11. Časové řady Pojem a klasifikace časových řad
|
|
- Kamil Pokorný
- před 9 lety
- Počet zobrazení:
Transkript
1 . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé číselé (kvattatví) údaje. Časové řad jsou urče především: ke sledováí a vhodocováí změ, k mž dochází ve vývoj zkoumaých jevů v závslost a čase, pro aalýzu příč, které a tto jev působl a ovlvňoval jejch chováí v mulost, pro předvídáí jejch budoucího vývoje. Hodot časové řad ozačujeme smbolem Y t, kde t představuje čas. Odhadutou hodotu časové řad ozačujeme Y. Možu hodot časové řad až do časového ˆt bodu t začíme Y, Y,, Y t-, Y t. Pracujeme-l s více časovým řadam ajedou, používáme pro jejch ozačeí další písmea z koce abeced Z, X atd. V matematckém vjádřeí časová řada je časovou posloupostí pozorovaých hodot číselého statstckého zaku,,..., t,...,, pro t, t,,...,, kde je délka časové řad. Rozdíl - t se azývá věk pozorováí vjádřeý v růzých požadovaých časových jedotkách. Časové řad mohou být spojté a espojté. Moho řad, které mají espojtý charakter často převádíme a řad spojté sčítáím, průměrováím apod. Často tak číme u ekoomckých časových řad. Například výroba v podku (zajímá ás výroba za měsíc, čtvrtletí, kolv však výroba za de č po hodách - ta však může být zajímavá pro samotého výrobce), průměrá deí teplota, tlak apod. Problém časových řad Př zpracováí dat ve formě časové řad se potýkáme s možstvím problémů. Jedá se především o: problém s volbou časových bodů pozorováí, problém s kaledářem, růzá délka měsíců, růzý počet víkedů v měsíc, růzý počet pracovích dů v měsíc, pohblvé svátk, problém s délkou časových řad, problém esrovatelostí dat,
2 .. Klasfkace časových řad... Časové řad absolutích velč Základí děleí časových řad absolutích velč posktuje ásledující schéma: řad okamžkové esčtatelé hodot řad úsekové (tervalové) sčtatelé hodot řad běžých hodot řad odvozeé řad součtové kumulatví řad klouzavých úhrů řad klouzavých průměrů Údaje okamžkových časových řad se vztahují vžd k určtému časovému okamžku apř. počet pracovíků k prvímu d v jedotlvých měsících, stav zásob materálu k.. v jedotlvých letech, údaje o teplotě vzduchu. Jde o esčtatelé hodot.. Údaje úsekových časových řad se vztahují vžd k určtému časovému úseku. Velkost údajů je v přímé závslost s délkou časových úseků, apř. počt výrobků v jedotlvých měsících roku, počet arozeých dětí v jedotlvých letech. Tpcké je sčítáí (kumulováí) údajů. Jde o sčtatelé hodot. Úsekové řad můžeme podroběj dělt a: řad běžých hodot, řad odvozeé, řad součtové kumulatví, umožňují sledovat postupé arůstáí ukazatele od prvího časového úseku až po posledí řad klouzavých úhrů - hodot ukazatele za období sestávající z určtého počtu dílčích úseků, přčemž každý další úhr v řadě přbírá údaj dalšího úseku a vpouští údaj ejstaršího úseku řad klouzavých průměrů - řad klouzavých úhrů děleé počtem úseků, za které jsou klouzavé úhr počítá Př grafckém zázorňováí úsekových časových řad se používají zejméa sloupcové graf, stupňovté čár a spojcové graf (vášeí hodot ad střed úseků). Z kombace řad běžých hodot, kumulovaé řad a řad klouzavých úhrů se sestavuje tzv. Z dagram V ekoomcké oblast jsou tpcké apř. úsekové a okamžkové časové řad deích, týdeích, měsíčích, čtvrtletích, ročích údajů.
3 Objem obchodu [ts. Kč] Kurz akce [Čk] Objem obchodu [ts.čk]... Časové řad odvozeých velč časové řad poměrých velč - apř. plěí pláu v jedotlvých měsících, produktvta práce dosažeá v jedotlvých letech, časové řad průměrých velč - apř. průměrá mzda pracovíků v jedotlvých letech, průměrá spotřeba masa a jedoho obvatele v jedotlvých letech Příklad úsekové a okamžkové řad: Objem obchodu (úseková řada) Kurz akce (okamžková řada) Obchodí de Obr. 0.. Kurz akcí a objem obchodu ve 0 obchodích dech Příklad odvozeých řad Z dagram pro objem obchodováí akcí: řada klouzavých úhrů (za posledích měsíců) 600 íců) 00 řada kumulovaých hodot (od počátku roku) řada běžých hodot (měsíčích) Obchodí měsíc Obr. 0.. Z dagram pro objem obchodováí akcí 3
4 .3. Měřeí úrově časových řad Úsekové řad k měřeí úrově se vužívá prostý artmetcký průměr (vzhledem ke sčtatelost údajů lze apř. z měsíčích údajů určt ročí úhr a jeho vděleím počtem měsíců staovt průměrou hodotu přpadající a jede měsíc). Okamžkové řad vzhledem k esčtatelost údajů se okamžková řada o délce převádí a úsekovou řadu o délce, jejíž jedotlvé hodot jsou dá jako průměr sousedích hodot původí řad t t. Prostý ebo vážeý artmetcký průměr z těchto hodot se azývá chroologcký průměr. prostý chroologcký průměr př stálé vzdáleost mez okamžk zjšťováí t t (... ch ), t vážeý chroologcký průměr, jsou-l vzdáleost mez okamžk zjšťováí pohblvé a rové w t (pro vzdáleost mez t tým a (t ) okamžkem) ch t w t t t t w t absolutí přírůstek.4. Mír damk časových řad průměrý absolutí přírůstek relatví přírůstek průměrý koefcet růstu 4
5 .5. Aalýza časových řad Cílem aalýz je většou kostrukce vhodého modelu. Pokud budeme schop sestrojt dobrý model, umoží ám to porozumět mechasmu, a jehož základě vzkají hodot časové řad, a porozumět podmíkám, které vzk těchto hodot ovlvňují. To ám umoží tto podmík ovlvňovat a v ěkterých případech ovlvt vývoj časové řad. Dalším velm častým cílem je kostrukce předpovědí. Př klascké aalýze časových řad se vchází z předpokladu, že každá časová řada může obsahovat čtř složk: tred, sezóí složku, cklckou složku, áhodou složku. Tred je obecá tedece vývoje zkoumaého jevu za dlouhé období. Je výsledkem dlouhodobých a stálých procesů. Tred může být rostoucí, klesající ebo může exstovat řada bez tredu. Sezóí složka je pravdelě se opakující odchlka od tredové složk. Peroda této složk je meší ež celková velkost sledovaého období. Cklcká složka udává kolísáí okolo tredu v důsledku dlouhodobého cklckého vývoje (používáo spíše v makroekoomckých úvahách). Náhodá (stochastcká) složka se edá popsat žádou fukcí času. "Zbývá" po vloučeí tredu, sezóí a cklcké složk. Nejčastěj se př aalýze časové řad předpokládá adtví model popsu chováí řad. Předpokládá se, že jedotlvé složk vývoje se sčítají, takže platí: = T t + S t + C t + ε t, kde a pravé straě po řadě vstupují složk tredová T t, sezóí S t, cklcká C t a áhodá ε t. Růzé modfkace modelů vzkou, kdž ěkterou složku z úvah vpustíme. Aalýza složk kteréhokolv tpu se provádí v podstatě klasckou regresí aalýzou. Podstatý rozdíl je je v tom, že ezávsle proměá, je v tomto případě proměá časová a můžeme j vcelku lbovolě vjádřt v jakýchkolv časových jedotkách s lbovolým počátkem. 5
6 .5.. Aalýza tredové složk Aalýza tredové složk je zřejmě ejdůležtější částí aalýz časových řad. V průběhu let se potvrdlo, že př výběru tredových fukcí většou vstačíme s úzkou abídkou fukcí. Nejčastěj používaé tredové fukce jsou: leárí tred Parametr a představuje přírůstek hodot přpadající a jedotkovou změu časové proměé. polomcký tred Umožňuje ajít tredovou fukcí, která má extrém. expoecálí tred Parametr a představuje průměrý přírůstek hodot t. (T se chovají jako čle geometrcké posloupost. modfkovaý expoecálí tred Fukce má vodorovou asmptotu a dá se pomocí í sáze modelovat vývoj jevů, které vcházejí z omezeých zdrojů růstu a u kterých exstuje určtá mez asceí, daá apř. zájmem ebo potřebou určtého výrobku. logstcký tred, logstka ebo, Křvka má tř úsek, prví je charakterzová pozvolým vzestupem, druhá v okolí flexího bodu prudkým růstem a třetí určtou vrcholovou stagací (asceím). Uvedeý tvar je jede z moha růzých fukčích předpsů popsujících křvku s charakterstckým průběhem ve tvaru písmea S. Gompertzova křvka Křvka s podobým esovtým průběhem jako logstka, ale a rozdíl od í je asmetrcká. Těžště hodot je až za flexím bodem. Prví tř jmeovaé jsou v regresí aalýze běžě užívaé, př čemž u expoecál se stadardě přstupuje k learzac logartmováím fukčího předpsu, což poěkud získaou expoecálu degraduje. V ostatích případech už learzace eí možá. K odhadu koefcetů tredových fukcí se používá růzých chtrých algortmů, které většou bl vmšle v předpočítačové éře, kd představoval jedou šac aspoň ějakého odhadu dosáhout. Des se dají tto metod vužít pro určeí kvalfkovaých výchozích hodot pro ejrůzější umercké metod. 6
7 .5.. Aalýza sezóí složk Aalýza sezóí složk se často provádí až po očštěí dat od tredové složk. Jde o určeí časového úseku, po jehož uplutí mají data zase stejou hodotu, příp. ovlvěou tredovou a áhodou složkou. Pro studum sezóí složk se používá ěkolka tpů modelů. V ekoomckých modelech bývá zpravdla zřejmá velkost perod (čtvrtletí, měsíc), v jých případech je uto tuto délku odhadovat (v hdrogeolog apř. u výšk hlad spodích vod). Používá se tu harmocké aalýz, která modeluje průběh dat pomocí ěkolka čleů Fourerov řad. Parametr se určují použtím umerckých metod Iterpolace a extrapolace Výsledků aalýz časových řad a obecě regresí aalýz vůbec se vužívá k alezeí údajů, pro které eí k dspozc výsledek měřeí ebo pozorováí. Pokud jde o chbějící údaj závslé velč pro ěkterou hodotu x uvtř tervalu zámých hodot x, jde o terpolac. Ta zpravdla vede k dobrým výsledkům a epřáší velká rzka chb odhadovaé velč. Pokud však je uto odhadout výsledek pro údaj x vě tervalu expermetálě udaých hodot x, jde o extrapolac. V tomto případě je uto být opatrý, eboť matematcké prostředk použté pro určeí charakteru regresí závslost emohou zpravdla zodpovědě odhadout budoucí ebo mulý vývoj. Uvědomte s apř., že třeba rostoucí oblouk křvk třetího stupě může velm dobře popsovat ějakou závslost, za uvažovaým tervalem hodot x však může dojít k ežádoucímu propadu této kubcké křvk do lokálího mma (pozor a polomu v Excel). extrapolace osa Y terpolace terval měřeých hodot ezávslé proměé osa ezávslé proměé X 7
8 .5.4. Schematcké příklad k aalýze časových řad Příklad a absolutí úroveň okamžkové časové řad Počet pracovíků k.d měsíce v podku A v roce 999 Datum Počet pracovíků Výpočet průměrého počtu pracovíků - chroologcký průměr: a) v prvím čtvrtletí: ch b) v prvím pololetí: ch v I v 3 v II , c) ve druhém pololetí: ch 43, 5 d) v celém roce: ch , 5 8
9 Příklad a absolutí úroveň úsekové časové řad Výroba určtého produktu v podku A v roce 999: Čas.úsek lede úor březe dube - červe červeec - prosec Výroba Výpočet průměré výrob přpadající a měsíc - artmetcký průměr: a) v prvím čtvrtletí: b) v prvím pololetí: , 5 c) ve druhém pololetí: d) v celém roce: ,75 Příklad a damku časových řad Výroba ve frmě A v letech Rok Výroba Absolutí přírůstek Koefcet růstu k k, Koefcet růstu k (%) k, (%) ,8750-0,50 87,50 -, ,86 0,86,86, ,9767-0,033 97,67 -, ,904 0,904 9,04 9, ,0400 0, ,00 4, ,93-0,0769 9,3-7,69 Průměrý absolutí přírůstek: 8 6,33 Průměrý koefcet růstu: k ,
10 Objem výrob Příklad a tred (celkový směr vývoje) Výroba podku A v letech R o k Objem výrob Časová proměá t Pomocé výpočt t t Tredová fukce (přímka):, = a + b. t a b 30 7 t 65 t 8 44, 8, 3, = 44,8 +,3 t 55 odhad pro rok 00 odhad pro rok 000, r o k časová proměá 0
11 Příklad a sezóost (sezóí dex ) Úrazovost v regou A v letech Počet pracovích úrazů Časová proměá Pomocé výpočt Vrovaé Rok Čtvrtletí t hodot t t I 9-5,5-506,0 30,5 66,5 998 II 48-4,5-566,0 0,5 57,7 III 50-3,5-585,0,5 48,9 IV 5 -,5-767,5 6,5 40, I 00 -,5-65,0, II ,0 0,5.5 III 3 0,5 656,0 0,5 3.7 IV 966,5 449,0, I 895,5 37,5 5, II 0 3, ,0, III 03 4,5 5 43,5 0, IV 00 5,5 5 60,0 30, ,5 43,00 - a 3 47 t 585, 8, 083 b 8, 8007 t 43 Tredová fukce (přímka): Sezóí dex I S, = 8, + 8,8. t skutečá hodota vrovaáhodota S e z ó í d e x Čtvrtletí eopraveé opraveé I 78,8 89,65 8,65 83,04 83,04 II 99,6 09,04 0,35 03,8 03,8 III 3,43 7,8,54 0,6 0,5 IV 97,80 87,43 95,35 93,53 93,53 C e l k e m 400,0 400,00 P r ů m ě r 00, I II III IV I II III IV I II III IV
4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností
4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.
Více, jsou naměřené a vypočtené hodnoty závisle
Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,
Více3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě.
3. Hodoceí přesost měřeí a vytyčováí. Odchylky a tolerace ve výstavbě. 3.1 Úvod o měřeí obecě 3.2 Chyby měřeí a jejch děleí 3.2.1 Omyly a hrubé chyby 3.2.2 Systematcké chyby 3.2.3 Náhodé chyby 3.3 Výpočet
VíceMetody zkoumání závislosti numerických proměnných
Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy
VíceTento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i
: ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru
VíceÚvod do korelační a regresní analýzy
Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou
VíceInterpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2
Iterpolace pomocí sple křvky dáo: bodů v rově úkol: alézt takovou křvku, která daým body prochází y f f 2 f 0 f x0 x... x 2 x x Iterpolace pomocí sple křvky evýhodou polyomálí terpolace změa ěkterého z
VíceDoc. Ing. Dagmar Blatná, CSc.
PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj
Více9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost
Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,
Více[ jednotky ] Chyby měření
Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá
VíceChyby přímých měření. Úvod
Chyby přímých měřeí Úvod Př zjšťováí velkost sledovaé velčy dochází k růzým chybám, které ovlvňují celkový výsledek. V pra eestuje žádá metoda měřeí a měřcí zařízeí, které by bylo absolutě přesé, což zameá,
Více1. Základy měření neelektrických veličin
. Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost
VíceNejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A
Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota
VíceSpolehlivost a diagnostika
Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore
VíceOptimalizace portfolia
Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí
VíceStatistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky).
Statstka. Základí pojmy Statstcký soubo - daá koečá, epázdá moža M předmětů pozoováí, majících jsté společé vlastost (událost, věc,.) Jedotlvé pvky této možy se azývají pvky statstckého soubou (statstcké
VícePřednáška č. 10 Analýza rozptylu při jednoduchém třídění
Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě
VícePRAVDĚPODOBNOST A STATISTIKA
Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru
Více1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru
Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v
VíceS1P Popisná statistika. Popisná statistika. Libor Žák
SP Popsá statstka Popsá statstka Lbor Žák SP Popsá statstka Lbor Žák Základí zdroje : skrpta Mateatka IV - doc. RNDr. Z. Karpíšek, CSc. ateatka o le - http://athole.fe.vutbr.cz/ Základ ateatcké statstk
Více12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
Více8 NELINEÁRNÍ REGRESNÍ MODELY
8 NELINEÁRNÍ REGRESNÍ MODELY 8 Tvorba eleárího regresího modelu Postup tvorby eleárího regresího modelu se dá rozčlet do těchto kroků: Návrh regresího modelu Obvykle se jako eleárí regresí model používá
VíceNáhodné jevy, jevové pole, pravděpodobnost
S Náhodé jevy pravděpodobost Náhodé jevy jevové pole pravděpodobost Lbor Žák S Náhodé jevy pravděpodobost Lbor Žák Základí pojmy Expermet česky též vědecký pokus je soubor jedáí a pozorováí jehož účelem
VíceOdhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt
VíceTest dobré shody se používá nejčastěji pro ověřování těchto hypotéz:
Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám
VíceTéma 6: Indexy a diference
dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -
VíceOdhady parametrů základního. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme
VíceSTATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson
STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,
VíceVY_52_INOVACE_J 05 01
Název a adresa školy: Středí škola průmyslová a umělecká, Opava, příspěvková orgazace, Praskova 399/8, Opava, 74601 Název operačího programu: OP Vzděláváí pro kokureceschopost, oblast podpory 1.5 Regstračí
VíceMendelova univerzita v Brně Statistika projekt
Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4
VíceUniverzita Karlova v Praze Pedagogická fakulta
Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách
VíceGenerování dvojrozměrných rozdělení pomocí copulí
Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta
VíceUSTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH
USTÁLENÉ POUDĚNÍ V OTEVŘENÝCH KOYTECH ovoměré prouděí Charakterstka:. Hloubka vod v kortě, průtočá plocha a průřezová rchlost jsou v každém příčém řezu kostatí.. Čára eerge, vodí hlada a do korta jsou
VíceAPLIKOVANÁ STATISTIKA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4
Více10.3 GEOMERTICKÝ PRŮMĚR
Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo
VíceLineární regrese ( ) 2
Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující
VíceTestování statistických hypotéz
Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím
VíceSOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek
SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO Statstka I dstačí studjí opora Mla Křápek Soukromá vysoká škola ekoomcká Zojmo Dube 3 Statstka I Vydala Soukromá vysoká škola ekoomcká Zojmo. vydáí Zojmo, 3 ISBN
VíceOdhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
VíceČasová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad
Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.
VíceOdhady a testy hypotéz o regresních přímkách
Lekce 3 Odhad a tet hpotéz o regreích přímkách Ve druhé lekc jme kotruoval kofdečí terval a formuloval tet hpotéz o korelačím koefcetu Korelačí koefcet je metrckou charaktertkou tezt závlot, u které ezáleží
Více8.2.1 Aritmetická posloupnost
8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž
Více6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.
6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola
Vícejsou varianty znaku) b) při intervalovém třídění (hodnoty x
Výběr z eřeštelých příkladů ze zkouškových testů Jde o výběr z tpů příkladů, jejchž úspěšost řešeí u zkoušek se blíží ule. Itervalové versus bodové tříděí V tabulce je uvedeo rozděleí četostí a) př bodovém
Více9.3.5 Korelace. Předpoklady: 9304
935 Koelace Předpoklad: 9304 Zatím jsme se zabýval vžd pouze jedím zakem, ve statstckém výzkumu jsme však u každého jedotlvce (statstcké jedotk) sledoval zaků více Učtě spolu ěkteé zak souvsí (apříklad
VícePODNIKOVÁ EKONOMIKA 3. Cena cenných papírů
Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý
Víceje konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že
Více1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor
1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců
VíceLABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY Jméo: Petr Česák Datum měřeí:.3.000 Studjí rok: 999-000, Ročík: Datum odevzdáí: 6.3.000 Studjí skupa: 5 Laboratorí skupa:
Více8.2.1 Aritmetická posloupnost I
8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu
VíceÚvod do zpracování měření
Úvod do zpracováí měřeí Teore chb Opakujeme-l měřeí téže fzkálí velč za stejých podmíek ěkolkrát za sebou, dostáváme zpravdla růzé hodot. Měřeé velčě přísluší však jedá správá hodota. Každou odchlku aměřeé
VíceIlustrativní příklad ke zkoušce z B_PS_A léto 2014.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
VíceT e c h n i c k á z p r á v a. Pokyn pro vyhodnocení nejistoty měření výsledků kvantitativních zkoušek. Technická zpráva č.
Evropská federace árodích asocací měřcích, zkušebích a aalytckých laboratoří Techcká zpráva č. /006 Srpe 006 Poky pro vyhodoceí ejstoty měřeí výsledků kvattatvích zkoušek T e c h c k á z p r á v a EUROLAB
Vícea další charakteristikou je četnost výběrového souboru n.
Předáška č. 8 Testováí rozptylu, testy relatví četost, testy dobré shody, test ezávslost kvaltatvích zaků Testy rozptylu Testy se používají k ověřeí hypotézy o určté velkost rozptylu a k ověřeí vztahu
VíceJednoduchá lineární regrese
Jedoduchá leárí regrese Motvace: Cíl regresí aalýz - popsat závslost hodot velč Y a hodotách velč X. Nutost vřešeí dvou problémů: a) jaký tp fukce se použje k popsu daé závslost; b) jak se staoví kokrétí
Více2. Vícekriteriální a cílové programování
2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě
VíceIV. MKP vynucené kmitání
Jří Máca - katedra mechaky - B35 - tel. 435 4500 maca@fsv.cvut.cz IV. MKP vyuceé kmtáí. Rovce vyuceého kmtáí. Modálí aalýza rozklad do vlastích tvarů 3. Přímá tegrace pohybových rovc 3. Metoda cetrálích
VíceStřední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1
Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,
VícePřednáška č. 2 náhodné veličiny
Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující
VíceDeskriptivní statistika 1
Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky
Vícejsou reálná a m, n jsou čísla přirozená.
.7.5 Racioálí a polomické fukce Předpoklad: 704 Pedagogická pozámka: Při opisováí defiic racioálí a polomické fukce si ěkteří studeti stěžovali, že je to příliš těžké. Ve skutečosti je sstém, kterým jsou
VíceTržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.
Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví
VíceANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DA prof. Ig. Jří Holčík, CSc. INVESICE Isttut DO bostatstky ROZVOJE VZDĚLÁVÁNÍ a aalýz IV. LINEÁRNÍ KLASIFIKACE pokračováí Isttut bostatstky a aalýz (SUPPOR VECOR MACHINE SVM) SEPARABILNÍ
VíceRegrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n
Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =
VíceSTATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK
STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK 04 prof. Ig. Bohuml Mařík, CSc. STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH.
VíceZávislost slovních znaků
Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví
VíceOdhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
VícePro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).
STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,
VíceP1: Úvod do experimentálních metod
P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu
Více11. Popisná statistika
. Popsá statstka.. Pozámka: Př statstckém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákotost, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme statstcké jedotky. Př
Více14. Korelace Teoretické základy korelace Způsoby měření závislostí pro různé typy dat
4. Korelace 4. Teoretcké základy korelace 4. Způsoby měřeí závslostí pro růzé typy dat Př prác se statstckým údaj se velm často setkáváme s daty, která jsou tvořea dvojcem, trojcem hodot. Složky takovýchto
VíceStatistika - vícerozměrné metody
Statstka - vícerozměré metody Mgr. Mart Sebera, Ph.D. Katedra kezologe Masarykova uverzta Fakulta sportovích studí Bro 0 Obsah Obsah... Sezam obrázků... 4 Sezam tabulek... 4 Úvod... 6 Pojmy... 7 Náhodé
VíceMěření závislostí. Statistická závislost číselných znaků
Měřeí závslostí Statstcká závslost číselých zaků - závslost dvou velč lze vádřt ako ech fukčí vztah vzorcem, taulkou hodot příslušé fukce eo grafck; - mez zak zkoumaých evů zšťueme estec příčé (kauzálí
Více8. Zákony velkých čísel
8 Zákoy velkých čísel V této část budeme studovat velm často užívaá tvrzeí o součtech posloupost áhodých velč Nedříve budeme vyšetřovat tvrzeí azývaá souhrě ako slabé zákoy velkých čísel Veškeré úvahy
VíceIII. METODY MĚŘENÍ A ZPRACOVÁNÍ MĚŘENÍ
III. METODY MĚŘENÍ A ZPRACOVÁNÍ MĚŘENÍ Způsob, jímž se provádí fzkálí měřeí, závsí jedak a povaze měřeé velč, jedak a tom, ze kterých vztahů pro měřeou velču vjdeme a jakých přístrojů použjeme. Všech měřcí
Více5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC
5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém
Víceje konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí
VíceUNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy
UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0 VYBRANÉ NEPARAMETRICKÉ
VíceLineární a adaptivní zpracovní dat. 5. Lineární filtrace: FIR, IIR
Leárí a adaptví zpracoví dat 5. Leárí fltrace: FIR, IIR Dael Schwarz Ivestce do rozvoje vzděláváí Opakováí 2 Co je to fltrace? Co je to fltr? A jak ho popsujeme? Jaký je vztah Z trasformace a Fourerovy
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,
VíceStatistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.
Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový
VíceAritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti
8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:
VíceAPLIKACE REGRESNÍ ANALÝZY NA VÝPOČET BODU ZVRATU
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV FINANCÍ FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF FINANCES APLIKACE REGRESNÍ ANALÝZY NA VÝPOČET BODU ZVRATU
VíceNáhodný výběr 1. Náhodný výběr
Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti
Více12. Neparametrické hypotézy
. Neparametrcké hypotézy V této část se budeme zabývat specálí částí teore statstckých hypotéz tzv. eparametrckým hypotézam ebo jak řečeo eparametrckým statstckým testy. Neparametrcké se azývají proto,
Více1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL
Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,
VíceBIVŠ. Pravděpodobnost a statistika
BIVŠ Pravděpodobost a statstka Úvod Skrpta Pravděpodobost a statstka jsou učebím tetem pro stejojmeý kurz magsterského studa Bakovího sttutu vysoké školy Kurzy Pravděpodobost a statstka a avazující kurz
Více8.1.3 Rekurentní zadání posloupnosti I
8.. Rekuretí zadáí poslouposti I Předpoklady: 80, 80 Pedagogická pozámka: Podle mých zkušeostí je pro studety pochopitelější zavádět rekuretí posloupost takto (sado kotrolovatelou ukázkou), ež dosazováím
Více8. Základy statistiky. 8.1 Statistický soubor
8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě
VícePRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2
SP3 Neparametrcké testy hypotéz PRAVDĚPODOBNOST A STATISTIKA Neparametrcké testy hypotéz čast Lbor Žák SP3 Neparametrcké testy hypotéz Lbor Žák Neparametrcké testy hypotéz - úvod Neparametrcké testy statstckých
VíceGeodézie 3 (154GD3) Téma č. 9: Hodnocení a rozbory přesnosti výškových měření.
Geodéze 3 (54GD3) Téma č. 9: Úvod o měřeí obecě. V geodéz měříme především déky, úhy, a dáe také apř. čas, vekost síy tíže apod. Výsedek měřeí je charakterzová čísem, závsým též a vobě jedotek. Ze zkušeost
VíceC V I Č E N Í 4 1. Představení firmy Splintex Czech 2. Vlastnosti skla a skloviny 3. Aditivita 4. Příklady výpočtů
Techologe skla 00/03 C V I Č E N Í 4. Představeí rmy pltex Czech. Vlastost skla a sklovy 3. Adtvta 4. Příklady výpočtů Hospodářská akulta. Představeí rmy pltex Czech a.s. [,] Frma pltex Czech je součástí
VíceIlustrativní příklad ke zkoušce z B_PS_A léto 2013.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV INFORMATIKY FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF INFORMATICS POSOUZENÍ FINANČNÍ VÝKONNOSTI FIRMY JMP,
VícePOLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde
POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti
VíceChyby měření: 1. hrubé chyby - nepozornost, omyl, únava pozorovatele... - významně převyšuje rozptyl náhodné chyby 2. systematické chyby - chybné
CHYBY MĚŘENÍ Opakovaé měřeí téže fyzkáí večy evede vždy k přesě stejým výsedkům. Této skutečost bychom se evyhu, kdybychom měřeí provádě s ejvětší důkadostí a precsostí aopak, čím ctvější a přesější jsou
VíceExperimentální identifikace regulovaných soustav
Expermetálí etfkace reglovaých sostav Cílem je zhotoveí matematckého moel a záklaě formací získaých měřeím. Požívá se možství meto. Výběr metoy je ůležtý, protože a ěm závsí přesost áhraího moel. Záklaím
VícePřednáška V. Úvod do teorie odhadu. Pojmy a principy teorie odhadu Nestranné odhady Metoda maximální věrohodnosti Průměr vs.
Předáška V. Úvod do teore odhadu Pojmy a prcpy teore odhadu Nestraé odhady Metoda mamálí věrohodost Průměr vs. medá Opakováí výběrová dstrbučí fukce Sestrojíme výběrovou dstrbučí fukc pro výšku a váhu
VíceZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY
UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 OBSAH: ÚVOD... 4. CO JE STATISTIKA?... 4. STATISTICKÁ DATA... 5.3 MĚŘENÍ
VícePravděpodobnostní model doby setrvání ministra školství ve funkci
Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí
Více