Ortogonální transformace a QR rozklady
|
|
- Stanislav Matějka
- před 6 lety
- Počet zobrazení:
Transkript
1 Ortogonální transformace a QR rozklady Petr Tichý 9. října
2 Úvod Unitární (ortogonální) transformace, Gram-Schmidtova ortogonalizace Příklad Schurovy věty unitární transformace nezvětšují chyby ve vstupních datech. Tato kapitola: základními dva typy unitárních transformací Givensovy rotace, Householderovy reflexe. Využití: (numericky stabilní) transformace matice na matici s předem zvolenou strukturou. Výpočet QR rozkladu široké použití. Gram-Schmidtova ortogonalizace, výpočetní náročnost, numerická stabilita. 2
3 Outline 1 Ortogonální projekce a ortogonální projektory 2 Givensovy rotace 3 Householderovy reflexe 4 QR rozklad 5 QR rozklad a Gram-Schmidtův ortogonalizační proces 6 Cena výpočtu QR rozkladu 7 Numerická stabilita QR rozkladu 8 Cvičení 3
4 Ortogonální projekce Libovolný x R n lze rozložit na součet ortogonálních vektorů x = x q + y tak, že x q leží v předem daném směru q a y, x q = 0. e j x x q q y e i 4
5 Ortogonální projekce vektoru x do směru q Dán q, q = 1. Hledáme rozklad vektoru x R n, x = x q + y takový, že x q leží v předem daném směru q a y q. 5
6 Ortogonální projekce vektoru x do směru q Dán q, q = 1. Hledáme rozklad vektoru x R n, x = x q + y takový, že x q leží v předem daném směru q a y q. Ukážeme, že x q = x, q q. x q nazveme ortogonální projekcí x do prostoru span{q}. 5
7 Ortogonální projekce vektoru x do směru q Dán q, q = 1. Hledáme rozklad vektoru x R n, x = x q + y takový, že x q leží v předem daném směru q a y q. Ukážeme, že x q = x, q q. x q nazveme ortogonální projekcí x do prostoru span{q}. Ekvivalentní zápis, x q = P q x, kde P q qq T. 5
8 Ortogonální projekce vektoru x do směru q Dán q, q = 1. Hledáme rozklad vektoru x R n, x = x q + y takový, že x q leží v předem daném směru q a y q. Ukážeme, že x q = x, q q. x q nazveme ortogonální projekcí x do prostoru span{q}. Ekvivalentní zápis, x q = P q x, kde P q qq T. P q je čtvercová symetrická matice řádu n, P q : x P q x span{q}, x P q x span{q}. Říkáme: P q projektuje x do prostoru generovaného bází {q}. 5
9 Ortogonální projekce vektoru do podprostoru Uvažujme ortonormální soubor vektorů {q 1,..., q m } R n, Q span{q 1,..., q m }, Q [q 1,..., q m ] R n m. 6
10 Ortogonální projekce vektoru do podprostoru Uvažujme ortonormální soubor vektorů {q 1,..., q m } R n, Q span{q 1,..., q m }, Q [q 1,..., q m ] R n m. Dán x R n, hledáme rozklad x na složky x = x Q + y, x Q Q, y Q. 6
11 Ortogonální projekce vektoru do podprostoru Uvažujme ortonormální soubor vektorů {q 1,..., q m } R n, Q span{q 1,..., q m }, Q [q 1,..., q m ] R n m. Dán x R n, hledáme rozklad x na složky x = x Q + y, x Q Q, y Q. x Q nazveme ortogonální projekcí x do Q. Platí x Q = P Q x, kde P Q QQ T. 6
12 Ortogonální projekce vektoru do podprostoru Uvažujme ortonormální soubor vektorů {q 1,..., q m } R n, Q span{q 1,..., q m }, Q [q 1,..., q m ] R n m. Dán x R n, hledáme rozklad x na složky x = x Q + y, x Q Q, y Q. x Q nazveme ortogonální projekcí x do Q. Platí x Q = P Q x, kde P Q QQ T. P Q je čtvercová symetrická matice hodnosti m, projektuje libovolný x do prostoru Q. 6
13 Ortogonální projektory Definice: Ortogonální projektor je lineární operátor P, který je symetrický a idempotentní (P T = P a P 2 = P). 7
14 Ortogonální projektory Definice: Ortogonální projektor je lineární operátor P, který je symetrický a idempotentní (P T = P a P 2 = P). Matice P Q je ortogonálním projektorem. 7
15 Ortogonální projektory Definice: Ortogonální projektor je lineární operátor P, který je symetrický a idempotentní (P T = P a P 2 = P). Matice P Q je ortogonálním projektorem. Vektor y = x x Q lze psát ve tvaru x x Q = Π Q x, kde Π Q I QQ T = I P Q. 7
16 Ortogonální projektory Definice: Ortogonální projektor je lineární operátor P, který je symetrický a idempotentní (P T = P a P 2 = P). Matice P Q je ortogonálním projektorem. Vektor y = x x Q lze psát ve tvaru x x Q = Π Q x, kde Π Q I QQ T = I P Q. Π Q je ortogonálním projektorem do prostoru Q. Π Q se nazývá projektor komplementární k projektoru P Q. 7
17 Outline 1 Ortogonální projekce a ortogonální projektory 2 Givensovy rotace 3 Householderovy reflexe 4 QR rozklad 5 QR rozklad a Gram-Schmidtův ortogonalizační proces 6 Cena výpočtu QR rozkladu 7 Numerická stabilita QR rozkladu 8 Cvičení 8
18 Givensovy rotace vr n Úloha vr 2 Chceme sestrojit matici G(ϕ) R 2 2, která realizuje pootočení libovolného vektoru x o úhel ϕ proti směru hodinových ručiček. Zapíšeme-li vektor x v bázi {e 1, e 2 }, x = [ ξ1 ξ 2 ] = ξ 1 [ 1 0 ] + ξ 2 [ 0 1 je možné vektor G(ϕ)x vyjádřit ve tvaru ] = ξ 1 e 1 + ξ 2 e 2, G(ϕ)x = ξ 1 (G(ϕ) e 1 ) + ξ 2 (G(ϕ) e 2 ). 9
19 Givensovy rotace vr n Úloha vr 2 Chceme sestrojit matici G(ϕ) R 2 2, která realizuje pootočení libovolného vektoru x o úhel ϕ proti směru hodinových ručiček. Zapíšeme-li vektor x v bázi {e 1, e 2 }, x = [ ξ1 ξ 2 ] = ξ 1 [ 1 0 ] + ξ 2 [ 0 1 je možné vektor G(ϕ)x vyjádřit ve tvaru ] = ξ 1 e 1 + ξ 2 e 2, G(ϕ)x = ξ 1 (G(ϕ) e 1 ) + ξ 2 (G(ϕ) e 2 ). Otáčí-li G(ϕ) bázové vektory e 1 a e 2 o úhel ϕ, otáčí i libovolný vektor x o úhel ϕ. 9
20 Rotace jednotkových vektorů o úhel ϕ 0 10
21 Matice Givensovy rotace vr 2 G(ϕ) [ 1 0 ] = [ cos ϕ sin ϕ ], G(ϕ) [ 0 1 ] = [ sin ϕ cos ϕ ], tj. [ cos ϕ sin ϕ G(ϕ) = sin ϕ cos ϕ ] Matice G(ϕ) se nazývá matice Givensovy rotace. 11
22 Matice Givensovy rotace vr 2 G(ϕ) [ 1 0 ] = [ cos ϕ sin ϕ ], G(ϕ) [ 0 1 ] = [ sin ϕ cos ϕ ], tj. [ cos ϕ sin ϕ G(ϕ) = sin ϕ cos ϕ ] Matice G(ϕ) se nazývá matice Givensovy rotace. Použití: Jsou-li v R 2 dány vektory x a y, x = y 0. Potom y lze získat pootočením x, y = G(ϕ)x. 11
23 Matice Givensovy rotace vr n Elementární Givensova rotace Rotaci v rovině dané dvojicí jednotkových vektorů {e i, e j }, i < j, o úhel ϕ ve směru od e i k e j lze realizovat pomocí 1 G i,j (ϕ) =... 1 cos ϕ 1 sin ϕ... 1 sin ϕ cos ϕ
24 Matice Givensovy rotace vr n Vlastnosti je ortonormální, det(g i,j (ϕ)) = 1 (cvičení). G i,j (ϕ)x modifikuje pouze i-tý a j-tý prvek vektoru x = [ξ 1,..., ξ n ] T, G i,j (ϕ) x = ξ 1. ξ i cos ϕ ξ j sin ϕ. ξ i sin ϕ + ξ j cos ϕ. ξ n i-tý řádek j-tý řádek. 13
25 Nulování prvků vektoru pomocí Givensových rotací Nulování vr 2 Požadujeme, aby platilo [ cos ϕ sin ϕ y = G(ϕ) x = sin ϕ cos ϕ ] [ ξ1 ξ 2 ] = [ ± ξ1 2 + ξ2 2 0 ]. 14
26 Nulování prvků vektoru pomocí Givensových rotací Nulování vr 2 Požadujeme, aby platilo [ cos ϕ sin ϕ y = G(ϕ) x = sin ϕ cos ϕ ] [ ξ1 ξ 2 ] = [ ± ξ1 2 + ξ2 2 0 ]. Ze vztahu dostaneme ξ 1 sin ϕ + ξ 2 cos ϕ = 0 sin ϕ = ξ 2 ξ ξ2 2, Ověření cos ϕ = ± ξ 1 ξ ξ
27 Nulování prvků vektoru pomocí Givensových rotací Nulování vr n Úloha: vynulovat n 1 složek vektoru x R n, x ± x e 1. 15
28 Nulování prvků vektoru pomocí Givensových rotací Nulování vr n Úloha: vynulovat n 1 složek vektoru x R n, x ± x e 1. Opakovaně aplikujeme elementární Givensovy rotace: x = ± x 0. 0 = y. Nulujeme prvky na pozicích n, n 1,..., 2 (volíme např. roviny rotace span{e 1, e n },..., span{e 1, e 2 }) 15
29 Nulování prvků vektoru pomocí Givensových rotací Formalizace Označíme-li jednotlivé elementární Givensovy rotace jako G 1,2,..., G 1,n 1, G 1,n, potom y = Γx, kde Γ G 1,2... G 1,n 1 G 1,n. Matici Γ budeme nazývat složenou Givensovou rotací. 16
30 Nulování prvků vektoru pomocí Givensových rotací Formalizace Označíme-li jednotlivé elementární Givensovy rotace jako G 1,2,..., G 1,n 1, G 1,n, potom y = Γx, kde Γ G 1,2... G 1,n 1 G 1,n. Matici Γ budeme nazývat složenou Givensovou rotací. Prvky nemusíme nutně nulovat v pořadí, které jsme naznačili. 16
31 Nulování prvků vektoru pomocí Givensových rotací Formalizace Označíme-li jednotlivé elementární Givensovy rotace jako G 1,2,..., G 1,n 1, G 1,n, potom y = Γx, kde Γ G 1,2... G 1,n 1 G 1,n. Matici Γ budeme nazývat složenou Givensovou rotací. Prvky nemusíme nutně nulovat v pořadí, které jsme naznačili. Násobení elementárních (tedy i složených) Givensových rotací není obecně komutativní (cvičení). 16
32 Outline 1 Ortogonální projekce a ortogonální projektory 2 Givensovy rotace 3 Householderovy reflexe 4 QR rozklad 5 QR rozklad a Gram-Schmidtův ortogonalizační proces 6 Cena výpočtu QR rozkladu 7 Numerická stabilita QR rozkladu 8 Cvičení 17
33 Nulování prvků vektoru pomocí Householderových reflexí Nulování vr n Druhá základní unitární transformace je Householderova reflexe (zrcadlení, odraz). 18
34 Nulování prvků vektoru pomocí Householderových reflexí Nulování vr n Druhá základní unitární transformace je Householderova reflexe (zrcadlení, odraz). Úloha: Nechť je v R n dána nadrovina dimenze n 1, kterou popíšeme jejím normálovým vektorem q, q = 1, a nechť je dán vektor x R n. H(q) {z R n : z q}, 18
35 Nulování prvků vektoru pomocí Householderových reflexí Nulování vr n Druhá základní unitární transformace je Householderova reflexe (zrcadlení, odraz). Úloha: Nechť je v R n dána nadrovina dimenze n 1, kterou popíšeme jejím normálovým vektorem q, q = 1, a nechť je dán vektor x R n. H(q) {z R n : z q}, Cíl: nalézt zrcadlový obraz vektoru x podle nadroviny H(q) (nadrovinu H(q) nazveme nadrovinou zrcadlení). 18
36 Zrcadlení x q x 0 q x x q y = x 2x q x q = (qq T ) x, y = (x x q ) x q = x 2x q = (I 2qq T ) x. 19
37 Matice Householderovy reflexe Nechť q R n a q = 1. Pak matici H(q) = I 2qq T R n n nazýváme maticí Householderovy reflexe vzhledem k nadrovině H(q) definované normálovým vektorem q. 20
38 Matice Householderovy reflexe Nechť q R n a q = 1. Pak matici H(q) = I 2qq T R n n nazýváme maticí Householderovy reflexe vzhledem k nadrovině H(q) definované normálovým vektorem q. Vlastnosti: H(q) je ortonormální a symetrická, platí H 2 (q) = I, det(h(q)) = 1 (cvičení). 20
39 Zrcadlení x na y pomocí Householderovy reflexe Úloha: Dány x a y stejné délky, nalézt H tak, aby y = Hx. 21
40 Zrcadlení x na y pomocí Householderovy reflexe Úloha: Dány x a y stejné délky, nalézt H tak, aby y = Hx. Zrcadlení x na ±y vr n Nechť jsou dány dva různé vektory x R n a y R n, x = y, a nechť q 1 x y x y, q 2 x + y x + y. Potom H(q 1 )x = y, H(q 2 )x = y. 21
41 Zrcadlení x na y pomocí Householderovy reflexe Úloha: Dány x a y stejné délky, nalézt H tak, aby y = Hx. Zrcadlení x na ±y vr n Nechť jsou dány dva různé vektory x R n a y R n, x = y, a nechť q 1 x y x y, q 2 x + y x + y. Potom H(q 1 )x = y, H(q 2 )x = y. Důkaz: Vektor x y je kolmý k nadrovině zrcadlení vektoru x na vektor y. Podobně, vektor x + y je kolmý k nadrovině zrcadlení vektoru x na vektor y. 21
42 Nulování prvků vektoru pomocí Householderových reflexí Dán x R n a Hledáme H. y = ± x e 1. 22
43 Nulování prvků vektoru pomocí Householderových reflexí Dán x R n a Hledáme H. y = ± x e 1. Dle předchozího, pro q 1 = x x e 1 x x e 1, q 2 = x + x e 1 x + x e 1 je H(q 1 )x = x e 1, H(q 2 )x = x e 1. 22
44 Nulování prvků vektoru pomocí Householderových reflexí Dán x R n a Hledáme H. y = ± x e 1. Dle předchozího, pro q 1 = x x e 1 x x e 1, q 2 = x + x e 1 x + x e 1 je H(q 1 )x = x e 1, H(q 2 )x = x e 1. Je lepší zvolit q 1 nebo q 2? 22
45 Nulování prvků vektoru pomocí Householderových reflexí Volba vektoru q x ± x e 1 = ξ 1 ± x ξ 2. ξ n Pokud ξ 1 0, ξ 1 x, potom při odečítání ξ 1 x může dojít k vyrušení platných číslic. Navíc, ξ 1 x e 1 0, dělíme malou normou relativní zvětšení chyby vypočteného vektoru ve srovnání s chybou obsaženou v x. 23
46 Nulování prvků vektoru pomocí Householderových reflexí Volba vektoru q x ± x e 1 = ξ 1 ± x ξ 2. ξ n Pokud ξ 1 0, ξ 1 x, potom při odečítání ξ 1 x může dojít k vyrušení platných číslic. Navíc, ξ 1 x e 1 0, dělíme malou normou relativní zvětšení chyby vypočteného vektoru ve srovnání s chybou obsaženou v x. Kvůli numerické stabilitě, pokud ξ 1 0 pak q x + x e 1 x + x e 1. 23
47 Nulování prvků vektoru pomocí Householderových reflexí Volba vektoru q x ± x e 1 = ξ 1 ± x ξ 2. ξ n Pokud ξ 1 0, ξ 1 x, potom při odečítání ξ 1 x může dojít k vyrušení platných číslic. Navíc, ξ 1 x e 1 0, dělíme malou normou relativní zvětšení chyby vypočteného vektoru ve srovnání s chybou obsaženou v x. Kvůli numerické stabilitě, pokud ξ 1 0 pak q x + x e 1 x + x e 1. Analogicky pro ξ 1 < 0 volíme q = x x e 1 x x e 1. 23
48 Outline 1 Ortogonální projekce a ortogonální projektory 2 Givensovy rotace 3 Householderovy reflexe 4 QR rozklad 5 QR rozklad a Gram-Schmidtův ortogonalizační proces 6 Cena výpočtu QR rozkladu 7 Numerická stabilita QR rozkladu 8 Cvičení 24
49 QR rozklad Nechť A C n m je obecně obdélníková matice. Rozklad A = QR, kde Q je matice s ortonormálními sloupci (Q Q = I) a R má všechny prvky pod hlavní diagonálou nulové, nazveme QR rozkladem matice A. Pro n > m může QR rozklad vypadat schematicky jako A Q R = kde Q C n n a R C n m. 0, 25
50 QR rozklad Vynecháním posledních n m nulových řádků matice R a příslušných sloupců Q dostaneme A Q R = 0, kde Q C n m a R C m m. Tomuto QR rozkladu, jehož uložení vyžaduje méně paměťového místa než v prvním případě, se říká ekonomický QR rozklad. 26
51 QR rozklad Vynecháním posledních n m nulových řádků matice R a příslušných sloupců Q dostaneme A Q R = 0, kde Q C n m a R C m m. Tomuto QR rozkladu, jehož uložení vyžaduje méně paměťového místa než v prvním případě, se říká ekonomický QR rozklad. Pro n m má QR rozklad, schematicky, tvar A Q R = kde Q C n n a R C n m. 0, 26
52 Obecně o QR rozkladu Lze použít k numerickému řešení mnoha problémů, například problémů nejmenších čtverců Ax b nebo Ax = b. Ax = b, kde A C n n je regulární matice, Ax = b QRx = b, QRx = QQ b, Rx = Q b. Díky ortogonalitě bývá výpočet numericky stabilnější než při použití jiných druhů rozkladů (LU rozklad). Problém pro velké řídké matice požadavek ortogonality ztráta řídkosti. Algoritmů pro výpočet QR rozkladu je několik. 27
53 QR rozklad užitím Givensových rotací I A C n m, A = [a 1,..., a m ]. Cíl: vynulování všech prvků pod hlavní diagonálou za použití Givensových rotací, získáme Givensův QR rozklad. 28
54 QR rozklad užitím Givensových rotací I A C n m, A = [a 1,..., a m ]. Cíl: vynulování všech prvků pod hlavní diagonálou za použití Givensových rotací, získáme Givensův QR rozklad. Symbolem Γ 1 označíme složenou Givensovu rotaci, která realizuje transformaci a 1,1 r 1,1 a 2,1 0 a 1 =. a n,1. 0 = Γ 1a 1 r 1. 28
55 QR rozklad užitím Givensových rotací II Aplikujeme-li Γ 1 na A, dostaneme (r 1,1 = 0 a 1 = 0) 0 A = 0 = Γ 1 A A (1),
56 QR rozklad užitím Givensových rotací II Aplikujeme-li Γ 1 na A, dostaneme (r 1,1 = 0 a 1 = 0) 0 A = 0 = Γ 1 A A (1), 0 0 Nyní nulujeme poddiagonální prvky druhého sloupce matice A (1) = [r 1, a (1) 2,..., a(1) m ], aplikujeme n 2 rotací, a (1) 1,2 a (1) a (1) 1,2 2,2 r 2,2 a (1) a (1) 0 3,2 2 = = Γ 2 a (1) 2 r 2.. a (1) n,
57 QR rozklad užitím Givensových rotací III Aplikací složené rotace Γ 2 na matici A (1) = Γ 1 A dostaneme A (1) = = Γ 2 Γ 1 A A (2). 30
58 QR rozklad užitím Givensových rotací III Aplikací složené rotace Γ 2 na matici A (1) = Γ 1 A dostaneme A (1) = = Γ 2 Γ 1 A A (2). V k-tém kroku, k < min{m, n}, konstruujeme složenou rotaci tak, aby nulovala n k poddiagonálních prvků sloupce a (k 1) k. Příslušná složená rotace Γ k je blokově diagonální se dvěma bloky, kde první blok je jednotková matice řádu k 1. 30
59 QR rozklad užitím Givensových rotací III Aplikací složené rotace Γ 2 na matici A (1) = Γ 1 A dostaneme A (1) = = Γ 2 Γ 1 A A (2). V k-tém kroku, k < min{m, n}, konstruujeme složenou rotaci tak, aby nulovala n k poddiagonálních prvků sloupce a (k 1) k. Příslušná složená rotace Γ k je blokově diagonální se dvěma bloky, kde první blok je jednotková matice řádu k 1. r k,k = 0 je-li k-tý sloupec matice A lineární kombinací předchozích k 1 sloupců matice A (cvičení). 30
60 QR rozklad užitím Givensových rotací IV Poslední transformační maticí Γ m 1 pro n > m resp. Γ n 1 pro n m Případ n > m, platí 0 A (m 2) = A (m 1) = Γ m 1... Γ 1 A. = A (m 1) R. 31
61 QR rozklad užitím Givensových rotací IV Poslední transformační maticí Γ m 1 pro n > m resp. Γ n 1 pro n m Případ n > m, platí 0 A (m 2) = A (m 1) = Γ m 1... Γ 1 A. = A (m 1) R. Γ i jsou unitární součin je také unitární matice. Označíme-li Q Γ 1 Γ 2... Γ m 1, platí A = QR. 31
62 Existence a jednoznačnost QR rozkladu Existence Konstrukcí jsme získali rozklad typu A Q = R 0, resp. A = Q R 0, kde Q C n n a R C n m. Existence QR rozkladu (i ekonomického) plyne z konstrunkce. 32
63 Existence a jednoznačnost QR rozkladu Jednoznačnost Není obecně jednoznačný: diagonální D, D D = I, platí A = QR = (QD )(DR) = Q R. Povolíme-li na diagonále R jen kladné prvky jednoznačnost. 33
64 Existence a jednoznačnost QR rozkladu Jednoznačnost Není obecně jednoznačný: diagonální D, D D = I, platí A = QR = (QD )(DR) = Q R. Povolíme-li na diagonále R jen kladné prvky jednoznačnost. Jednoznačnost QR rozkladu Nechť A C n m, n m, je matice s lineárně nezávislými sloupci. Pak existuje jediná dvojice matic Q C n m a R C m m taková, že Q má ortonormální sloupce a R je horní trojúhelníková matice s kladnými diagonálními prvky a přitom A = QR. 33
65 QR rozklad pomocí Householderových reflexí Householderův QR rozklad konstrukčně stejný jako Givensův, pro n > m transformujeme A C n m A H 1 A... H m 1... H 2 H 1 A R, kde H k je blokově diagonální matice, první blok je jednotková matice řádu k 1, druhý blok je matice Householderovy reflexe nulující poddiagonální prvky aktuálního k-tého sloupce. Označme Q H 1 H 2... H m 1 A = QR. Analogicky QR rozklad matice A C n m pro n m. 34
66 Outline 1 Ortogonální projekce a ortogonální projektory 2 Givensovy rotace 3 Householderovy reflexe 4 QR rozklad 5 QR rozklad a Gram-Schmidtův ortogonalizační proces 6 Cena výpočtu QR rozkladu 7 Numerická stabilita QR rozkladu 8 Cvičení 35
67 QR rozklad a Gram-Schmidtův ortogonalizační proces Pro jednoduchost případ n > m a podprostor C n generovaný lineárně nezávislými vektory {a 1,..., a m }. Gram-Schmidtův ortogonalizační proces spočte ortonormální bázi {q 1,..., q m } takovou, že span{a 1,..., a k } = span{q 1,..., q k }, k = 1,..., m. 36
68 QR rozklad a Gram-Schmidtův ortogonalizační proces Pro jednoduchost případ n > m a podprostor C n generovaný lineárně nezávislými vektory {a 1,..., a m }. Gram-Schmidtův ortogonalizační proces spočte ortonormální bázi {q 1,..., q m } takovou, že span{a 1,..., a k } = span{q 1,..., q k }, k = 1,..., m. k = 1: q 1? span{a 1 } = span{q 1 } a q 1 = 1 q 1 = a 1 a 1. Označme r 1,1 = a 1. 36
69 QR rozklad a Gram-Schmidtův ortogonalizační proces Pro jednoduchost případ n > m a podprostor C n generovaný lineárně nezávislými vektory {a 1,..., a m }. Gram-Schmidtův ortogonalizační proces spočte ortonormální bázi {q 1,..., q m } takovou, že span{a 1,..., a k } = span{q 1,..., q k }, k = 1,..., m. k = 1: q 1? span{a 1 } = span{q 1 } a q 1 = 1 q 1 = a 1 a 1. Označme r 1,1 = a 1. k = 2: q 2? span{a 1, a 2 } = span{q 1, q 2 }, q 2 q 1, q 2 = 1. Odečteme projekce a 2 ve směru q 1 a normalizujeme, z = (I q 1 q 1 ) a 2 = a 2 (q 1 a 2)q 1, r 2,2 = z, q 2 = z/r 2,2. 36
70 Gram-Schmidtův ortogonalizační proces k-tý krok obecné k: odečteme od a k projekci na prostor generovaný sloupci [q 1,..., q k 1 ] = Q k 1 a normalizujeme k 1 z = (I Q k 1 Q k 1) a k = a k (qi a k )q i r k,k = z q k = z/r k,k. i=1 37
71 Gram-Schmidtův ortogonalizační proces k-tý krok obecné k: odečteme od a k projekci na prostor generovaný sloupci [q 1,..., q k 1 ] = Q k 1 a normalizujeme k 1 z = (I Q k 1 Q k 1) a k = a k (qi a k )q i r k,k = z q k = z/r k,k. i=1 Proveditelnost: Jelikož jsou vektory a 1,..., a m lineárně nezávislé, je vektor z vždy nenulový, a tudíž r k,k 0, k = 1,..., m. 37
72 Gram-Schmidtův ortogonalizační proces k-tý krok obecné k: odečteme od a k projekci na prostor generovaný sloupci [q 1,..., q k 1 ] = Q k 1 a normalizujeme k 1 z = (I Q k 1 Q k 1) a k = a k (qi a k )q i r k,k = z q k = z/r k,k. i=1 Proveditelnost: Jelikož jsou vektory a 1,..., a m lineárně nezávislé, je vektor z vždy nenulový, a tudíž r k,k 0, k = 1,..., m. Dosadíme-li za z vektor r k,k q k a označíme-li r i,k = q i a k, k 1 a k = r i,k q i + r k,k q k, k = 1,..., m. i=1 37
73 Gram-Schmidtův ortogonalizační proces QR rozklad Po rozepsání a 1 = r 1,1 q 1 a 2 = r 1,2 q 1 + r 2,2 q 2. a m = r 1,m q 1 + r 2,m q r m,m q m. 38
74 Gram-Schmidtův ortogonalizační proces QR rozklad Po rozepsání a 1 = r 1,1 q 1 a 2 = r 1,2 q 1 + r 2,2 q 2. a m = r 1,m q 1 + r 2,m q r m,m q m. S označením A = [a 1,..., a m ], Q = [q 1,..., q m ] a r 1,1 r 1,2 r 1,m 0 r 2,2 r 2,m R Cm m 0 0 r m,m dostáváme A = QR 38
75 Gram-Schmidtův ortogonalizační proces QR rozklad komentáře Narozdíl od QR rozkladu spočteného pomocí rotací či reflexí rozměr Q je n m, R má rozměr m m, pro n > m máme přímo ekonomický QR rozklad. 39
76 Gram-Schmidtův ortogonalizační proces QR rozklad komentáře Narozdíl od QR rozkladu spočteného pomocí rotací či reflexí rozměr Q je n m, R má rozměr m m, pro n > m máme přímo ekonomický QR rozklad. Gram-Schmidtův ortogonalizační proces vzhledem k obecnému skalárnímu součinu, : k 1 z = a k a k, q i q i, r k,k = q k = z/r k,k. i=1 z, z, {q 1,..., q k } je ortonormální báze prostoru span{a 1,..., a k }. 39
77 Implementace Gram-Schmidtova procesu Klasický Gram-Schmidtův algoritmus Gram-Schmidtův proces lze zapsat několika matematicky ekvivalentními způsoby. Dvě základní varianty klasický a modifikovaný algoritmus. 40
78 Implementace Gram-Schmidtova procesu Klasický Gram-Schmidtův algoritmus Gram-Schmidtův proces lze zapsat několika matematicky ekvivalentními způsoby. Dvě základní varianty klasický a modifikovaný algoritmus. Výpočet vektoru z v k-tém kroku lze zapsat ve tvaru kde ortogonální projektor k 1 z = (I q i qi ) a k C Q a k, i=1 k 1 C Q = I q i qi = I Q k 1Q k 1 i=1 je komplementárním projektorem k projektoru Q k 1 Q k 1. 40
79 Implementace Gram-Schmidtova procesu Klasický Gram-Schmidtův algoritmus Gram-Schmidtův proces lze zapsat několika matematicky ekvivalentními způsoby. Dvě základní varianty klasický a modifikovaný algoritmus. Výpočet vektoru z v k-tém kroku lze zapsat ve tvaru kde ortogonální projektor k 1 z = (I q i qi ) a k C Q a k, i=1 k 1 C Q = I q i qi = I Q k 1Q k 1 i=1 je komplementárním projektorem k projektoru Q k 1 Q k 1. Tento zápis umožňuje paralelní implementaci. 40
80 Klasický Gram-Schmidtův algoritmus (CGS) Operátor C Q input A = [a 1,..., a m ] r 11 := a 1 q 1 := a 1 /r 11 Q 1 := [q 1 ] for k = 2 : m do z := a k [r 1,k,..., r k 1,k ] T := Q k 1 z z := z Q k 1 [r 1,k,..., r k 1,k ] T r kk := z q k := z/r kk Q k := [Q k 1, q k ] end for 41
81 Implementace Gram-Schmidtova procesu Modifikovaný Gram-Schmidtův algoritmus Z ortonormality vektorů q 1,..., q k 1 plyne (cvičení) k 1 I q i qi } i=1 {{ } C Q = (I q k 1 qk 1)... (I q 2 q2)(i q 1 q1). }{{} M Q Vektor z = C Q a k lze tedy ekvivalentně spočít pomocí z = M Q a k = (I q k 1 q k 1 )... (I q 2q 2 )(I q 1q 1 ) a k. Implementace využívající M Q je sekvenční z 1 = a k z 2 = z 1 (q1 z 1) q 1,. z k = z k 1 (q k 1z k 1 ) q k 1. 42
82 Modifikovaný Gram-Schmidtův algoritmus (MGS) Operátor M Q input A = [a 1,..., a m ] r 11 := a 1 q 1 := a 1 /r 11 Q 1 := [q 1 ] for k = 2 : m do z := a k for i = 1 : k 1 do r ik := q i z z := z r ik q i end for r kk := z q k := z/r kk Q k := [Q k 1, q k ] end for 43
83 Iterační zpřesnění Vztahy používající C Q a M Q jsou matematicky ekvivalentní. Vedou však na algoritmy s různými numerickými vlastnostmi. 44
84 Iterační zpřesnění Vztahy používající C Q a M Q jsou matematicky ekvivalentní. Vedou však na algoritmy s různými numerickými vlastnostmi. CGS počítá méně přesněji, u MGS jsou chyby vznikající při výpočtu z částečně eliminovány, výpočet r i,k := q i z následuje až po výpočtu aktualizace. 44
85 Iterační zpřesnění Vztahy používající C Q a M Q jsou matematicky ekvivalentní. Vedou však na algoritmy s různými numerickými vlastnostmi. CGS počítá méně přesněji, u MGS jsou chyby vznikající při výpočtu z částečně eliminovány, výpočet r i,k := q i z následuje až po výpočtu aktualizace. Ortogonalizační krok můžeme opakovat CGS a MGS s iteračním zpřesněním ICGS, IMGS. 44
86 Iterační zpřesnění Vztahy používající C Q a M Q jsou matematicky ekvivalentní. Vedou však na algoritmy s různými numerickými vlastnostmi. CGS počítá méně přesněji, u MGS jsou chyby vznikající při výpočtu z částečně eliminovány, výpočet r i,k := q i z následuje až po výpočtu aktualizace. Ortogonalizační krok můžeme opakovat CGS a MGS s iteračním zpřesněním ICGS, IMGS. ICGS si zachovává hlavní výhodu CGS velmi dobře se paralelizuje a navíc redukuje ztrátu ortogonality díky opakované ortogonalizaci. 44
87 Iterační zpřesnění Vztahy používající C Q a M Q jsou matematicky ekvivalentní. Vedou však na algoritmy s různými numerickými vlastnostmi. CGS počítá méně přesněji, u MGS jsou chyby vznikající při výpočtu z částečně eliminovány, výpočet r i,k := q i z následuje až po výpočtu aktualizace. Ortogonalizační krok můžeme opakovat CGS a MGS s iteračním zpřesněním ICGS, IMGS. ICGS si zachovává hlavní výhodu CGS velmi dobře se paralelizuje a navíc redukuje ztrátu ortogonality díky opakované ortogonalizaci. Pro dosažení maximální přesnosti (ztráty ortogonality na úrovni úměrné strojové přesnosti) stačí jediné opakování ortogonalizace. 44
88 Iterační zpřesnění Vztahy používající C Q a M Q jsou matematicky ekvivalentní. Vedou však na algoritmy s různými numerickými vlastnostmi. CGS počítá méně přesněji, u MGS jsou chyby vznikající při výpočtu z částečně eliminovány, výpočet r i,k := q i z následuje až po výpočtu aktualizace. Ortogonalizační krok můžeme opakovat CGS a MGS s iteračním zpřesněním ICGS, IMGS. ICGS si zachovává hlavní výhodu CGS velmi dobře se paralelizuje a navíc redukuje ztrátu ortogonality díky opakované ortogonalizaci. Pro dosažení maximální přesnosti (ztráty ortogonality na úrovni úměrné strojové přesnosti) stačí jediné opakování ortogonalizace. Jak vypočítat zpřesněné koeficienty r i,k? 44
89 CGS algoritmus s opakovanou ortogonalizací První ortogonalizace: projektujeme a k z = a k [(q k 1a k ) q k (q 1a k ) q 1 ]. 45
90 CGS algoritmus s opakovanou ortogonalizací První ortogonalizace: projektujeme a k z = a k [(qk 1a k ) q k (q1a k ) q 1 ]. Opakovaná ortogonalizace: projektujeme z w = z [(qk 1 z) q k (q1 z) q 1]. 45
91 CGS algoritmus s opakovanou ortogonalizací První ortogonalizace: projektujeme a k z = a k [(qk 1a k ) q k (q1a k ) q 1 ]. Opakovaná ortogonalizace: projektujeme z w = z [(qk 1 z) q k (q1 z) q 1]. Dosadíme-li za z do druhého vztahu, w = a k [(qk 1a k + qk 1z) q k (q1a k + q1z) q 1 ]. Zpřesněné koeficienty (prvky horní trojúhelníkové R) vzniknou součtem projekcí a k a z do jednotlivých směrů. 45
92 Iterovaný klasický Gram-Schmidtův algoritmus input A = [a 1,..., a m ] r 11 := a 1 q 1 := a 1 /r 11 Q 1 := [q 1 ] for k = 2 : m do z := a k r := 0 for l = 1 : 2 do r := Q k 1 z z := z Q k 1 r r := r + r end for [r 1,k,..., r k 1,k ] T := r r kk := z q k := z/r kk Q k := [Q k 1, q k ] end for 46
93 Outline 1 Ortogonální projekce a ortogonální projektory 2 Givensovy rotace 3 Householderovy reflexe 4 QR rozklad 5 QR rozklad a Gram-Schmidtův ortogonalizační proces 6 Cena výpočtu QR rozkladu 7 Numerická stabilita QR rozkladu 8 Cvičení 47
94 Cena výpočtu Gram-Schmidtova procesu a QR rozkladu Čtvercová matice Měříme počtem aritmetických operací. Není třeba rozlišovat CGS a MGS (počet operací je stejný). ICGS vyžaduje přibližně dvakrát více operací než CGS a MGS. Cena k-tého kroku (cvičení): k 1 z = a k i=1 (q i a k )q i, q k = z z = z z z, 2n(k 1) + 2n násobení, (2n 1)(k 1) + n 1 sčítání nebo odčítání, jednu odmocninu a jedno dělení. Sečtením všech operací pro kroky k = 1,..., n zjistíme, že CGS (MGS) stojí približně 2n 3 aritmetických operací. 48
95 Cena výpočtu QR rozkladu pomocí Gram-Schmidtova procesu Operace k-tý krok celkem 2n(k 1) + 2n n 3 + n 2 +, (2n 1)(k 1) + n 1 n n2 1 2 n : 1 n 1 n 49
96 Výpočetní ceny různých implementací QR rozkladu Obdélníková matice Algoritmus celkový počet operací n > m n = m Householderův QR rozklad 2nm 2 2m 3 /3 4/3n 3 Givensův QR rozklad 3nm 2 m 3 2n 3 CGS, MGS 2nm 2 2n 3 Počet operací u Householderových reflexí je počet operací potřebných ke spočtení rozkladu v součinovém tvaru A = H 1H 2... H m 1R, kde H i jsou jednoduché Householderovy reflexe. 50
97 Výpočetní ceny různých implementací QR rozkladu Obdélníková matice Algoritmus celkový počet operací n > m n = m Householderův QR rozklad 2nm 2 2m 3 /3 4/3n 3 Givensův QR rozklad 3nm 2 m 3 2n 3 CGS, MGS 2nm 2 2n 3 Počet operací u Householderových reflexí je počet operací potřebných ke spočtení rozkladu v součinovém tvaru A = H 1H 2... H m 1R, kde H i jsou jednoduché Householderovy reflexe. Explicitní znalost matice Q vyžaduje dalších 2nm 2 2m 3 /3 operací. 50
98 Výpočetní ceny různých implementací QR rozkladu Obdélníková matice Algoritmus celkový počet operací n > m n = m Householderův QR rozklad 2nm 2 2m 3 /3 4/3n 3 Givensův QR rozklad 3nm 2 m 3 2n 3 CGS, MGS 2nm 2 2n 3 Počet operací u Householderových reflexí je počet operací potřebných ke spočtení rozkladu v součinovém tvaru A = H 1H 2... H m 1R, kde H i jsou jednoduché Householderovy reflexe. Explicitní znalost matice Q vyžaduje dalších 2nm 2 2m 3 /3 operací. Totéž u Givensových rotací. 50
99 Outline 1 Ortogonální projekce a ortogonální projektory 2 Givensovy rotace 3 Householderovy reflexe 4 QR rozklad 5 QR rozklad a Gram-Schmidtův ortogonalizační proces 6 Cena výpočtu QR rozkladu 7 Numerická stabilita QR rozkladu 8 Cvičení 51
100 Numerická stabilita QR rozkladu Říkáme, že algoritmus je zpětně stabilní, pokud spočtené řešení dané úlohy je přesným řešením modifikované úlohy se vstupními daty, která jsou blízká původním datům dané úlohy. Nechť Q a R jsou spočtené faktory QR rozkladu matice A C n m v aritmetice s konečnou přesností. Nechť fl(u A) je spočtený výsledek aplikace elementární Givensovy rotace nebo Householderovy reflexe U na matici A v aritmetice s konečnou přesností. 52
101 Numerická stabilita QR rozkladu Říkáme, že algoritmus je zpětně stabilní, pokud spočtené řešení dané úlohy je přesným řešením modifikované úlohy se vstupními daty, která jsou blízká původním datům dané úlohy. Nechť Q a R jsou spočtené faktory QR rozkladu matice A C n m v aritmetice s konečnou přesností. Nechť fl(u A) je spočtený výsledek aplikace elementární Givensovy rotace nebo Householderovy reflexe U na matici A v aritmetice s konečnou přesností. Otázky: Jaká je přesnost vypočtené matice fl(u A)? Co lze říci o ortogonalitě spočtené matice Q? Jak přesně spočtený je faktor R? Do jaké míry odpovídá součin Q R matici A? 52
102 Aplikace Givensových rotací a Householderových reflexí v konečné aritmetice Wilkinson, Turing: Je-li U C n n matice elementární Givensovy rotace nebo Householderovy reflexe, potom fl(ua) = U(A + E), γ malá konstanta. kde E A γn2 u + O(u 2 ), Faktor n 2 je velmi pesimistický a není důležitý z hlediska pochopení fungování algoritmu v konečné aritmetice počítače. Výše zmíněný odhad normy E budeme zjednodušeně zapisovat E u A. 53
103 Numerická stabilita QR rozkladu Ortogonalita spočtené matice ˆQ Ztrátu ortogonality matic vypočtených v aritmetice s konečnou přesností budeme měřit pomocí 2-normy matice E Q Q Q I. Velikosti normy E Q pro jednotlivé algoritmy: Algoritmus Householderův QR rozklad Givensův QR rozklad CGS MGS ICGS E Q u u κ 2 (A) u κ(a) u u Lze matematicky dokázat. 54
104 Numerická stabilita QR rozkladu Stabilita výpočtu faktoru ˆR Pomocí analýzy zaokrouhlovacích chyb lze ukázat, že Householderův QR, Givensův QR a MGS jsou zpětně stabilní algoritmy v následujícím smyslu: Nechť R je spočtený trojúhelníkový faktor. Potom existuje unitární matice Q a perturbace E tak, že platí Q (A + E) = R, E F u A F. Překvapivé hlavně pro MGS, kde není zaručená ztráta ortogonality na úrovni strojové přesnosti. 55
105 Numerická stabilita QR rozkladu Norma rezidua A ˆQ ˆR Matice Q a R vypočtené všemi uvažovanými variantami QR rozkladů splňují A Q R u A. Platí i pro CGS, kde je ztráta ortogonality největší. 56
106 Outline 1 Ortogonální projekce a ortogonální projektory 2 Givensovy rotace 3 Householderovy reflexe 4 QR rozklad 5 QR rozklad a Gram-Schmidtův ortogonalizační proces 6 Cena výpočtu QR rozkladu 7 Numerická stabilita QR rozkladu 8 Cvičení 57
107 Cvičení 3.3 Určete vlastní čísla a determinant elementární Givensovy rotace. 3.5 Určete vlastní čísla a determinant Householderovy reflexe v reálném oboru. 3.8 Ukažte, že Householderovy reflexe odpovídající vzájemně ortogonálním normálovým vektorům jsou komutativní. 58
108 Cvičení 3.11 Mějme dánu matici Givensovy rotace v R 2 [ cos(ϕ) sin(ϕ) G(ϕ) = sin(ϕ) cos(ϕ) ]. Definujme dva normalizované vektory q 1 = 0.5 [ ] 1 cos(ϕ), q 1 + cos(ϕ) 2 = [ 0 1 q 1 = 1 2 (1 cos(ϕ) cos(ϕ)) = 1 = q 2. ], Ukažte, že [ cos(ϕ) sin(ϕ) H(q 2 )H(q 1 ) = sin(ϕ) cos(ϕ) ] = G(ϕ), tedy každou Givensovu rotaci lze popsaným způsobem složit ze dvou Householderových reflexí. 59
109 Cvičení 3.13 Dokažte, že matici Householderovy reflexe nelze složit z Givensových rotací. Dále dokažte, že pomocí Givensových rotací nelze vyjádřit žádná matice, která je součinem lichého počtu Householderových reflexí Ukažte, že jsou-li vektory q 1,..., q k navzájem ortogonální, pak platí I q 1 q 1 q 2q 2... q kq k = (I q 1q 1 )(I q 2q 2 )... (I q kq k ), tedy součin na pravé straně je komutativní Ukažte, že cena k-tého kroku algoritmu CGS je dána cenou 2n(k 1) + 2n součinů, (2n 1)(k 1) + n 1 součtů nebo rozdílů, jednoho podílu a jednoho výpočtu odmocniny. Využijte sčítací vzorce n k = 1 n 2 n(n + 1) a k 2 = 1 n (2n + 1) (n + 1). 6 k=1 k=1 60
Ortogonální transformace a QR rozklady
Ortogonální transformace a QR rozklady 1 Úvod Unitární (ortogonální) transformace, Gram-Schmidtova ortogonalizace Příklad Schurovy věty unitární transformace nezvětšují chyby ve vstupních datech. Tato
3. Ortogonální transformace a QR rozklady
3. Ortogonální transformace a QR rozklady Petr Tichý 10. října 2012 1 Úvod Unitární (ortogonální) transformace, Gram-Schmidtova ortogonalizace Příklad Schurovy věty unitární transformace nezvětšují chyby
1 Projekce a projektory
Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor
Úlohy nejmenších čtverců
Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.
Arnoldiho a Lanczosova metoda
Arnoldiho a Lanczosova metoda 1 Částečný problém vlastních čísel Ne vždy je potřeba (a někdy to není ani technicky možné) nalézt celé spektrum dané matice (velké řídké matice). Úloze, ve které chceme aproximovat
2. Schurova věta. Petr Tichý. 3. října 2012
2. Schurova věta Petr Tichý 3. října 2012 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci
Singulární rozklad. Petr Tichý. 31. října 2013
Singulární rozklad Petr Tichý 31. října 2013 1 Outline 1 Úvod a motivace 2 Zavedení singulárního rozkladu a jeho vlastnosti 3 Výpočet a náklady na výpočet singulárního rozkladu 4 Moor-Penroseova pseudoinverze
Podobnostní transformace
Schurova věta 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci tak, aby se řešení úlohy
5. Singulární rozklad
5. Singulární rozklad Petr Tichý 31. října 2012 1 Singulární rozklad matice Jeden z nejdůležitějších teoretických i praktických nástrojů maticových výpočtů. Umožňuje určit hodnost či normu matice, ortogonální
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Operace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
DEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
Operace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.
Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační
Interpolace, ortogonální polynomy, Gaussova kvadratura
Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
Zdrojem většiny příkladů je sbírka úloh 1. cvičení ( ) 2. cvičení ( )
Příklady řešené na cvičení LA II - LS 1/13 Zdrojem většiny příkladů je sbírka úloh http://kam.mff.cuni.cz/~sbirka/ 1. cvičení (..13) 1. Rozhodněte, které z následujících operací jsou skalárním součinem
Lineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
4. LU rozklad a jeho numerická analýza
4 LU rozklad a jeho numerická analýza Petr Tichý 24 října 2012 1 Úvod Nechť A je regulární matice Řešíme Ax = b LU rozklad (Gaussova eliminace) je jeden z nejdůležitějších nástrojů pro problém řešení soustav
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
EUKLIDOVSKÉ PROSTORY
EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,
Lineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
Aplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 9. přednáška: Ortogonalita Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
ALGEBRA. Téma 5: Vektorové prostory
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná
8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n
[1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem
Vlastní čísla a vlastní vektory
5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi
Symetrické a kvadratické formy
Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s
Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných
Co je obsahem numerických metod?
Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem
Základy maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti
PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,
Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru
2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.
Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl
Kapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
Úvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
Připomenutí co je to soustava lineárních rovnic
Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a
Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy.
6 Skalární součin Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. Příklad: Určete odchylku přímek p, q : p : x =1+3t,
7 Ortogonální a ortonormální vektory
7 Ortogonální a ortonormální vektory Ze vztahu (5) pro výpočet odchylky dvou vektorů vyplývá, že nenulové vektory u, v jsou na sebe kolmé právě tehdy, když u v =0. Tato skutečnost nám poslouží k zavedení
Lineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost
a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
VĚTY Z LINEÁRNÍ ALGEBRY
VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru
Vlastní číslo, vektor
[1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost
1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
ALGEBRA. Téma 4: Grupy, okruhy a pole
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 14. Vlastní vektory Bud V vektorový prostor nad polem P. Lineární zobrazení f : V
Necht L je lineární prostor nad R. Operaci : L L R nazýváme
Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární
maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
1 0 0 u 22 u 23 l 31. l u11
LU dekompozice Jedná se o rozklad matice A na dvě trojúhelníkové matice L a U, A=LU. Matice L je dolní trojúhelníková s jedničkami na diagonále a matice U je horní trojúhelníková. a a2 a3 a 2 a 22 a 23
vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).
Řešené příklady z lineární algebry - část 6 Typové příklady s řešením Příklad 6.: Kvadratickou formu κ(x) = x x 6x 6x x + 8x x 8x x vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých
1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x
1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
Kapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,
Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání
15 Maticový a vektorový počet II
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.
VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
6. Vektorový počet Studijní text. 6. Vektorový počet
6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.
Matematika I 12a Euklidovská geometrie
Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky
7. Lineární vektorové prostory
7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární
1 Vektorové prostory a podprostory
Pro nahrazení účasti v jednotlivých cvičeních (resp. pro studenty kombinované formy) je dostačující vypracování a odevzdání tučně vyznačených příkladů. 1 Vektorové prostory a podprostory Definujte vektorový
V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
Základy matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci OBSAH A CÍLE SEMINÁŘE: Opakování a procvičení vybraných
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
Lineární algebra - I. část (vektory, matice a jejich využití)
Lineární algebra - I. část (vektory, matice a jejich využití) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 2. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 40 Obsah 1 Vektory
Numerické metody a programování
Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským
Soustavy linea rnı ch rovnic
[1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.
Numerické metody a programování. Lekce 4
Numerické metody a programování Lekce 4 Linarní algebra soustava lineárních algebraických rovnic a 11 a 12 x 2 a 1, N x N = b 1 a 21 a 22 x 2 a 2, N x N = b 2 a M,1 a M,2 x 2 a M,N x N = b M zkráceně A
Lineární algebra : Změna báze
Lineární algebra : Změna báze (13. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 8. dubna 2014, 10:47 1 2 13.1 Matice přechodu Definice 1. Nechť X = (x 1,..., x n ) a Y = (y 1,...,
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
Soustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru
1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).
z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.
KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení
19 Hilbertovy prostory
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem
Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity)
4 Lineární zobrazení Definice: Nechť V a W jsou vektorové prostory Zobrazení A : V W (zobrazení z V do W nazýváme lineárním zobrazením, pokud pro všechna x V, y V a α R platí 1 A(x y = A(x A(y (vlastnost
Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.
4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,
[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}
Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální
[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici
[1] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A = 0 pro singulární matici, det A 0 pro regulární matici používá se při řešení lineárních soustav... a v mnoha dalších aplikacích
11. Skalární součin a ortogonalita p. 1/16
11. Skalární součin a ortogonalita 11. Skalární součin a ortogonalita p. 1/16 11. Skalární součin a ortogonalita p. 2/16 Skalární součin a ortogonalita 1. Definice skalárního součinu 2. Norma vektoru 3.
10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
9 Kolmost vektorových podprostorů
9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.
Ortogonální projekce a ortogonální zobrazení
Drsná matematika I 9. přednáška Ortogonální projekce a ortogonální zobrazení Jan Slovák Masarykova univerzita Fakulta informatiky 27. 4. 2010 Obsah přednášky 1 Literatura 2 Projekce a ortogonální zobrazení
Matice. a m1 a m2... a mn
Matice Nechť (R, +, ) je okruh a nechť m, n jsou přirozená čísla Matice typu m/n nad okruhem (R, +, ) vznikne, když libovolných m n prvků z R naskládáme do obdélníkového schematu o m řádcích a n sloupcích
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Vektorový (lineární) prostor (připomenutí) Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost
Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ).
Matice Definice 4.1 Necht (T ; +, je číselné těleso, m, n N a dále necht a ij T pro všechny indexy i = 1, 2,..., m a j = 1, 2,..., n. Potom schéma a 11 a 12... a 1n a 21 a 22... a 2n... = (a ij m n a m1
Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.
Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný