Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Rozměr: px
Začít zobrazení ze stránky:

Download "Sbírka příkladů z matematické analýzy II. Petr Tomiczek"

Transkript

1 Sbírka příkladů z matematické analýzy II Petr Tomiczek

2 Obsah Diferenciální rovnice. řádu 3. Separace proměnných Přechod k separaci Variace konstant Bernoulliova rovnice Lineární diferenciální rovnice n-tého řádu 8 3. Systémy funkcí Eulerova rovnice Rovnice s konstantními koeficienty Metoda snižování řádu Nehomogenní rovnice Metoda odhadu tvaru partikulárního řešení Okrajové úlohy Úlohy na vlastní čísla a vlastní funkce Soustavy lineárních diferenciálních rovnic 8 4. Soustavy homogenních diferenciálních rovnic Soustavy nehomogenních diferenciálních rovnic Posloupnosti a řady funkcí 5. Posloupnosti funkcí Funkční řady Mocniné řady Fourierovy řady 7 7 Limity, derivace a diferenciál funkcí více reálných proměnných 30 8 Řešení funkcionálních rovnic, tečná rovina 30 9 Extrémy funkcí více proměnných 3 9. Optimalizační úlohy bez vazeb Optimalizační úlohy s vazbami Vícenásobné integrály 3 0. Dvojné integrály Trojné integrály

3 Diferenciální rovnice. řádu. Separace proměnných Příklad : Najděte obecné řešení (obecný integrál) diferenciální rovnice y = tg x tg y. Separací proměnných převedeme rovnici na tvar dy dx = tg x tg y cos y sin y dy = sin x cos x dx a substitucemi u = sin y, v = cos x dostaneme po integrování ln u = ln v + ln C, neboli sin y = C cos x. (xy + x)dx + (y x y)dy = 0 (obecný integrál). + y = C( x ) 3. xyy = x x + y = ln Cx 4. y tg x y = a y = C sin x a 5. xydx + (x + )dy = 0 y = C(x + )e x 6. y + dx = xydy ln x = C + y + ; x = 0 7. e y ( + x )dy x( + e y )dx = 0 + e y = C( + x ) 8. (x )y + xy = 0, y(0) = y{ln( x ) + } = 9. y sin x = y ln y, y( π ) = e y = e tg x 0. sin y cos xdy = cos y sin xdx, y(0) = π 4 cos x = cos y. y cotg x + y =, y( π 3 ) = 0 y = 4 cos x Řešení pomocí webmathematicy 3

4 . Rovnice umožnující přechod k separaci proměnných. Příklad : Najděte obecné řešení diferenciální rovnice y = 3 + (x + y). Substitucí x + y = u, + y = u převedeme rovnici na tvar u = 3 + u du dx = u u. Separaci proměnných a integrováním dostaneme u u du = dx, neboli u ln u = x C a přejdeme k původním proměnným 3x + y + ln x y = C. Příklad 3 : Najděte obecné řešení diferenciální rovnice (x + y + ) dx + (x + y ) dy = 0. Substitucí x + y = u, dx + dy = du převedeme rovnici na tvar (u + ) dx + (u )(du dx) = 0 (3 u) dx + (u ) du = 0. Separaci proměnných a integrováním dostaneme u 3 u du + dx = C, neboli u 5 ln u 3 + x = C a přejdeme k původním proměnným x + y + 5 ln x + y 3 = C. 4. y y = x 3 x + y = Ce x 5. y = sin(x y) 6. y = 4x + y 7. y = cos(x y ) 8. y + x + y = x + y x + C = cotg( y x + π 4 ) 4x + y ln( 4x + y + ) = x + C y = x arcotg( C x ) + kπ; k Z x + C = u + 3 ln u 8 3 ln(u + ) u = + x + y 4

5 Příklad 9 : Najděte obecné řešení diferenciální rovnice y = x + xy xy Substitucí y = ux, y = u x + u převedeme rovnici na tvar. u x + u = x + xux xux Integrováním dostaneme u + du = ln u + + (u + ) u + a přejdeme k původním proměnným 0. y = x+y x y. y = xy x y u du (u + ) = dx x. = ln x + C ln y x + + y = ln x + C ln x + y + x + x x + y = C. arcotg yx = ln C x + y x + y = Cy. xy y = x + y x = C + Cy) 3. (3y + 3xy + x )dx = (x + xy)dy 4. (x + y )y = xy (x + y) = Cx 3 e x x+y y x = Cy, y = 0 5. xy = y cos ln y x ln Cx = cotg( ln y x ) y = xe kπ, k Z 6. y + x + y xy = 0, y() = 0 y = x 7. (xy y) arcotg y x = x, y() = 0 x + y = e y x arcotg y x 8. (y 3x )dy + xydx = 0, y(0) = 9. y = y xy x y +xy x, y() = y 3 = y x y = x 5

6 .3 Variace konstant Příklad 30 : Metodou variace konstanty řešte diferenciální rovnici y cos x + y = tg x. Nejdříve vyřešíme homogenní rovnici metodou separace proměnných y cos x + y = 0 ln y + tg x = ln C y = Ce tgx. Řešení nehomogenní rovnice hledáme ve tvaru y = C(x)e tgx. Po dosazení do původní rovnice dostaneme (C (x)e tgx + C(x)e tgx cos x ) cos x + C(x)e tgx = tg x. tedy C (x)e tgx cos x = tg x C(x) = e tgx (tgx ) + K. Obecné řešení rovnice má tvar y = Ce tgx + tg x =. 3. xy y = x 4 y = Cx + x 4 3. xy + y + = 0 xy = C ln x 33. xy + (x + )y = 3x e x xy = (x 3 + C)e x 34. (xy + e x )dx xdy = 0 y = e x (ln x + C) 35. y = x(y x cos x) y = x(c + sin x) 36. (xy ) ln x = y y = C ln x ln x 37. y sin x + y cos x = y = sin x + C cos x 38. (e y x)y = x = e y + Ce y 39. y = y 3x y x = Cy 3 + y 40. y = x sin y+ sin y x = 8 sin y cos + y Ce 4. y + 3y x = x 3, y() = 4. y xy =, y(0) = 0 y = x + 3 x y = e x x 0 e t dt 43. xy y = sin x cos x, y je omezená pro y = cos x 44. x y xy = x cos x 3 sin x, y 0 pro x y = sin x x 45. ( + x ) ln( + x )y xy = ln( + x ) x arcotg x y = arcotg x y π pro x 6

7 .4 Bernoulliova rovnice Příklad 46 : Převodem na lineární diferenciální rovnici vyřešte Substitucí z = y z = yy x y y = x y. dostaneme xy y y = x xz z = x. Vyřešíme lineární rovnici. hom. rovnice. part. řešení xz z = 0 x C e x = x z h = C e x C = e x z p = e x e x = 3. obecné řešení z = C e x + y = C e x y + y = y e x y(e x + Ce x ) =, y = xy x y = 4y y = x 4 ln Cx, y = xy + y + x 5 y 3 e x = 0 y = x 4 (e x + C), y = ( + x )y = xy + x y y = +x (C x + x ln(x + x + )) 7

8 3 Lineární diferenciální rovnice n-tého řádu 3. Systémy funkcí Příklad 5 : Máme rozhodnout o lineární závislosti nebo nezávislosti funkcí, x, x na intervalu I = (, ). Budeme zkoumat, kdy x I nastane rovnost c + c x + c 3 x = 0. Postupně pro x = 0 dostaneme c = 0, pak pro x = a x = dostaneme c + c 3 = 0 a c + c 3 = 0. Odtud plyne c = 0, c 3 = 0. Podle definice jsou funkce, x, x lineárně nezávislé. Wronskián daných funkcí je W (x) = x x 0 x 0 0 = 0. Tedy i podle věty 0.4 jsou funkce, x, x lineárně nezávislé. Rozhodněte o lineární závislosti nebo nezávislosti následujících funkcí 5.,, x, x 53. e x, xe x, x e x 54. 5, cos x, sin x závislé nezávislé závislé 55. cos x, cos(x + ), cos(x ) závislé 56., arcsin x, arccos x závislé 57. cos x, sin x, cos x nezávislé Najděte Wronskián funkcí 58., x 59. e x, xe x 60., cos x, cos x 6. 4, sin x, cos x 6. e 3x sin x, e 3x cos x e x 8 sin 3 x 0 e 6x 8

9 3. Eulerova rovnice Řešení Eulerovy rovnice x n y (n) + a n x n y (n ) + + a x y + a 0 y = 0, kde a 0,..., a n R hledáme ve tvaru y(x) = x λ, (popř. x λ ln x,..., x λ ln k x) λ C. Příklad 63 : Dosazením funkce y(x) = x λ do rovnice x y 4xy + 6y = 0 dostaneme x λ(λ )x λ 4xλx λ + 6x λ = 0, tedy (λ 5λ + 6) x λ = 0. Tato rovnost je splněna (při x 0) pro kořeny λ =, λ = 3, uvedeného polynomu. Funkce y (x) = x, y (x) = x 3 tvoří fundamentální systém dané rovnice a její obecné řešení má tvar y = C x + C x 3. Příklad 64 : Podobně při řešení rovnice x y 3xy + 4y = 0 dostaneme λ 4λ + 4 = 0 λ, = a fundamentální systém rovnice je tvořen funkcemi y (x) = x, y (x) = x ln x. Obecné řešení má tedy tvar y = C x + C x ln x. Příklad 65 : Řešení rovnice x y + 3xy + y = 0 hledáme ve tvaru y(x) = x λ. Po dosazení do rovnice dostaneme λ + λ + = 0 λ = + i, λ = i. Do fundamentálního systému tedy patří funkce y (x) = x +i, y (x) = x i nebo y (x) = x cos(ln x), y (x) = x sin(ln x) a obecné řešení rovnice má tvar y = C x cos(ln x) + C x sin(ln x). 66. x y 3xy y = 0 y = C x C x x 3 y x y = 0 y = C + C x + C 3 x ln x 68. x y + 5xy + 3y = 0 y = C x + C x x y + 7xy + 8y = 0 y = C x + C x x 3 y 6y = 0 y = C x 3 + C cos( ln x) + C 3 sin( ln x) 7. x y xy + y = 0 ; y(0) = 0, y (0) = y = C x 9

10 3.3 Rovnice s konstantními koeficienty Příklad 7 : koeficienty Řešení homogenní lineární diferenciální rovnice s konstantními y y y = 0 hledáme ve tvaru y(x) = e λx (popř. xe λx,..., x k e λx ), kde číselný parametr λ je kořenem charakteristické rovnice (charakteristického polynomu) λ λ + = 0. Tedy λ = 4, λ = 3, fundamentální systém rovnice je tvořen funkcemi e 4x, e 3x a obecné řešení rovnice má tvar Příklad 73 : Rovnice y(x) = C e 4x + C e 3x. y 4y + 4y = 0 má charakteristickou rovnici λ 4λ + 4 = 0 λ, =. Fundamentální systém rovnice je nyní tvořen funkcemi y (x) = e x, y (x) = x e x a obecné řešení rovnice má tvar y = C e x + C x e x. Příklad 74 : K rovnici y + 4y = 0 přísluší charakteristická rovnice λ + 4 = 0 s kořeny λ = i, λ = i. Fundamentální systém je tvořen funkcemi y (x) = e ix, y (x) = e ix nebo y (x) = cos x, y (x) = sin 3x. Obecné řešení má tvar y(x) = C cos x + C sin x. 75. y + y + y y = 0 y = e x ( + x), y(0) =, y (0) =, y (0) = y 4y + 3y = 0; y(0) = 6, y (0) = 0 y = 4e x + e 3x 77. y + 6y + y + 6y = 0 y = C e x + C e x + C 3 e 3x 78. y (6) + y (5) + y (4) = 0 y = C + C x + C 3 x + C 4 x 3 + e x (C 5 + C 6 x) 79. 4y 8y + 5y = 0 y = e x (C cos x + C sin x ) 80. y 8y = 0 y = C e x + e x (C cos 3x + C 3 sin 3x 8. y (4) +4y +0y +y +5y = 0 y = (C + C x)e x + (C 3 cos x + C 4 sin x)e x 8. y y + y = 0; y(0) = 0, y (0) = y = e x sin x 83. y y + 3y = 0; y(0) =, y (0) = 3 y = e x (cos x + sin x) 0

11 3.4 Metoda snižování řádu Pokud známe jedno řešení y (x) homogenní rovnice, pak další partikulární řešení hledáme ve tvaru y(x) = y (x) z(x). Příklad 84 : Rovnice (sin x cos x) y sin x y + (cos x + sin x) y = 0 má jedno řešení y = e x. Pro druhé řešení y(x) = e x z(x), platí y = e x (z + z ), y = e x (z + z + z ) a po dosazení do původní rovnice máme (sin x cos x) e x (z + z + z ) sin x e x (z + z ) + (cos x + sin x) e x z = 0 (sin x cos x) (z + z ) sin x z = 0 (u = z ) (sin x cos x) u cos x u = 0 (sin x cos x) du = cos x u dx u du = cos x sin x cos x dx ; vypočteme integrál vpravo cos x sin x cos x dx = cos x sin x cos x dx = cos x sin x + cos x + sin x dx = sin x cos x { } v = sin x cos x = dx+ dv = (cos x + sin x) dx v dv = x +ln sin x cos x +C ; tedy ln u = x + ln sin x cos x +Ĉ u = Ce x (sin x cos x) (= z ) z = Ce x ( sin x) y = e x Ce x ( sin x) = C sin x a obecné řešení má tvar y = C e x + C sin x. Nalezněte obecné řešení následujících rovnic, jestliže znáte partikulární řešení 85. ( x )y xy + 4 y = 0; y = + x y = C + x + C x 86. x (x + )y y = 0; y = + x y = C ( + x ) + C ( x + x+ x ln x + ) 87. xy + y xy = 0; y = ex x xy = C e x + C e x 88. y ( + tg x)y = 0; y = tg x y = C tg x + C ( + x tg x) 89. (e x + )y y e x y = 0; y = e x y = C (e x ) + C e x x (x )y + (4x 3)xy xy + y = 0 y = C x + C x + C 3(x ln x + ) y = x, y = x 9. (x x + 3)y (x + )y + xy y = 0 y = C x + C e x + C 3 (x ) y = x, y = e x

12 3.5 Nehomogenní rovnice Příklad 9 : Metodou variace konstant vyřešíme rovnici y + 9y = sin 3x.. Určíme obecné řešení homogenní rovnice y + 9y = 0 (viz metoda charakteristické rovnice, příklad (7)) λ + 9 = 0 y h (x) = C cos 3x + C sin 3x.. Partikulární řešení y p nehomogenní rovnice hledáme ve tvaru Funkce y p (x) = C (x) cos 3x + C (x) sin 3x. C (x), C (x) splňují soustavu algebraických rovnic: C cos 3x + C sin 3x = 0 3C cos 3x sin 3x + 3C sin 3x = 0, 3C sin 3x + 3C cos 3x = sin 3x 3C sin 3x cos 3x + 3C cos 3x = cos 3x sin 3x. Odtud po sečtení rovnic dostaneme 3C cos 3x = sin 3x C = 9 ln sin 3x a z první rovnice plyne C cos 3x cos 3x + 3 = 0 C = x 3. Partikulární řešení má tvar y p (x) = x 3 cos x + ln sin 3x sin 3x Obecným řešením úlohy je funkce y(x) = y h (x) + y p (x) = C cos 3x + C sin 3x x 3 cos x + ln sin 3x sin 3x. 9 Řešte rovnice 93. y y + y = ex x y = e x (x ln x + C x + C ) 94. y y + y = ex x + y = e x (C x + C ln x + + x arcotg x) 95. y + 3y + y = e x + y = (e x + e x ) ln(e x + ) + C e x + C e x 96. y + y + cotg x = 0 y = + C cos x + C sin x + cos(x) ln tg x Vyřešte rovnici,y y = f(x), jestliže 97. f(x) = ex +e y = e x (x + C x ) (e x + ) ln(e x + ) + C 98. f(x) = e x e y x = ex (arcsin(e x ) + e x e x + C ) + 3 ( e x ) 3 + C 99. f(x) = e x cos(e x ) y = C e x cos(e x ) + C

13 3.6 Metoda odhadu tvaru partikulárního řešení Příklad 00 : Pomocí odhadu tvaru partikulárníbo řešení vyřešíme rovnici y 5y = (x ).. Charakteristická rovnice λ 5λ = 0, má kořeny λ = 0, λ = 5 a homogenní řešení má tvar y h = C + C e 5x.. Z rovnosti (x ) = e ax (P n (x) cos bx + Q m (x) sin bx) vyplývá a = 0, b = 0, n =, m = 0 k =, R (x) = a x + a x + a 0, kde a, a, a 0 jsou konstanty. Kritické číslo a + i b = 0 je jednonásobný kořen charakteristické rovnice, tedy r =. Partikulární řešení nehomogenní rovnice hledáme ve tvaru y p (x) = x (a x + a x + a 0 ), potom y p(x) = a x + a x + a 0 + x (a x + a ) = 3a x + a x + a 0, y p(x) = 6a x + a. Po dosazení y p, y p do dané rovnice dostaneme: 6a x + a 5 (3a x + a x + a 0 ) = (x ), 5a x + (6a 0a )x + a 5a 0 = x x +, a partikulárním řešením je funkce a = 5, a = 4 5, = a 0 = 7 5, y p (x) = x ( 5 x x ). 3. Obecné řešení má tvar y(x) = C + C xe 5x + x ( 5 x x ). Metodou odhadu řešte rovnice 0. y + y = 4xe x y = C cos x + C sin x + (x + )e x 0. y y = e x x y = C e x + C e x + xe x + x y + y y = 3xe x y = C e x + C e x + ( x x 3 )ex 04. y 3y + y = sin x y = C e x + C e x + sin x cos x y + y = 4 sin x y = C cos x + C sin x x cos x 06. y 3y + y = x cos x y =C e x +C e x +( x 0 00 ) cos x (3x ) sin x 3

14 07. y + 3y 4y = e 4x + xe x y = C e x + C e 4x x 5 e 4x ( x )e x 08. y 9y = e 3x cos x y = C e 3x + C e 3x + e 3x ( 6 37 sin x 37 cos x) 09. y y + y = 6xe x y = (C + C x + x 3 )e x 0. y + y = x sin x y = (C x 4 ) cos x + (C + x 4 ) sin x Řešte rovnice s počáteční podmínkou. y + 9y = 6e 3x ; y(0) = y (0) = 0 y = 3 (cos 3x + sin 3x e3x ). y 4y + 5y = x e x ; y(0) =, y (0) = 3 y =e x (cos x sin x)+(x+) e x 3. y +6y +9y = 0 sin x ; y(0) = y (0) = 0 y = (x+ 3 5 )e 3x + 5 (4 sin x 3 cos x) 4. y + 4y = sin x ; y(0) = y (0) = y = cos x + 3 (sin x + sin x) 5. y + y = cos x ; y(0) =, y (0) = 0 y = cos x + x sin x Odhadněte partikulární řešení následujících rovnic 6. y 7y = (x ) A x 3 + A x + A 3 x 7. y + 7x = e 7x Axe 7x 8. y 8y + 6y = (0 x)e 4x (A x 3 + A x )e 4x 9. y + 5y = cos 5x x(a cos 5x + B sin 5x) 0. y + 4y + 8y = e x (sin x + cos x) (A cos x + B sin x)e x. y 4y + 8y = e x (sin x cos x) x(a cos x + B sin x)e x. y (4) y = 4 Ax 3 3. y + y + y = (x + ) sin x + (x 4x) cos x (Ax + Bx + C) cos x+ +(Dx + Ex + F ) sin x 4. y y = e x sin x + x e x (A cos x + B sin x)+ +x(cx + Dx + E) 5. y (4) 4y + 8y 8y + 4y = e x (x cos x + sin x) x e x {(Ax + B) cos x+ +(Cx + D) sin x} 6. y (5) y (4) +8y 8y +6y 6y = 3 cos x+ x (A cos x + B sin x) + C 4 y = 3 cos x +

15 3.7 Okrajové úlohy Příklad 7 : Pomocí charakteristické rovnice a dosazením okrajových podmínek vyřešíme smíšenou okrajovou úlohu y y 8y = 0, x (0, ), y(0) =, y () = 0. Charakteristická rovnice je λ λ 8 = 0 λ = 4, λ = a obecným řešením úlohy je funkce y(x) = C e 4x + C e x. Z okrajových podmínek dostaneme = C + C, C = +e, 6 0 = 4C e 4 C e, C = e6 +e. 6 Řešením okrajové úlohy je funkce y(x) = +e 6 e 4x + e6 +e 6 e x. Řešte následující okrajové úlohy 8. y y = 0 ; y(0) = 0, y(π) = y = sinh x sinh π 9. y + y = 0 ; y(0) = 0, y(π) = nemá řešení 30. y k y = 0 ; y(0) = v, y(x 0 ) = v y = sinh kx 0 (v sinh k(x 0 x)+v sinh kx) 3. y α y = 0 ; y(0) = v, y (x 0 ) = 0 y = v cosh(x 0 x) cosh αx 0 3. y α sy = 0 ; y(0) = s, y (x 0 ) = 0 s < 0; y = cos α s(x 0 x) s cos α sx 0 pro x 0 = (k+)π α s nemá řešení; s > 0; y = cosh α s(x 0 x) 33. y λ y = 0 ; λ 0, y(0) = 0, y() = λ 34. y λ y = 0 ; λ, y(0) = 0, y () = λ 35. y λ y = 0 ; λ, y (0) = 0, y() = λ pro x 0 (k+)π α s s cosh α sx 0 ; k =,, 3,... y = sinh λx λ sinh λ y = sinh λx λ cosh λ y = cosh λx λ cosh λ 36. xy + y = 0; y() = αy () ; y(x) je omezená pro x y = y (4) λ 4 y = 0; y(0) = y (0) = 0, y(π) = y (π) = 0 y = C sin kx pro λ = k k =,, 3,... y = 0 pro ostatní λ 5

16 3.8 Úlohy na vlastní čísla a vlastní funkce Příklad 38 : Určíme vlastní čísla a vlastní funkce okrajové úlohy y + λy = 0, y (0) = 0, y (π) = 0. Řešení hledáme ve tvaru y(x) = e kx, potom charakteristická rovnice má tvar k + λ = 0 k = ± λ. Pro λ < 0 je k = λ, k = λ a obecné řešení má tvar y(x) = C e λx + C e λx y (x) = λ C e λx λ C e λx. Z okrajových podmínek dostáváme soustavu rovnic pro neznámé konstanty C, C } 0 = C + C, 0 = λ C e λπ λ C e λπ C = 0, C = 0 y = 0., Pro λ = 0 má obecné řešení tvar y(x) = C + C x y (x) = C a z okrajových podmínek dostaneme Pro λ > 0 má obecné řešení tvar C R, C = 0 y = C. y(x) = C cos λx+c sin λx y (x) = λ C sin λx+ λ C cos λx. Z okrajových podmínek plyne 0 = C, 0 = C sin λπ, Dostáváme tak posloupnost vlastních čísel } λπ = nπ, n N. {, 4, 9, 6,...} a posloupnost jim odpovídajících vlastních funkcí je {cos x, cos x, cos 3x,...}. Najděte vlastní čísla a vlastní funkce úlohy y + λy = 0, je-li 39. x < 0, π >, y(0) = y (π) = 0 λ K = (K ) 4, y K = sin K x, K N 6

17 40. x < 0, π >, y (0) = y(π) = 0 4. x <, >, y() = y() = 0 4. x <, >, y() = y () = x <, >, y () = y() = x <, >, y () = y () = x < a, b >, y(a) = y(b) = x < a, b >, y(a) = y (b) = x < a, b >, y (a) = y(b) = 0 λ K = (K ) 4, y K = cos K x, K N λk = K π, y K = sin Kπx, K N λ K = (K ) π 4, y K = cos K πx, K N λ K = (K ) π 4, y K = sin k πx, K N λk = K π, y K = cos Kπx; K = 0,,,... λ K = K π λ K = (K ) π 4(b a) λ K = (K ) π 4(b a) (b a), y K = sin Kπ(x a) b a, K N, y K = sin (K )(x a)π (b a), K N, y K = cos (K )(x a)π (b a), K N Najděte vlastní čísla a vlastní funkce následujících okrajových úloh 48. y + y + λy = 0 ; x < 0, l >, y(0) = y(l) = 0 λ K = + K π ln l yk = l x sin Kπx l, K N 49. x y + xy + λy = 0 ; x <, l >, y() = y(l) = 0 λ K = K π Kπ ln x ln l, y ln l K =sin 50. y + (λ + )y = 0 λk = K π, K N x < 0, >, y(0)=y (0)=0, y() y ()=0 y K =sin(arcotg(kπ)+kπx) 5. y + x y +λy = 0 ; y(l)=0, y je omezená pro x 0 λ K = K π l, y K = Kπx x sin l 7

18 4 Soustavy lineárních diferenciálních rovnic Příklad 5 : 4. Soustavy homogenních diferenciálních rovnic 53. x = x + y y = 3x + 4y 54. x = x y y = y 4x 55. x + x 8y = 0 y x y = x = x + y y = 3y x x = C e t + C e 5t y = C e t + 3C e 5t x = C e t + C e 3t y = C e t C e 3t x = C e 3t 4C e 3t y = C e 3t + C e 3t x = e t (C cos t + C sin t y = e t {(C + C ) cos t + (C C ) sin t} 57. x = x 3y x = e t (C cos 3t + C sin 3t) y = 3x + y y = e t (C sin 3t C cos 3t) 58. x + x + 5y = 0 x = (C C ) cos t (C + C ) sin t y x y = 0 y = C cos t + C sin t 59. x = x + y x = (C + C t)e 3t y = 4y x y = (C + C + C t)e 3t 60. x = 3x y x = (C + C t)e t y = 4x y y = (C C + C t)e t 6. x = x + z y x = C e t + C e t + C 3 e t y = x + y z y = C e t 3C 3 e t z = x y z = C e t + C e t 5C 3 e t 6. x = 3x y + z x = C e t + C e t + C 3 e 5t y = x + y + z y = C e t C e t + C 3 e 5t z = 4x y + 4z z = C e t 3C e t + 3C 3 e 5t 63. x = 4y z 3x x = C e t + C 3 e t y = z + x y = C e t + C e t z = 6x 6y + 5z z = C e t C 3 e t 8

19 64. x = x y z x = e t (C sin t + C 3 cos t) y = x + y y = e t (C C cos t + C 3 sin t) z = 3x + z z = e t ( C 3C 3 cos t + 3C 3 sin t 65. x = 4x y z x = C e t + (C + C 3 )e 3t y = x + y z y = C e t + C e 3t z = x y + z z = C e t + C 3 e 3t 66. x = x y + z x = (C + C t)e t + C 3 e t y = x + y z y = (C C + C t)e t z = z y z = (C C + C t)e t + C 3 e t 67. x = 4x y x = (C + C t + C 3 t )e t y = 3x + y z y = {C C + (C C 3 )t + C 3 t }e t z = x + z z = {C C + C 3 + (C C 3 )t + C 3 t }e t 4. Soustavy nehomogenních diferenciálních rovnic 68. x = y + e t x = C e t + C e t + te t t y + x + t y = C e t C e t + (t )e t t 69. x = y 5 cos t x = C e t + C e t sin t cos t y = x + y y = C e t C e t + sin t + 3 cos t 70. x = 4x + y e t x = C e t + C e 3t + (t + )e t y = y x y = C e t C e 3t te t 7. x = y x + x = (C + C t)e t 3 y = 3y x y = (C + C + C t)e t 7. x = 5x 3y + e 3t x = C e t + 3C e 4t e t 4e 3t y = x + y + 5e t y = C e t + C e 4t e t e 3t 73. x = x 4y x = 4C e t + C e t 4te t y = x 3y + 3e t y = C e t + C e t (t )e t 74. x = x y x = C e 3t + 3t + t + C y = y x + 8t y = C e 3t + 6t t + C 75. x = x + y + 6te t x = C e t + C e 3t (t + 3)e t y = x y y = C e t C e 3t (8t + 6)e t 76. x = x y x = (C + C t t )e t y = x + e t y = {C C + (C + )t t }e t 9

20 77. x = x y + 8t x = C cos t C sin t + t + y = 5x y y = (C + C ) cos t + (C C ) sin t + 0t 78. x = x y x = C e t + C e 3t + e t ( cos t sin t) y = y x 5e t sin t y = C e t C e 3t + e t (3 cos t + sin t) 79. x = y + tg t x = C cos t + C sin t + tg t y = x + tg t y = C sin t + C cos t x = 4x y + e t x = C + C e t + e t ln e t y = 6x + 3y 3 e t y = C 3C e t 3e t ln e t 8. x = x y+ cos t x = C cos t + C sin t + t(cos t + sin t) + (cos t sin t) ln cos t y = x y y = (C C ) cos t + (C + C ) sin t + cos t ln cos t + t sin t 8. x = x + y z t + x = C e t + C sin t + C 3 cos t y = x y = t C e t + C cos t C 3 sin t z = x + y z t + z = + C sin t + C 3 cos t Najděte partikulární řešení následujících soustav diferenciálních rovnic 83. y = y + z ; y(0) = 0, z(0) = y = e t e 3t z = y + 4z z = e t e 3t 84. y = 3y z ; y(0) =, z(0) = 5 y = e t z = 0y 4z z = 5e t 85. x = 3x + 8y ; x(0) = 6, y(0) = x = (e t + e t ) y = 3y x y = e t e t 86. x = e t y 5x ; x(0) = 9 900, y(0) = 900 x = 4 5 et 36 et y = e t + x 3y y = 5 et et 87. x = y ; x(0) = y(0) = x = cos t + sin t y = x y = cos t sin t 88. x = 4x 5y ; x(0) = 0, y(0) = x = ( t)e t y = x y = te t 89. x = x + y + t ; x(0) = 7 9, y(0) = 5 9 x = 4 3 t 7 9 y = x y + t y = 3 t x = x + 5y ; x(0) =, y(0) = x = (sin t cos t)e t y = 3y x y = e t cos t 0

21 9. x = 6x y 6t t + 3 ; x(0) =, y(0) = 3 y = y t x = e t + e 3t + t + t y = e t + t +

22 5 Posloupnosti a řady funkcí Příklad 9 : 5. Posloupnosti funkcí Rozhodněte o stejnoměrné konvergenci posloupnosti {f n (x)}, je-li 93. f n (x) = n n +x x R nestejnoměrně, x <, > stejnoměrně 94. f n (x) = x n x < 0, > nestejnoměrně, x < 0, > stejnoměrně 95. f n (x) = arcotg nx n+x x < 0, + ) stejnoměrně 96. f n (x) = x n x n+ x < 0, > stejnoměrně 97. f n (x) = x n x n x < 0, > nestejnoměrně 98. f n (x) = nx +n x x < 0, > nestejnoměrně 99. f n (x) = x +n x x R stejnoměrně 00. f n (x) = x + n x x < 0, + > stejnoměrně 0. f n (x) = e n(x ) x (0, ) nestejnoměrně 0. f n (x) = arcotg nx x (0, + ) nestejnoměrně 03. f n (x) = x arcotg nx x (0, + ) stejnoměrně 5. Funkční řady Příklad 04 : Najděte obor konvergence řady u n (x), je-li 05. u n (x) = ln n x e < x < e 06. u n (x) = ( )n n+ ( x +x )n < 0, ) 07. u n (x) = +x n x R <, > 08. u n (x) = xn +x n x R {, }

23 09. u n (x) = ( )n+ x n 0. u n (x) = e nx x > x > 0 cos nx e nx. u n (x) = x > 0. u n (x) = (5 x ) n < x < 6 ln x 3. u n (x) = n x > e 4. u n (x) = n e nx x R {0} 5. u n (x) = xn x n Dokažte stejnoměrnou konvergenci 6. f n (x) = x +n 7. f n (x) = ( )n x+ n 8. f n (x) = x +n 4 x 9. f n (x) = sin nx 3 n4 +x 4 f n (x), je-li x < x R x 0 x R x R 0. f n (x) = nx +n 5 x x R. f n (x) = arcotg x x +n 3 x R. f n (x) = cos nx n 3. f n (x) = x sin(n x) +n 3 x 4 x R x 0 4. f n (x) = (arcotg x x +n ) x 0 5. f n (x) = ln( + x ) n, x a, a > 0 n ln n 6. f n (x) = sin( x n ) x x a, a > 0 n+ 7. f n (x) = sin( x n ) sin nx x +4n 8. f n (x) = n n! (x n + x n ) x R x 9. f n (x) = x e nx ε x a, (ε, a > 0, ε < a) 3

24 5.3 Mocniné řady Příklad 30 : Najděte poloměr konvergence řady ( ) n n n x n 5 n x 3n n n! n x n n 3 n (n 3 + )x n Najděte poloměr konvergence řady a n x n, je-li 35. a n = n e a n = n! 37. a n = (+i)n n n 38. a n = α n (0 < α < ) 39. a n = an n + bn n (a, b > 0) n 40. a n = 3 n + 4. a n = a n +b n (a, b > 0) 4. a n = ( ) n { n (n!) (n+)! }p min( a, b ) min(a, b) p 43. a n = ( )n n! ( n e )n 44. a n = a(a+)...(a+n )b(b+)...(b+n ) n!c(c+)...(c+n ) Najděte obor konvergence mocninné řady a n (x x 0 ) n, je-li 45. a n = n n, x 0 = < 0, > 4

25 46. a n = ( n 3n+ )n, x 0 = ( 7, ) 47. a n = ( )n n+, x 0 = 0 (, > 48. a n = 3 n3 n, x 0 = <, 4) n 49. a n = +3 n 3 +4n, x 0 = ( 3, ) 50. a n = 5n +( 3) n n+, x 0 = 0 < 5, 5 ) 5. a n = n+ ln 3n 3n+, x 0 = <, 0 > 5. a n = 3 n+ 3 n n, x 0 = 3 < 4, > 53. a n = n a, x 0 = 0, a > 0, a <, ) n 54. a n = 3, x n +n+ 0 = < 0, > Najděte rozvoj funkce f(x) v mocninou řadu 55. f(x) = e x 56. f(x) = cos x 57. f(x) = sin 3x sin 5x 58. f(x) = sin 3 x 59. f(x) = x (+x) 60. f(x) = 5x 4 x+ 6. f(x) = x x 3 +x 6. f(x) = ln x 5 ( ) n x n n! ; x R + ( ) n n (n)! xn ; x R ( ) n n (n)! ( 4n )x n ; x R ( ) n+ 3(3 n ) 4(n+)! x n+ ; x R ( ) n (n + )x n+ ; x (, ) + 4 7( ) n x n ; x (, ) n +( ) n 3 n+ 3 x n ; x (, ) n+ x n+ n+ ; x (, )

26 63. f(x) = ln 3 x +3x 64. f(x) = x ln 3 + {( 3 )n ( 3 )n } xn n ; x ( 3, 3 > 65. f(x) = + x + x f(x) = ( x ) 3 + n= (n )!! (n)!! x n ; x (, ) ( ) n (n 3)!! (n)!! x n ; x (, ) 67. f(x) = x x x f(x) = ( + x ) arcotg x x + Najděte rozvoj f(x) v mocninnou řadu 69. f(x) = ln(x + + x ) x f(x) = arcsin x 7. f(x) = arcotg x+3 x 3 7. f(x) = x x 73. f(x) = 74. f(x) = 75. f(x) = 4 x + π 4 + (n+)!! (n)!! x n ; x (, ) (n )!! n! x n+ ; x (, ) ( ) n+ 4n xn+ ; x <, > ( ) n (n )!! x n+ (n)!! n+ ; x <, > +x+x 3 x cos α x x cos α+x ln +x x + arcotg x (n )!! x n+ (n)!! n+ ; x <, > ( ) n+ 3 n+ x n+ n+ ; x < 3, 3 > 5 {( 5+ ) n+ + ( ) n ( 5 ) n+ }; x < 5 sin π(n+) 3 x n ; x (, ) x n cos nα; x (, ) x 4n+ 4n+ ; x (, ) 76. f(x) = x arcotg x ln + x ( ) n+ xn n(n ) ; x <, > 77. f(x) = x arcsin x + x + x + 6 (n )!! x n+ (n+)!! n+ ; x <, >

27 78. f(x) = ln(+x) +x 79. f(x) = ex x 80. f(x) = arcotg x 8. f(x) = e x sin x 8. f(x) = e x cos x ( ) n ( n )xn ; x (, ) u k! xn ; x (, ) k=0 ( ) n ( n )xn n ; x <, > n sin( nπ 4 ) n! x n ; x R 83. f(x) = ( arcsin x x ) Vypočtěte integrály x 84. e t dt x 0 x 0 x 0 sin t t dt dt t 4 t dt +t x x + ( ) n (n )!!x n+3 n cos( nπ 4 ) n! x n ; x R n+ (n!) (n+)! x n ; x ( ) n n!(n+) xn+ ; x R ( ) n x n+ (n+)(n+)! ; x R (n )!!x 4n+ (n)!!(4n+) ; x (, ) (n)!!(n+3) ; x <, > 6 Fourierovy řady Příklad 88 : Najděte Fourierovu řadu funkce f(x) na intervalu ( π, π), je-li 89. f(x) = x n+ sin nx ( ) n 7

28 90. f(x) = pro 0 x π f(x) = 0 pro π x 0 9. f(x) = x Výsledku využijte k sečtení řady π (n+) 9. f(x) = π x Výsledku využijte k sečtení řady 3 π f(x) = sign x Výsledku využijte k sečtení řady 94. f(x) = sin ax a Z 95. f(x) = cos ax a Z 96. f(x) = e ax a f(x) = q sin x q cos x+q q < π sinh aπ{ a + Najděte Fourierovu řadu funkce f(x), je-li + π 4 n, ( ) n+ n ( ) n n+ sin πa π sin πa π { ( ) n+ n 4 π a + sin(n )x n cos(n+)x (n+) ; π 8 cos nx; π 6, π sin(n )x n ; π 4 n+ n sin nx ( ) n a n a cos nx ( ) a n } ( ) n a +n (a cos nx n sin nx)} q n sin nx; zaveďte e ix = z 98. f(x) = π x, x (0, π) 99. f(x) = x, x (a, a + l) 300. f(x) = x, x (0, π) 30. f(x) = e ax, x ( h, h) a + l + l π sin nx n nπa π (sin l cos nπx l cos nπa l sin nπx l ) 4π sinh ah{ ah + ( ) f(x) = x cos x, x ( π, π ) π 303. f(x) = e x, x (0, π) 8 e π π { + cos nx n 4π sin nx n nπx nπx n ah cos( h ) n sin( h ) (ah) +(πn) } cos nx ( +n ( ) n+ n (4n ) sin nx n sin nx +n )}

29 Najděte Fourierovu řadu funkcí f n (x) = sin n x a g n (x) = cos n x pro n =, 3, 4, f (x) = cos x g (x) = + cos x 305. f 3 (x) = 3 4 sin x 4 sin 3x g3 (x) = 3 4 cos x + 4 cos 3x 306. f 4 (x) = 3 4 cos x + 8 cos 4x g4 (x) = cos x + 8 cos 4x 307. f 5 (x) = 5 8 sin x sin 3x 6 sin 5x g 5 (x) = 5 8 cos x cos 3x + 6 cos 5x Najděte Fourierovu řadu funkce f(x), je-li 308. f(x) = π 4 x, x (0, π) (kosinová řada) π 309. f(x) = x, x (0, π) (sinová řada) π cos(n+)x (n+) ( ) n+ { π n + n ( ) n } sin nx 30. f(x) = sin ax, a Z, x (0, π) (kosinová řada) 3. f(x) = cos ax, a Z, x (0, π) (sinová řada) cos(n+)x a (n+) pro a sudé a + cos nx a 4n }pro a liché 4a π 4a π { 4 π 8 π sin(n+)x a (n+) n sin nx a 4n pro a sudé pro a liché 3. f(x) = x( π x), x (0, π ) podle soustavy {cos(n )x}, n N (n ) { + 4( )n (n )π } cos(n )x {sin(n )x}, n N { ( )n (n ) + 8 (n ) } sin(n )x 3 Integrací Fourierova rozvoje funkce f(x) = x najděte rozvoj funkcí x, x 3, x 4, x 5 pro x ( π, π) 33. f(x) = x n+ sin nx ( ) 34. f(x) = x π n cos nx n ( ) n 9

30 35. f(x) = x 3 ( ) n 6 π n 36. f(x) = x 4 π ( ) n+ 6 π n n f(x) = x 5 ( ) n+ 0 0π n +π 4 n 4 n 5 n 3 sin nx cos nx sin nx 7 Limity, derivace a diferenciál funkcí více reálných proměnných Příklad 38 : Rozhodněte o spojitosti fce f v bodě 0, 0: 39. f(x, y) = x +y xy, f(0, 0) = 0 není spojitá 30. f(x, y) = ( + sin(x y)) ln x y, f(0, 0) = je spojitá Rozhodněte, zda fce f v bodě 0, 0 a ve směru (, ) roste nebo klesá 3. f(x, y) = (x + y ) sin x, fce roste 3. f(x, y) = tg y e x, fce klesá Najděte diferenciál funkce f v bodech 0, 0 a, 33. f(x, y) = df xy, f(0, 0) = 0 = 0dx + 0dy, df = x +y dx + 3 dy 8 Řešení funkcionálních rovnic, tečná rovina Příklad 34 : Pomocí věty o implicitní funkci zjistěte, jestli existuje jediné, spojité řešení y rovnice F (x, y) = 0 na okolí bodů A, B, C. Případně určete derivaci y v příslušném bodě. 30

31 35. F (x, y) = 3 x + y xy x 3y, A = 0, 3, B =,, C = 3, 0. A : y (0) = 5 3, B : Neex., C : Neex. 36. F (x, y) = x + 4y x + 6y + 3, A =,, B =,, C =, 0. A : Neex, B : y (0) = 0, C : Neex. 37. Určete parciální derivace prvního řádu funkce z = z(x, y) implicitně definované rovnicí z 3 3xyz 8 = 0 v bodě A = 0, 3. A : zx = 3, z y = 0, 38. Ke grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : 3x + y z = 0. 3(x ) + (y ) (z 3) = K nulové hladině funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y, z) = x + y + 3z, ϱ : x + 4y + 6z = 0. (x ) + 4(y ) + 6(z ) = 0, (x + ) + 4(y + ) + 6(z + ) = 0 9 Extrémy funkcí více proměnných Příklad 330 : 9. Optimalizační úlohy bez vazeb Najděte lokální extrémy funkce f 33. f(x, y) = x 4 + y 4 x xy y,,, min, 0, 0 sedlo 33. f(x, y) = x + xy + y 4 ln x 0 ln y, min 333. f(x, y) = x + y + z + x + 4y 6z,, 3 min 334. f(x, y) = xy + z(a x y 3z) a 5, a 0, a 0 sedlo 0, ±, ±, 0 sedla,,, (e) (e) 335. f(x, y) = xy ln(x + y ), min,,,, max (e) (e) (e) (e) (e) (e) 3

32 9. Optimalizační úlohy s vazbami Příklad 336 : Najděte lokální extrémy funkce f vzhledem k množině M 337. f(x, y) = x + xy + y, M : 4x + y = 5, 3, 4, 3, 4 max,, 3,, 3 min 338. f(x, y) = x y + z, M : x + y + z =, 3, 3, 3 max, 3, 3, 3 min 339. f(x, y) = xy + yz, M : x + y =, y + z =,,, max Najděte min. a max. hodnoty funkce f vzhledem k množině M 340. f(x, y) = x + y + z, M : x + y z, min, + max 34. f(x, y) = x + y + 3z, M : x + y + z 00, 0 min, 300 max 0 Vícenásobné integrály Příklad 34 : 0. Dvojné integrály 343. y e x dx dy y x y+ x y 6 x x y 4 S 347. S x+y+ x (+y) x y dx dy dx dy e4 + 5 e 0 5 dx dy, kde S je trojúhelník s vrcholy,, 5,, 4, ln ln 6 x dx dy, kde S je dána nerovnostmi x y, 4x + y

33 0. Trojné integrály 348. xy 3 z (+z ) dx dy dz, kde V je dána nerovnostmi, x + y z, 0 V x, 0 y ln x yz 3 dx dy dz, kde V je dána nerovnostmi 0 x, 0 y x, V 0 z xy dx dy dz, kde V je dána nerovnostmi x + y 3, 0 y, 0 x, V x+y 4+z 0 z 4 9 ln 35. xy (4+z) dx dy dz, kde V je dána nerovnostmi x + y 4z 6 0 V 35. V x yz dx dy dz, kde V je dána nerovnostmi 4x + y + z, x 0, y 0, z

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné . Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x

Více

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y

Více

8.4. Shrnutí ke kapitolám 7 a 8

8.4. Shrnutí ke kapitolám 7 a 8 8.4. Shrnutí ke kapitolám 7 a 8 Shrnutí lekce Úvodní 7. kapitola přinesla informace o druzích řešení diferenciálních rovnic prvního řádu a stručné teoretické poznatky o podmínkách existence a jednoznačnosti

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Obsah Obyčejné diferenciální rovnice

Obsah Obyčejné diferenciální rovnice Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................

Více

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III

Více

Kapitola 11: Lineární diferenciální rovnice 1/15

Kapitola 11: Lineární diferenciální rovnice 1/15 Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

Teorie. Hinty. kunck6am

Teorie. Hinty.   kunck6am kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, )

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, ) Matematická analýza, příklady na procvičení (Josef Tkadlec, 6.. 7) Reálná čísla. Určete maximum, minimum, supremum a infimum následujících množin: Z; b) M = (, ), 5 ; c) M =, Q; d) M = { + n : n N}; e)

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

Teorie. Hinty. kunck6am

Teorie. Hinty.   kunck6am kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F

+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F Příkad 1 ( y ) Dokažte, že funkce F (x, y) = x n f x 2, kde f je spojitě diferencovatelná funkce, vyhovuje vztahu x F x + 2y F y = nf ; x 0 Ukažte, že každá funkce F (x, y), která má spojité parciální

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

MATEMATIKA 2. Sbírka úloh. RNDr. Edita Kolářová, Ph.D. ÚSTAV MATEMATIKY

MATEMATIKA 2. Sbírka úloh. RNDr. Edita Kolářová, Ph.D. ÚSTAV MATEMATIKY MATEMATIKA Sbírka úloh RNDr. Edita Kolářová, Ph.D. ÚSTAV MATEMATIKY MATEMATIKA Sbírka úloh Úvod Dostali jste do rukou sbírku příkladů k přednášce Matematika. Tato sbírka je doplněním textu Matematika.

Více

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t. 1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co

Více

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v . a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x

Více

Matematika II: Pracovní listy do cvičení

Matematika II: Pracovní listy do cvičení Matematika II: Pracovní listy do cvičení Radomír Paláček, Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Příklady Integrální počet funkcí

Více

Matematická analýza 2 1

Matematická analýza 2 1 Matematická analýza 2 Obsah Diferenciální rovnice 3. Motivace....................... 3.2 Diferenciální rovnice. řádu............ 3.3 Metody řešení diferenciálních rovnic. řádu... 7.3. Ortogonální systémy

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému

0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému 2 1 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 x 1 2 Jméno a příjmení: ID.č. 9.5.2016 1. Řešte diferenciální rovnici: y + 2xy x 2 + 3 = sin x x 2 + 3. y = C cos x x 2 + 1 2. Vypočtěte z 2 e z dz, kde je křivka

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k), Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako

Více

rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y =

rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y = Cíle Přehled základních typů diferenciálních rovnic prvního řádu zakončíme pojednáním o lineárních rovnicích, které patří v praktických úlohách k nejfrekventovanějším. Ukážeme například, že jejich řešení

Více

Užití nekonečných řad při řešení obyčejných diferenciálních rovnic. Michal Ostřanský

Užití nekonečných řad při řešení obyčejných diferenciálních rovnic. Michal Ostřanský Užití nekonečných řad při řešení obyčejných diferenciálních rovnic Michal Ostřanský Bakalářská práce 2017 ABSTRAKT Cílem bakalářské práce je ukázat možnosti použití nekonečných řad při řešení obyčejných

Více

1 1 x 2. Jedná se o diferenciální rovnici se separovanými proměnnými, která má smysl pro x ±1 a

1 1 x 2. Jedná se o diferenciální rovnici se separovanými proměnnými, která má smysl pro x ±1 a . Řešené úlohy Příklad. (separace proměnných). Řešte počáteční úlohu y 2 + yy ( 2 ) = 0, y(0) = 2. Řešení. Rovnici přepíšeme do tvaru y 2 = yy ( 2 ) y = y2 y 2. Jedná se o diferenciální rovnici se separovanými

Více

f(x) = ln arcsin 1 + x 1 x. f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech f(x) = (sin x) x2 + 3 cos x

f(x) = ln arcsin 1 + x 1 x. f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech f(x) = (sin x) x2 + 3 cos x Příkad Nalezněte definiční obor funkce f(x) = ln arcsin + x x Určete definiční obor funkce f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech [;?] a Určete definiční obor

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Obyčejné diferenciální rovnice

Obyčejné diferenciální rovnice 1 Obyčejné diferenciální rovnice Příklad 0.1 (Motivační). Rychlost chladnutí hmotného bodu je přímo úměrná rozdílu jeho teploty minus teploty okolí. Předpokládejme teplotu bodu 30 o C v čase t = 0 a čase

Více

y H = c 1 e 2x + c 2 xe 2x, Partikularni reseni hledam metodou variace konstant ve tvaru c 1(x)e 2x + c 2(x)xe 2x = 0

y H = c 1 e 2x + c 2 xe 2x, Partikularni reseni hledam metodou variace konstant ve tvaru c 1(x)e 2x + c 2(x)xe 2x = 0 1 Urcete vsechna maximalni reseni: y + 4y + 4y = e 2x x + 1 Definicni obor: x 1, tj. resim na intervalech (, 1) a ( 1, ) Charakteristicky polynom λ 2 + 4λ + 4 ma dvojnasobny koren -2, tedy tvar homogenniho

Více

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2 Cvičení Lineární rovnice prvního řádu. Najděte řešení Cauchyovy úlohy x + x tg t = cos t, které vyhovuje podmínce xπ =. Máme nehomogenní lineární diferenciální rovnici prvního řádu. Funkce ht = tg t a

Více

Otázky k ústní zkoušce, přehled témat A. Číselné řady

Otázky k ústní zkoušce, přehled témat A. Číselné řady Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte

Více

Příklady pro předmět Aplikovaná matematika (AMA) část 1

Příklady pro předmět Aplikovaná matematika (AMA) část 1 Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1

Více

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

9.2. Zkrácená lineární rovnice s konstantními koeficienty

9.2. Zkrácená lineární rovnice s konstantními koeficienty 9.2. Zkrácená lineární rovnice s konstantními koeficienty Cíle Řešíme-li konkrétní aplikace, které jsou popsány diferenciálními rovnicemi, velmi často zjistíme, že fyzikální nebo další parametry (hmotnost,

Více

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek (2015) MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz

Více

Uzavřené a otevřené množiny

Uzavřené a otevřené množiny Teorie: Uzavřené a otevřené množiny 2. cvičení DEFINICE Nechť M R n. Bod x M nazveme vnitřním bodem množiny M, pokud existuje r > 0 tak, že B(x, r) M. Množinu všech vnitřních bodů značíme Int M. Dále,

Více

= 2x + y, = 2y + x 3. 2x + y = 0, x + 2y = 3,

= 2x + y, = 2y + x 3. 2x + y = 0, x + 2y = 3, V. Lokální extrémy. Příklad 1: Určete lokální extrémy zadané funkce. 1. f(x, y) = x 2 + y 2 + xy 3y 2. Definičním oborem funkce je množina Df = R 2 a funkce f má spojité parciální = 2x + y, = 2y + x 3.

Více

Matematika vzorce. Ing. Petr Šídlo. verze

Matematika vzorce. Ing. Petr Šídlo. verze Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............

Více

Separovatelné diferenciální rovnice

Separovatelné diferenciální rovnice Matematika 2, příklady na procvičení (Josef Tkadlec, 8. 6. 2009) Separovatelné diferenciální rovnice. Řešte diferenciální rovnici s počáteční podmínkou x = e x t, x() = 0. 2. Řešte diferenciální rovnici

Více

6. Lineární ODR n-tého řádu

6. Lineární ODR n-tého řádu 6. Lineární ODR n-tého řádu A. Obecná homogenní LODRn V předcházející kapitole jsme diferenciální rovnici (libovolného řádu) nazvali lineární, je-li tato rovnice lineární vzhledem ke hledané funkci y a

Více

Extrémy funkce dvou proměnných

Extrémy funkce dvou proměnných Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže

Více

Posloupnosti. n2 3n. lim. n4 + 2n. lim. n 1. n + n n. n! (n + 1)! n! lim. n ( 1)n! [1] lim. ln 2 n. lim. n n n sin n2 [0] lim. 2 n.

Posloupnosti. n2 3n. lim. n4 + 2n. lim. n 1. n + n n. n! (n + 1)! n! lim. n ( 1)n! [1] lim. ln 2 n. lim. n n n sin n2 [0] lim. 2 n. SBÍRKA PŘÍKLAŮ Z MATEMATICKÉ ANALÝZY III J. ANĚČEK, M. ZAHRANÍKOVÁ Symbolem jsou označeny obtížnější příklady. Posloupnosti Určete limitu posloupnosti n n + lim n n + 5n + lim n n n n4 + n lim n lim n

Více

2.3 Aplikace v geometrii a fyzice... 16

2.3 Aplikace v geometrii a fyzice... 16 Obsah Derivace 3 Integrály 7. Neurčité integrály.................. 7. Určité integrály................... 3.3 Aplikace v geometrii a fyzice............ 6 3 Diferenciální rovnice 8 3. Motivace.......................

Více

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx. Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál

Více

Kapitola 10: Diferenciální rovnice 1/14

Kapitola 10: Diferenciální rovnice 1/14 Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou

Více

5. cvičení z Matematiky 2

5. cvičení z Matematiky 2 5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými

Více

Zkouška ze Základů vyšší matematiky ZVMTA (LDF, ) 60 minut. Součet Koeficient Body

Zkouška ze Základů vyšší matematiky ZVMTA (LDF, ) 60 minut. Součet Koeficient Body Zkouška ze Základů vyšší matematiky ZVTA (LDF, 8.2.202) 60 minut 2 3 4 5 6 7 Jméno:................................. Součet Koeficient Body. [6 bodů] a) Definujte pojem primitivní funkce. Co musí platit,

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

má spojité parciální derivace druhého řádu ve všech bodech této množiny. Výpočtem postupně dostaneme: y = 9xy2 + 2,

má spojité parciální derivace druhého řádu ve všech bodech této množiny. Výpočtem postupně dostaneme: y = 9xy2 + 2, 4. Parciální derivace a diferenciál. řádu 0-a3b/4dvr.tex Příklad. Určete parciální derivace druhého řádu funkce f v obecném bodě a v daných bodech. Napište obecný tvar. diferenciálu, jeho hodnotu v daných

Více

VIDEOSBÍRKA DERIVACE

VIDEOSBÍRKA DERIVACE VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos 3x 3. Zderivuj funkci y = 3 e sin2 (x 2 ). Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.

Více

Derivace a monotónnost funkce

Derivace a monotónnost funkce Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních diferenciálních rovnic y = a (x)y + a (x)y + + a n (x)y n + f (x) y = a (x)y + a (x)y + + a n (x)y n + f (x). y n = a

Více

Diferenciální rovnice 3

Diferenciální rovnice 3 Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) 2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h

Více

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice 9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

9.3. Úplná lineární rovnice s konstantními koeficienty

9.3. Úplná lineární rovnice s konstantními koeficienty Úplná lineární rovnice s konstantními koeficienty Cíle Nyní přejdeme k řešení úplné lineární rovnice druhého řádu. I v tomto případě si nejprve ujasníme, v jakém tvaru můžeme očekávat řešení, poté se zaměříme

Více

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu [M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 7. prosince 2014 Předmluva

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

DIFERENCIÁLNÍ ROVNICE. Jana Řezníčková. Ústav matematiky Fakulta aplikované informatiky Univerzita Tomáše Bati ve Zlíně

DIFERENCIÁLNÍ ROVNICE. Jana Řezníčková. Ústav matematiky Fakulta aplikované informatiky Univerzita Tomáše Bati ve Zlíně DIFERENCIÁLNÍ ROVNICE Jana Řezníčková Ústav matematiky Fakulta aplikované informatiky Univerzita Tomáše Bati ve Zlíně Zlín, 2015 2 DIFERENCIÁLNÍ ROVNICE Jana Řezníčková Ústav matematiky FAI UTB ve Zlíně

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

5.3. Implicitní funkce a její derivace

5.3. Implicitní funkce a její derivace Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)

Více

Petr Hasil

Petr Hasil Základy Vyšší Matematiky Petr Hasil hasil@mendelu.cz Poznámka 1. Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny

Více

METODICKÝ NÁVOD MODULU

METODICKÝ NÁVOD MODULU Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název Základy matematiky modulu: Zkratka: ZM Počet kreditů: 4 Semestr: Z/L Mentor: Petr Dolanský Tutor: Petr Dolanský I OBSAH BALÍČKU STUDIJNÍCH

Více

Q(y) dy = P(x) dx + C.

Q(y) dy = P(x) dx + C. Cíle Naše nejbližší cíle spočívají v odpovědích na základní otázky, které si klademe v souvislosti s diferenciálními rovnicemi: 1. Má rovnice řešení? 2. Kolik je řešení a jakého jsou typu? 3. Jak se tato

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

VIDEOSBÍRKA DERIVACE

VIDEOSBÍRKA DERIVACE VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2

Více

MATEMATIKA 2. Sbírka úloh. RNDr. Edita Kolářová ÚSTAV MATEMATIKY

MATEMATIKA 2. Sbírka úloh. RNDr. Edita Kolářová ÚSTAV MATEMATIKY MATEMATIKA Sbírka úloh RNDr. Edita Kolářová ÚSTAV MATEMATIKY MATEMATIKA Sbírka úloh Úvod Dostali jste do rukou sbírku příkladů k přednášce Matematika. Tato sbírka je doplněním textu Matematika. Navazuje

Více

9.5. Soustavy diferenciálních rovnic

9.5. Soustavy diferenciálních rovnic Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li

Více

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky 6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R

Více

INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 2

INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 2 INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 2 Robert Mařík 5. října 2009 c Robert Mařík, 2009 Obsah 1 LDR druhého řádu 4 2 Homogenní LDR, lineární nezávislost a wronskián 9 3 Homogenní LDR s konstantními

Více

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6) 1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.

Více

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a řady. 28. listopadu 2015 Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj

Více

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

Lineární diferenciální rovnice 1. řádu verze 1.1

Lineární diferenciální rovnice 1. řádu verze 1.1 Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové

Více

Kapitola 7: Integrál. 1/17

Kapitola 7: Integrál. 1/17 Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený

Více

Kapitola 7: Neurčitý integrál. 1/14

Kapitola 7: Neurčitý integrál. 1/14 Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní

Více

2 Odvození pomocí rovnováhy sil

2 Odvození pomocí rovnováhy sil Řetězovka Abstrakt: Ukážeme si, že řetěz pověšený mezi dvěma body v homogenním gravitačním poli se prohne ve tvaru grafu funkce hyperbolický kosinus. Odvození provedeme dvojím způsobem: pomocí rovnováhy

Více

Napište rovnici tečné roviny ke grafu funkce f(x, y) = xy, která je kolmá na přímku. x = y + 2 = 1 z

Napište rovnici tečné roviny ke grafu funkce f(x, y) = xy, která je kolmá na přímku. x = y + 2 = 1 z Diferenciální počet příklad Napište rovnici tečné roviny ke grafu funkce fx, y) = xy, která je kolmá na přímku x + = y + = 1 z Řešení: Směrový vektor dané přímky je n p =, 1, 1). Na ploše dané rovnicí

Více

Diferenciální rovnice

Diferenciální rovnice Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT

Více

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Neurčitý integrál Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika BA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika BA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika BA0 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 005 () Určete rovnici kručnice o poloměru

Více

0.1 Obyčejné diferenciální rovnice prvního řádu

0.1 Obyčejné diferenciální rovnice prvního řádu 0.1 Obyčejné diferenciální rovnice prvního řádu 1 0.1 Obyčejné diferenciální rovnice prvního řádu Obyčejná diferenciální rovnice je rovnice, ve které se vyskytují derivace nebo diferenciály neznámé funkce

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o

Více

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0. Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo

Více