770 δ + 3 (7,4770δ ) 8) s rezduálím součtem čtverců odchlek 0, ) RSS.
17 Polom 6. stupě 5 µ 0,4 + 0,506δ 0,009δ + 4,5.0 δ 6,4.0 δ + 4,8.0 δ,4.0 δ Záběrová křvka µ 0,587(7,4770 δ + 3 (7,4770δ ) + 8)
Metody zkoumání závislosti numerických proměnných
Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy
VíceOdhady parametrů základního. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme
VíceÚvod do korelační a regresní analýzy
Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou
VícePRAVDĚPODOBNOST A STATISTIKA
Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru
Více1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru
Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v
VíceOdhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt
Více11. Časové řady. 11.1. Pojem a klasifikace časových řad
. Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé
VíceChyby přímých měření. Úvod
Chyby přímých měřeí Úvod Př zjšťováí velkost sledovaé velčy dochází k růzým chybám, které ovlvňují celkový výsledek. V pra eestuje žádá metoda měřeí a měřcí zařízeí, které by bylo absolutě přesé, což zameá,
VíceLineární regrese ( ) 2
Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující
VíceRegrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n
Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =
Více9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost
Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,
Vícejsou varianty znaku) b) při intervalovém třídění (hodnoty x
Výběr z eřeštelých příkladů ze zkouškových testů Jde o výběr z tpů příkladů, jejchž úspěšost řešeí u zkoušek se blíží ule. Itervalové versus bodové tříděí V tabulce je uvedeo rozděleí četostí a) př bodovém
VíceGenerování dvojrozměrných rozdělení pomocí copulí
Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta
Více6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.
6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola
VíceTento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i
: ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru
Více1. Základy měření neelektrických veličin
. Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost
Více3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě.
3. Hodoceí přesost měřeí a vytyčováí. Odchylky a tolerace ve výstavbě. 3.1 Úvod o měřeí obecě 3.2 Chyby měřeí a jejch děleí 3.2.1 Omyly a hrubé chyby 3.2.2 Systematcké chyby 3.2.3 Náhodé chyby 3.3 Výpočet
VíceSpolehlivost a diagnostika
Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore
Vícea další charakteristikou je četnost výběrového souboru n.
Předáška č. 8 Testováí rozptylu, testy relatví četost, testy dobré shody, test ezávslost kvaltatvích zaků Testy rozptylu Testy se používají k ověřeí hypotézy o určté velkost rozptylu a k ověřeí vztahu
VíceNejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A
Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota
VíceTestování statistických hypotéz
Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím
VíceS1P Popisná statistika. Popisná statistika. Libor Žák
SP Popsá statstka Popsá statstka Lbor Žák SP Popsá statstka Lbor Žák Základí zdroje : skrpta Mateatka IV - doc. RNDr. Z. Karpíšek, CSc. ateatka o le - http://athole.fe.vutbr.cz/ Základ ateatcké statstk
VíceMendelova univerzita v Brně Statistika projekt
Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4
VícePRAVDĚPODOBNOST A STATISTIKA
SP4 Přpomeutí pojmů PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů SP4 Přpomeutí pojmů Pravděpodobost Náhodý jev: - základí prostor - elemetárí áhodý jev A - áhodý jev, - emožý jev, jstý jev podjev opačý
Více[ jednotky ] Chyby měření
Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá
VíceOdhady a testy hypotéz o regresních přímkách
Lekce 3 Odhad a tet hpotéz o regreích přímkách Ve druhé lekc jme kotruoval kofdečí terval a formuloval tet hpotéz o korelačím koefcetu Korelačí koefcet je metrckou charaktertkou tezt závlot, u které ezáleží
VíceIlustrativní příklad ke zkoušce z B_PS_A léto 2014.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
VíceTest dobré shody se používá nejčastěji pro ověřování těchto hypotéz:
Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám
VíceVY_52_INOVACE_J 05 01
Název a adresa školy: Středí škola průmyslová a umělecká, Opava, příspěvková orgazace, Praskova 399/8, Opava, 74601 Název operačího programu: OP Vzděláváí pro kokureceschopost, oblast podpory 1.5 Regstračí
VíceOdhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
Více8 NELINEÁRNÍ REGRESNÍ MODELY
8 NELINEÁRNÍ REGRESNÍ MODELY 8 Tvorba eleárího regresího modelu Postup tvorby eleárího regresího modelu se dá rozčlet do těchto kroků: Návrh regresího modelu Obvykle se jako eleárí regresí model používá
Více5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC
5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém
VíceMěření závislostí. Statistická závislost číselných znaků
Měřeí závslostí Statstcká závslost číselých zaků - závslost dvou velč lze vádřt ako ech fukčí vztah vzorcem, taulkou hodot příslušé fukce eo grafck; - mez zak zkoumaých evů zšťueme estec příčé (kauzálí
Více4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností
4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.
Více1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor
1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců
VícePřednáška č. 2 náhodné veličiny
Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující
VícePRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2
SP3 Neparametrcké testy hypotéz PRAVDĚPODOBNOST A STATISTIKA Neparametrcké testy hypotéz čast Lbor Žák SP3 Neparametrcké testy hypotéz Lbor Žák Neparametrcké testy hypotéz - úvod Neparametrcké testy statstckých
VíceIlustrativní příklad ke zkoušce z B_PS_A léto 2013.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,
VíceOptimalizace portfolia
Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí
VíceSTATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson
STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,
VíceTesty statistických hypotéz
Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč
VíceKVALITA REGRESNÍHO MODELU Radek Fajfr
UNIVERZITA PARDUBICE FAKULTA EKONOMICKO-SPRÁVNÍ KVALITA REGRESNÍHO MODELU Radek Fajfr Bakalářská práce 00 Prohlášeí Tuto prác jsem vypracoval samostatě. Veškeré lterárí pramey a formace, které jsem v
VíceStatistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky).
Statstka. Základí pojmy Statstcký soubo - daá koečá, epázdá moža M předmětů pozoováí, majících jsté společé vlastost (událost, věc,.) Jedotlvé pvky této možy se azývají pvky statstckého soubou (statstcké
VícePRAVDĚPODOBNOST A STATISTIKA. Bodové a intervalové odhady
SP Bodové a tervalové odhady PRAVDĚPODOBNOST A STATISTIKA Bodové a tervalové odhady Lbor Žák SP Bodové a tervalové odhady Lbor Žák Bodové a tervalové odhady Nechť je áhodá proměá, která má dstrbučí fukc
VícePřednáška č. 10 Analýza rozptylu při jednoduchém třídění
Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě
VíceInterpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2
Iterpolace pomocí sple křvky dáo: bodů v rově úkol: alézt takovou křvku, která daým body prochází y f f 2 f 0 f x0 x... x 2 x x Iterpolace pomocí sple křvky evýhodou polyomálí terpolace změa ěkterého z
VíceJednoduchá lineární regrese
Jedoduchá leárí regrese Motvace: Cíl regresí aalýz - popsat závslost hodot velč Y a hodotách velč X. Nutost vřešeí dvou problémů: a) jaký tp fukce se použje k popsu daé závslost; b) jak se staoví kokrétí
Vícev. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x)
9 REGRESE A KORELACE Slovo regrese oecě zmeá poh zpět ústup ávrt regresví = ustupující Opčým termíem je progrese pokrok postup šířeí růst Pojem regrese l do sttstk zvede kocem 9 století rtským učecem Frcsem
VíceNáhodný výběr 1. Náhodný výběr
Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti
VíceIII. METODY MĚŘENÍ A ZPRACOVÁNÍ MĚŘENÍ
III. METODY MĚŘENÍ A ZPRACOVÁNÍ MĚŘENÍ Způsob, jímž se provádí fzkálí měřeí, závsí jedak a povaze měřeé velč, jedak a tom, ze kterých vztahů pro měřeou velču vjdeme a jakých přístrojů použjeme. Všech měřcí
VíceÚvod do zpracování měření
Úvod do zpracováí měřeí Teore chb Opakujeme-l měřeí téže fzkálí velč za stejých podmíek ěkolkrát za sebou, dostáváme zpravdla růzé hodot. Měřeé velčě přísluší však jedá správá hodota. Každou odchlku aměřeé
VíceStatistika - vícerozměrné metody
Statstka - vícerozměré metody Mgr. Mart Sebera, Ph.D. Katedra kezologe Masarykova uverzta Fakulta sportovích studí Bro 0 Obsah Obsah... Sezam obrázků... 4 Sezam tabulek... 4 Úvod... 6 Pojmy... 7 Náhodé
Více12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
VíceT e c h n i c k á z p r á v a. Pokyn pro vyhodnocení nejistoty měření výsledků kvantitativních zkoušek. Technická zpráva č.
Evropská federace árodích asocací měřcích, zkušebích a aalytckých laboratoří Techcká zpráva č. /006 Srpe 006 Poky pro vyhodoceí ejstoty měřeí výsledků kvattatvích zkoušek T e c h c k á z p r á v a EUROLAB
VíceNáhodné jevy, jevové pole, pravděpodobnost
S Náhodé jevy pravděpodobost Náhodé jevy jevové pole pravděpodobost Lbor Žák S Náhodé jevy pravděpodobost Lbor Žák Základí pojmy Expermet česky též vědecký pokus je soubor jedáí a pozorováí jehož účelem
VíceÚvod do teorie měření
Uverzta Jaa Evagelsty Purkyě v Ústí ad Labem Přírodovědecká fakulta Úvod do teore měřeí Prof. Chlář emář 0 Průměr, rozptyl a směrodatá odchylka X = X = ( X X ) = = = Výpočty pomocí vzorců a pomocí statstckých
VíceDoc. Ing. Dagmar Blatná, CSc.
PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj
VíceZáklady statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková
Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují
VíceIntervalové odhady parametrů některých rozdělení.
4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:
VíceRegresní a korelační analýza
Regresí a korelačí aalýza Závslost příčá (kauzálí). Závslostí pevou se ozačuje případ, kdy výskytu jedoho jevu utě odpovídá výskyt druhé jevu (a často aopak). Z pravděpodobostího hledska jde o vztah, který
VíceInterpolace a aproximace. Interpolace algebraickým polynomem a aproximace metodou nejmenších čtverců
Iterpolce promce Iterpolce lgebrckým polomem p g ý p promce metodou ejmeších čtverců Iterpolce lgebrckým polomem Apromce metodou ejmeších čtverců Úloh. Dá tbulk hodot,, j pro j. Hodot jsou přesé. Hledáme
VícePRAVDĚPODOBNOST A STATISTIKA
SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty
Více7. Analytická geometrie
7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp
VíceMetody statistické analýzy. doc. Ing. Dagmar Blatná, CSc.
Metody statstcké aalýzy doc. Ig. Dagmar Blatá, CSc. Bakoví sttut vysoká škola, a.s. Praha 0 METODY STATISTICKÉ ANALÝZY Autor: Recezet: Vydal: Tsk: Vydáí: doc. Ig. Dagmar Blatá, CSc. doc. Ig. Jří Trešl,
VíceK čemu slouží regrese?
REGRESE K čemu slouží regrese? C = Ca + c. Y C = 00 + 0,6. Y + e Budeme zjišťovat jak jeda proměá (ezávislá) Ovlivňuje jiou proměou (závislou) C Y 950 1000 910 150 1130 1500 1150 1750 1475 000 1550 50
VíceKomplexní čísla. Definice komplexních čísel
Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují
Víceodhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.
10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé
VíceVýsledky této ásti regresní analýzy jsou asto na výstupu z poítae prezentovány ve form tabulky analýzy rozptylu.
Ig. Marta Ltschmaová Statstka I., cveí 4 JEDNODUCHÁ LINEÁRNÍ REGRESE asto chceme prozkoumat vztah mez dvma velam, kde jeda z ch, tzv. ezávsle promá x, má ovlvovat druhou, tzv. závsle promou Y. edpokládá
Více1.3. POLYNOMY. V této kapitole se dozvíte:
1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí
VíceMATICOVÉ HRY MATICOVÝCH HER
MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem
VícePravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí
Více9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl:
9 ÁHODÉ VÝBĚR A JEJICH ZPRACOVÁÍ Čas ke studu katol: 30 mut Cíl: Po rostudováí tohoto odstavce budete rozumět ojmům Základí soubor, oulace, výběr, výběrové šetřeí, výběrová statstka a budete zát základí
VíceZávislost slovních znaků
Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví
VíceOdhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
VíceUČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík
UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. upraveé vydáí Josef Tvrdík OSTRAVSKÁ UNIVERZITA 008 OBSAH: Úvod... 3 Parametrcké testy o shodě středích hodot... 4. Jedovýběrový t-test...
Více12. Neparametrické hypotézy
. Neparametrcké hypotézy V této část se budeme zabývat specálí částí teore statstckých hypotéz tzv. eparametrckým hypotézam ebo jak řečeo eparametrckým statstckým testy. Neparametrcké se azývají proto,
VíceNEPARAMETRICKÉ METODY
NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost
VícePRAVDĚPODOBNOST A STATISTIKA
SP Záko velkých čísel, cetrálí lmtí věta PRAVDĚPODOBNOST A STATISTIKA Lbor Žák SP Záko velkých čísel, cetrálí lmtí věta Lbor Žák Kovergece podle pravděpodobost Posloupost áhodých proměých,,,, koverguje
Více} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy
Měřeí statistické závislosti, korelace, regrese Prof. RNDr. Jaa Zvárov rová,, DrSc. MĚŘENÍZÁVISLOSTI Cílem statistické aalýzy vepidemiologii bývá eje staovit, zda oemocěí závisí a výskytu rizikového faktoru,
VíceP1: Úvod do experimentálních metod
P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu
VíceSP2 Korelační analýza. Korelační analýza. Libor Žák
Korelačí aalýza Přpomeutí pojmů áhodá proměá áhodý vetor áhodý vetor Náhodý výběr: pro áhodou proměou : pro áhodý vetor : pro áhodý vetor : Přpomeutí pojmů - ovarace Kovarace áhodých proměých ovaračí oefcet
VíceUNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy
UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0 VYBRANÉ NEPARAMETRICKÉ
VíceUČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík
UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT (OPRAVENÁ VERZE 006) Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 Obsah: Úvod... 3 Programové prostředky pro statstcké výpočty... 4. Tabulkový
VícePravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 3. ÚKOL JB TEST 3. Úkol zadáí pro statistické testy U každého z ásledujících testů uveďte ázev (včetě autora), předpoklady použití, ulovou
Víceveličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou
1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i
VíceUSTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH
USTÁLENÉ POUDĚNÍ V OTEVŘENÝCH KOYTECH ovoměré prouděí Charakterstka:. Hloubka vod v kortě, průtočá plocha a průřezová rchlost jsou v každém příčém řezu kostatí.. Čára eerge, vodí hlada a do korta jsou
VícePřednáška VIII. Testování hypotéz o kvantitativních proměnných
Předáška VIII. Testováí hypotéz o kvatitativích proměých Úvodí pozámky Testy o parametrech rozděleí Testy o parametrech rozděleí Permutačí testy Opakováí hypotézy Co jsou to hypotézy a jak je staovujeme?
Více1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL
Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,
VíceMezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.
ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém
VíceMatematika I, část II
1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího
VíceVýukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT
Základy práce s tabulkou Výukový modul III. Iovace a zkvaltěí výuky prostředctvím IC éma III..3 echcká měřeí v MS Excel Pracoví lst 5 Měřeí teploty. Ig. Jří Chobot VY_3_INOVACE_33_5 Aotace Iovace a zkvaltěí
Více- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.
MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je
VíceTéma 2 Přímková a rovinná soustava sil
Stavebí statka,.ročík bakalářského studa Téma 2 Přímková a rová soustava sl Přímková soustava sl ový svazek sl Statcký momet síly k bodu a dvojce sl v rově Obecá rová soustava sl ová soustava rovoběžých
VíceZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)
ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti
VíceČasová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad
Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.
Více} kvantitativní znaky
Měřeí tattcké závlot, korelace, regree Obecé prcpy závlot vzájemá ouvlot měřeých zaků Prof. RNDr. Jaa Zvárov rová,, DrSc. fukčí závlot x tattcká závlot átroje pro měřeí závlot leár rí regree korelace }
VíceTestování hypotéz. 3.1 Základní pojmy a obecný postup při testování
Lekce 3 Testováí hypotéz Vlajkovou lodí matematcké statstky jsou techky testováí hypotéz. Formulace hypotéz a jejch ověřováí jsou základím mechasmem postupu ldského pozáí. Pokud jsou formace, potřebé k
VíceFLUORIMETRIE. Jan Fähnrich. Obecné základy
FLUORIMETRIE Ja Fährch Obecé základ Fluormetre je aaltcká metoda vužívající schopost ěkterých látek vsílat (emtovat) po předchozím převedeí do vzbuzeého (exctovaého) stavu fluorescečí zářeí v ultrafalové
Více11. Regresní analýza. Čas ke studiu kapitoly: 60 minut. Cíl VÝKLAD Úvod
. egresí aalýza Čas ke studu kaptoly: 6 mut Cíl Po prostudováí tohoto odstavce udete umět vysvětlt pojem oecý leárí model prcp leárího regresího modelu používat výsledky regresí aalýzy verfkovat regresí
Více