PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE
|
|
- Bohuslav Liška
- před 6 lety
- Počet zobrazení:
Transkript
1 PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE
2 Příklad Představme si, že máme vypočítat integrál I = f(, y) d dy, M kde M = {(, y) R 2 1 < 2 + y 2 < 4}. y M je mezikruží mezi kružnicemi o poloměru 1 a 2 a se středem [, ]. Pokud bychom použili Fubiniovu větu, tj. množinu M rozřezávali vodorovně a svisle, museli bychom ji rozdělit na čtyři části a integrál počítat jako součet -2 M 1 I = f(, y) d dy M 3 M 2 M f(, y) d dy f(, y) d dy + f(, y) d dy (popř. bychom spočítali integrál přes větší kruh a odečetli integrál přes menší kruh) 2
3 Takový výpočet nevypadá moc lákavě - ani pro jednoduchou funkci f. Pokud bychom však použili polární souřadnice, stačilo by uvažovat r (1, 2), ϕ (, 2π) : y y M r r y = r sin = r cos Oblast M tedy nebudeme rozřezávat vodorovně a svisle, ale po paprscích vycházejících z počátku a po soustředných kružnicích se středem v počátku, což vypadá pro mezikruží daleko přirozeněji. Musíme si však rozmyslet, jak takovou substituci správně provést. 3
4 Zjednodušene r ec eno, v kartézských sour adnicích jsme d dy považovali za obsah obdélníc ku o stranách d, dy; mu žeme také hovor it o elementu obsahu ds = d dy y y dy ds ds r d d dr d r Pr ejdeme-li k polárním sour adnicím, tak dr dϕ nevyjadr uje element obsahu ten má nyní strany dr a r dϕ, a tedy obsah ds = r dϕ dr = r dr dϕ. Hledaný integrál proto bude mít tvar ZZ Z 2π Z 2 I= f (, y) d dy = f (r cos ϕ, r sin ϕ)r dr dϕ. M 1 4
5 Du kaz ve ty o substituci zde uváde t nebudeme, podívejme se jen intuitivne, jak funguje. RR Použijeme-li kartézské sour adnice, pak v integrálu M f (, y) d dy vyjadr uje d dy obsah obdélníc ku o stranách d, dy neboli element obsahu ds = d dy. Zme níme-li sour adnice na ne jaké jiné, napr íklad u, v, kde = h1 (u, v), y = h2 (u, v), pak musíme pr epoc ítat i element obsahu. y y dy ds d dv v tv u ds tu 5
6 Ten si nyní můžeme představit v rovině y jako rovnoběžník daný vektory t u, t v, které udávají změnu kartézských souřadnic odpovídající změně proměnných u, resp. v, o hodnotu du, resp. dv: ( ) ( y t u = du, u u du = u, y ) du u ( ) ( y t v = dv, v v dv = v, y ) dv v Obsah tohoto rovnoběžníku můžeme spočítat pomocí determinantu, jehož řádky tvoří vektory t u, t v : y u u ds = det du dv = J h du dv y v v M f(, y) d dy = 2π 2 1 f(r cos ϕ, r sin ϕ)r dr dϕ. Tento determinant se nazývá Jakobián zobrazení h. 6
7 7 V R 2 jsme tedy element obsahu v souřadnicích u, v, kde vyjádřili ve tvaru (, y) = h(u, v) = (h 1 (u, v), h 2 (u, v)) ds = d dy = J h du dv, kde J h je Jakobián zobrazení h, tj. determinant y D(, y) J h = D(u, v) = u u. y v v
8 8 Poznámka. Výpočet obsahu rovnoběžníka se stranami a, b pomocí determinantu: ( ) S = det a1 a 2 = a 1 b 2 a 2 b 1 b 1 b 2 y y a 2 b 2 b 2 b 1 a 2 b a a 2 b a b 1 a 1 b 1 a 1
9 Podobně bychom mohli vyjádřit element objemu dv = d dy dz v R 3 v souřadnicích u, v, w, kde (, y, z) = h(u, v, w) = (h 1 (u, v, w), h 2 (u, v, w), h 3 (u, v, w)), jako dv = d dy dz = J h du dv dw, kde J h je zobrazení h, tj. determinant u D(, y, z) J h = D(u, v, w) = v w y u y v y w z u z v. z w Od zobrazení h budeme požadovat, aby bylo prosté a regulární (všechny parciální derivace uvedené v Jakobiánu jsou spojité na dané otevřené množině X a J h ). 9
10 Věta (O substituci). Necht h je prosté regulární zobrazení otevřené množiny U R n na množinu X R n. Necht je M U, f(y) funkce definovaná na h(m) a J h Jakobián zobrazení h, tj. J h = D( 1, 2,..., n ) D(u 1, u 2,..., u n ) = 1 u 1 2 u u 2 2 u u n 2 u n... n u 1 n u 2 n u n. Pak platí h(m) f() d 1... d n = M pokud oba integrály v (6.1) eistují. f ( h(u) ) Jh du1... du n, (6.1) 1
11 11 Jak je vidět z této věty, substituce nemění pouze integrovanou funkci, ale také podstatně oblast M, přes kterou integrujeme. Proto se na rozdíl od jednorozměrných integrálů pomocí substituce nesnažíme pouze zjednodušit integrovanou funkci, ale také integrační oblast. To je při výpočtu vícerozměrných integrálů velmi podstatné. Například jestliže se nám podaří transformovat oblast M na interval, stačí podle Fubiniovy věty najít n jednorozměrných integrálů, i když většinou poměrně složitých. Poznámka. Jakobián inverzního zobrazení: Někdy je jednodušší vyjádřit naopak nové souřadnice u i pomocí původních souřadnic i, neboli pracovat s inverzním zobrazením k zobrazení h. Není nutné řešit soustavu rovnic a vyjadřovat i, stačí si uvědomit, že pro jakobiány zobrazení h a inverzního zobrazení h 1 platí jednoduchý vztah: J h 1 = 1 J h
12 Polární souřadnice Polární souřadnice jsou definovány jako zobrazení h : R 2 R 2 : h(r, ϕ) = (r cos ϕ, r sin ϕ) (6.2) roviny rϕ do roviny y, které bodu (r, ϕ) přiřazuje bod roviny y o souřadnicích = r cos ϕ, y = r sin ϕ. y r = 2 + y 2 r y = r sin = r cos 12
13 Rovnice kružnice v polárních souřadnicích: 2 + y 2 = R 2 r 2 (cos 2 ϕ + sin 2 ϕ) = R 2 r 2 = R 2, tj. r = R, ϕ, 2π) Kruh 2 + y 2 R 2 v polárních souřadnicích: Jakobián: D(, y) J h = (r, ϕ) = D(r, ϕ) r, R, ϕ, 2π) r, y r, ϕ = cos ϕ, y sin ϕ, ϕ r sin ϕ r cos ϕ = r > Využití polárních souřadnic: hranice integrační oblasti obsahuje části kružnice se středem v počátku. 13
14 14 Příklad Nalezněte hodnotu integrálu ( y) d dy, kde N = {(, y) R y 2 9}. N Řešení. Integrand je spojitá funkce na omezeném a uzavřeném integračním oboru, a tedy integrál eistuje. Integrační obor je kruh 2 + y 2 9, takže použijeme polární souřadnice. Dosadíme nové proměnné do integrandu, provedeme transformaci integračního oboru tím, že jej zapíšeme pomocí integračních mezí a využijeme poznatku, že jakobián polárních souřadnic je r. Dvojný integrál tak převedeme již rovnou na dvojnásobný integrál. ( y) d dy = = r cos ϕ, r 3 y = r sin ϕ, ϕ < 2π = N = 3 = 3 2π (2r 2 cos 2 ϕ + 3r sin ϕ)rdϕdr = 2π r 3 dr 2 cos 2 ϕdϕ + 3 2π 3r 2 dr sin ϕdϕ = 81 2 π.
15 Příklad Nalezněte hodnotu integrálu ( 2 + y 2 ) d dy, (6.3) kde N N = {(, y) R 2 (1/2 2 + y 2 1) ( < y) ( < y)}. Řešení. Integrand je spojitá nezáporná funkce na omezeném integračním oboru, takže integrál eistuje. Integrační obor je část mezikruží, použijeme proto opět polární souřadnice: ( 2 +y 2 ) d dy = N = r cos ϕ, y = r sin ϕ, 2 2 r 1 π 4 ϕ 3π 4 = π 4 π 4 r 2 r dϕdr = 3π
16 Zobecněné polární souřadnice = 1, pou- Jsou-li hranicí integračního oboru části elipsy 2 a 2 žíváme zobecněné polární souřadnice: + y2 b 2 = ar cos ϕ, y = br sin ϕ, (6.4) r >, ϕ (, 2π), a, b R, a >, b > Rovnice elipsy v zobecněných polárních souřadnicích: r = 1 a 2 r 2 cos 2 ϕ a 2 Jakobián: D(, y) J h = (r, ϕ) = a cos ϕ, D(r, ϕ) b sin ϕ, + b2 r 2 sin 2 ϕ b 2 = 1 r 2 = 1 ar sin ϕ br cos ϕ = abr > (6.5) 16
17 17 Obsahuje-li hranice integračního oboru části elipsy se středem v bodě (, y ) (, ) a s poloosami a >, b >, používáme zobecněné polární souřadnice ve tvaru: = + ar cos ϕ, y = y + br sin ϕ, (6.6) r >, ϕ (, 2π), a, b R, a >, b >
18 18 Příklad Nalezněte hodnotu integrálu 1 2 a y2 d dy, (6.7) 2 b2 N kde N = {(, y) R y2 1. a 2 b 2 Řešení. Použijeme proto zobecněné polární souřadnice: 1 2 a y2 d dy = = ar cos ϕ, r 1 2 b2 y = br sin ϕ, ϕ < 2π = N 1 2π 1 r2 abr dϕdr = 2abπ 3.
19 19 Další souřadnice Příklad Nalezněte hodnotu integrálu y d dy, kde integrační obor N N je ohraničen křivkami y = 1, y = 3, y =, y = 2, >. Řešení. Integrační obor je ohraničen větvemi hyperbol y = 1, y = 3, polopřímkami y =, y = 2 a požadavkem >. Integrační obor musí být omezená množina. Snadno zjistíme, že tento požadavek je splněn pouze pro nerovnosti 1 y 3, 1 y 2,
20 2 Uvažujme nové proměnné dané zobrazením Pro jakobián tohoto zobrazení platí J h 1 = h 1 : u = y, v = y. y, y 2, 1 = 2 y = 2v. Odtud pro jakobián potřebného zobrazení (, y) = h(u, v) plyne J h = 1 J h 1 = 1 2v. Bude tedy N y d dy = v 1 dv du = 1. 2v
21 21 Totéž v R 3 Válcové souřadnice h : = r cos ϕ, y = r sin ϕ, z = z (6.8) r (, R), ϕ (, 2π), z (z, z 1 ) z r z y ds r d dr d
22 22 Rovnice válce v kartézských souřadnicích (osou válce je osa z): 2 + y 2 R 2 Rovnice válce ve válcových souřadnicích: r 2 R 2, tj. r, R, ϕ, 2π) z r z y ds r d dr d
23 Jakobián: J h = cos ϕ, r sin ϕ, sin ϕ, r cos ϕ,,, 1 = r >. (6.9) z z r r d dr dz dv = ds dz = r d drdz y r r d ds dr 23
24 Příklad Nalezněte hodnotu integrálu M 2 y d dy dz, kde integrační obor M je zadán nerovnostmi z, y + z 3, 2 + y 2 1, 2 + y 2 4. Řešení. Integrační obor je ohraničen dvěma souosými válcovými plochami a dvěma rovinami. Je to omezená množina, integrand je na ní spojitý, takže zadaný trojný integrál eistuje. K výpočtu použijeme válcové souřadnice = r cos ϕ, y = r sin ϕ, z = z. Nerovnosti pro M vyjádříme ve válcových souřadnicích: z, r sin ϕ + z 3, 1 r 2 4; dostáváme meze pro integrační proměnné: 1 < r < 2, < ϕ < 2π, < z < 3 r sin ϕ. M 2 y d dy dz = = 2 1 2π 2 1 2π 3 r sin ϕ r 2 cos 2 ϕr sin ϕr ddϕdr = r 4 cos 2 ϕ sin ϕ(3 r sin ϕ)dϕdr = 21 8 π. 24
25 25 Zobecněné válcové souřadnice h : = ar cos ϕ, y = br sin ϕ, z = z (6.1) r (, R), ϕ (, 2π), z (z, z 1 ) Jakobián: J h = a cos ϕ, ar sin ϕ, b sin ϕ, br cos ϕ,,, 1 = abr >. (6.11)
26 26 Sférické souřadnice = r cos ϑ cos ϕ, y = r cos ϑ sin ϕ, z = r sin ϑ, (6.12) ϕ 2π, π 2 ϑ π 2, r z r y ds r d dr d r cos
27 Jakobián: cos ϑ cos ϕ, r cos ϑ sin ϕ, r sin ϑ cos ϕ J h = cos ϑ sin ϕ, r cos ϑ cos ϕ, r sin ϑ sin ϕ = sin ϑ,, r cos ϑ = r 2 cos ϑ cos ϑ cos ϕ, sin ϕ, sin ϑ cos ϕ cos ϑ sin ϕ, cos ϕ, sin ϑ sin ϕ sin ϑ,, cos ϑ = r 2 cos ϑ. (6.13) Rovnice koule 2 +y 2 +z 2 R 2 ve sférických souřadnicích: (r cos ϑ cos ϕ) 2 + (r sin ϑ cos ϕ) 2 + (r sin ϑ) 2 = R 2 ] r [cos 2 2 ϑ (cos 2 ϕ + sin 2 ϕ) }{{} + sin2 ϑ = R 2 r 2 = R 2 r = R 27
28 28 z 2 dv = ds dr = r cos d d dr rd ds r cos d d r y d r cos r cos d
29 Příklad Nalezněte hodnotu integrálu 1 d dy dz, kde M 2 + y 2 + z2 integrační obor M je zadán nerovnostmi a 2 2 +y 2 +z 2 b 2, 2 + y 2 z. Řešení. Integrační obor M je ohraničen dvěma sférami se středem v počátku a kuželovou plochou. Je to omezená množina, integrand je na ní spojitý, takže zadaný trojný integrál eistuje. K jeho výpočtu použijeme sférické souřadnice = r cos ϑ cos ϕ, y = r cos ϑ sin ϕ, z = r sin ϑ, kde ϕ 2π, π 2 ϑ π, r. Nerovnosti pro M vyjádříme ve sférických souřadnicích a 2 zúžíme meze: a 2 r 2 b 2, r2 cos 2 ϑ r sin ϑ; pro ϑ π 2, π je cos ϑ, proto lze psát 2 a r b, r cos ϑ r sin ϑ, tedy π 4 ϑ π 2. Pro ϕ se neobjevila žádná omezující podmínka, budeme jej proto brát z celého intervalu, 2π). Celkem tak dostáváme meze integračních proměnných a < r < b, < ϕ < 2π, π/4 < ϑ. M 1 d dy dz = 2 + y 2 + z2 2π b π/2 a π/4 1 r 2 r2 cos ϑdϑdrdϕ = 2π(b a) ( 1 29
30 6..1 Zobecněné sférické souřadnice Hranice integračního oboru je tvořena částmi elipsoidu se středem v počátku a s poloosami a, b, c >, pak je výhodné použít zobecněné sférické souřadnice: = ar cos ϑ cos ϕ, y = br cos ϑ sin ϕ, z = cr sin ϑ, (6.14) ϕ 2π, π 2 ϑ π 2, r < R, Jakobián: J h = abcr 2 cos ϑ. (6.15) Rovnice elipsoidu 2 a 2 + y2 b 2 + z2 c 2 1 v zobecněných sférických souřadnicích: 3
31 31 a 2 r 2 cos 2 ϑ cos 2 ϕ a 2 + b2 r 2 cos 2 ϑ sin 2 ϕ b 2 + c2 r 2 sin 2 ϑ c 2 1 r 2 [ cos 2 ϑ(cos 2 ϕ + sin 2 ϕ) + sin 2 ϑ ] = R 2 r 2 1, tj. r 1.
32 32 Příklad Máme vypočítat objem elipsoidu se středem v počátku a poloosami a, b, c. Řešení. K výpočtu použijeme zobecněné sférické souřadnice, kde pro integrační proměnné platí nerovnosti < r < 1, < ϕ < 2π, π 2 < ϑ < π 2. M d dy dz = 2π π/2 π/2 1 abcr 2 cos ϑ drdϑdϕ = 4 3 abcπ.
ˇ EDNA SˇKA 9 DALS ˇ I METODY INTEGRACE
PŘEDNÁŠKA 9 DALŠÍ METODY INTEGRACE 1 9.1. Věta o substituci Věta 1 (O substituci) Necht je ϕ(x) prosté regulární zobrazení otevřené množiny X R n na množinu Y R n. Necht je M X, f(y) funkce definovaná
Dvojné a trojné integrály příklad 3. x 2 y dx dy,
Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je
Substituce ve vícenásobném integrálu verze 1.1
Úvod Substituce ve vícenásobném integrálu verze. Následující text popisuje výpočet vícenásobných integrálů pomocí věty o substituci. ěl by sloužit především studentům předmětu ATEAT k přípravě na zkoušku.
10. cvičení z Matematické analýzy 2
. cvičení z Matematické analýzy 3. - 7. prosince 8. (dvojný integrál - Fubiniho věta Vhodným způsobem integrace spočítejte daný integrál a načrtněte oblast integrace (a (b (c y ds, kde : y & y 4. e ma{,y
PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2
PŘÍKLADY K ATEATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY ZDENĚK ŠIBRAVA.. Dvojné integrály.. Vícenásobné intergrály Příklad.. Vypočítejme dvojný integrál x 3 + y da, kde =, 3,. Řešení: Funkce f(x, y) = x je na obdélníku
11. cvičení z Matematické analýzy 2
11. cvičení z Matematické analýzy 11. - 15. prosince 17 11.1 (trojný integrál - Fubiniho věta) Vypočtěte (i) xyz dv, kde je ohraničeno plochami y x, x y, z xy a z. (ii) y dv, kde je ohraničeno shora rovinou
Kapitola 8: Dvojný integrál 1/26
Kapitola 8: vojný integrál 1/26 vojný integrál - osnova kapitoly 2/26 dvojný integrál přes obdélník definice výpočet (Fubiniova věta pro obdélník) dvojný integrál přes standardní množinu definice výpočet
12 Trojný integrál - Transformace integrálů
Trojný integrál transformace integrálů) - řešené příklady 8 Trojný integrál - Transformace integrálů. Příklad Spočtěte x + y dxdydz, kde : z, x + y. Řešení Integrační obor určený vztahy z, x + y je válec.
1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v
. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x
2. DVOJROZMĚRNÝ (DVOJNÝ) INTEGRÁL
. VOJROZMĚRNÝ (VOJNÝ) INTEGRÁL Úvodem připomenutí základních integračních vzorců, bez nichž se neobejdete: [.] d = C [.] d = + C n+ n [.] d = + C n + [4.] d = ln + C [5.] sin d = cos + C [6.] cos d = sin
y ds, z T = 1 z ds, kde S = S
Plošné integrály příklad 5 Určete souřadnice těžiště části roviny xy z =, která leží v prvním oktantu x >, y >, z >. Řešení: ouřadnice těžiště x T, y T a z T homogenní plochy lze určit pomocí plošných
4 Integrální počet funkcí více reálných proměnných
Dvojné integrály - 61-4 ntegrální počet funkcí více reálných proměnných 4.1 Dvojné a dvojnásobné integrály Dvojné a dvojnásobné integrály na intervalech z Pod uzavřeným intervalem z rozumíme kartézský
je omezena + =,,0 1 je omezena,0 2,0 2,0 je horní polovina koule + + je omezena + =1, + + =3, =0
Příklad 1 Vypočtěte trojné integrály transformací do cylindrických souřadnic a) b) c) d), + + +,,, je omezena + =1,++=3,=0 je omezena + =,,0 1 je omezena,0 2,0 2,0 je horní polovina koule + + Řešení 1a,
= 0,1 1,3. je oblast ohraničená přímkami =, =, =0 :0 1, : =2, =, =1
ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad 1 Vypočtěte integrály a) b) c) d) e) f) g) h) i) j),, = 0,1 1,3 je oblast ohraničená přímkami =,=,=0 1+, :=0,=1,=1,= +3, :=0,=,=0,=1 sin+, 3,,,, :=0,=,= : + 4 : =4+,+3=0
7. Integrál přes n-rozměrný interval
7. Integrál přes n-rozměrný interval Studijní text 7. Integrál přes n-rozměrný interval Definice 7.1. Buď A = a 1, b 1 a n, b n R n n-rozměrný uzavřený interval a f : R n R funkce ohraničená na A Df. Definujme
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení
Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0
Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +
Řešení: Nejprve musíme napsat parametrické rovnice křivky C. Asi nejjednodušší parametrizace je. t t dt = t 1. x = A + ( B A ) t, 0 t 1,
Určete Křivkový integrál příklad 4 x ds, kde {x, y ; y ln x, x 3}. Řešení: Nejprve musíme napsat parametrické rovnice křivky. Asi nejjednodušší parametrizace je Tedy daný integrál je x ds x t, y ln t,
1. Cvičení: Opakování derivace a integrály
. Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )
Příklady pro předmět Aplikovaná matematika (AMA) část 1
Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1
13. cvičení z Matematické analýzy 2
. cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2
VKM/IM /2015. Zintegrujte. f (x, y) dx dy = f (x, y) = (y x) 2, Ω : x 2 + y 2 4, x 0.
VKM/IM - 4/5 Zintegrujte f, y) d dy pro f, y) y ), : + y 4,. Řešení: S využitím postupů a výsledků použitých při řešení příkladů z předchozí části věnované dvojnému integrálu, se můžeme bez obav pustit
1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
11. cvičení z Matematické analýzy 2
11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y
R β α. Obrázek 1: Zadání - profil složený ze třech elementárních obrazců: 1 - rovnoramenný pravoúhlý trojúhelník, 2 - čtverec, 3 - kruhová díra
Zadání: Vypočtěte polohu těžiště, momenty setrvačnosti a deviační moment k centrálním osám a dále určete hlavní centrální momenty setrvačnosti, poloměry setrvačnosti a natočení hlavních centrálních os
INTEGRÁLY S PARAMETREM
INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity
Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
Otázku, kterými body prochází větev implicitní funkce řeší následující věta.
1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.
V. Riemannův(dvojný) integrál
V. Riemannův(dvojný) integrál Obsah 1 Základní pojmy a definice 2 2 Podmínky existence dvojného integrálu 4 3 Vlastnosti dvojného integrálu 4 4 Výpočet dvojného integrálu; převod na dvojnásobný integrál
14. cvičení z Matematické analýzy 2
4. cvičení z atematické analýzy 2 8. - 2. ledna 28 4. (Greenova věta) Použijte Greenovu větu k nalezení práce síly F (x, y) (2xy 3, 4x 2 y 2 ) vykonané na částici podél křivky Γ, která je hranicí oblasti
Úvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
Veronika Chrastinová, Oto Přibyl
Integrální počet II. Příklady s nápovědou. Veronika Chrastinová, Oto Přibyl 16. září 2003 Ústav matematiky a deskriptivní geometrie FAST VUT Brno Obsah 1 Dvojný integrál 3 2 Trojný integrál 7 3 Křivkový
Pedagogická fakulta. Aplikovaná matematika - sbírka řešených
Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Diplomová práce Aplikovaná matematika - sbírka řešených příkladů Autor diplomové práce: Eva Kutová Vedoucí diplomové práce: RNDr. Libuše
, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1
ŘEŠENÉ PŘÍKLADY Z MB ČÁST 7 Příklad 1 a) Vypočtěte hmotnost oblasti ohraničené přímkami =1,=3,=1,= jestliže její hustota je dána funkcí 1,= ++1 b) Vypočtěte statický moment čtverce ohraničeného přímkami
III. Dvojný a trojný integrál
E. Brožíková, M. Kittlerová, F. Mráz: Sbírka příkladů z Matematik II 6 III. vojný a trojný integrál III.. Eistence Necht je měřitelná v Jordanově smslu množina v E resp. E a funkce f je omezená na. Necht
Derivace funkcí více proměnných
Derivace funkcí více proměnných Pro studenty FP TUL Martina Šimůnková 16. května 019 1. Derivace podle vektoru jako funkce vektoru. Pro pevně zvolenou funkci f : R d R n a bod a R d budeme zkoumat zobrazení,
Transformace integrálů
9 Kapitola 3 Transformace integrálů V předchozí kapitole jsme se seznámili se základní metodou výpočtu vícerozměrných integrálů převodem na násobné integrál. Z teorie jednorozměrného Riemannova integrálu
Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí
202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají
Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2
Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Diferenciální počet funkcí více proměnných 1. Funkce více proměnných (a)
VYBRANÉ APLIKACE RIEMANNOVA INTEGRÁLU I. OBSAH A DÉLKA. (f(x) g(x)) dx.
VYBRANÉ APLIKACE RIEMANNOVA INTEGRÁLU I. OBSAH A DÉLKA. Výpo et obsahu rovinných ploch a) Plocha ohrani ená k ivkami zadanými v kartézských sou adnicích. Obsah S rovinné plochy ohrani ené dv ma spojitými
+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)
Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené
Zimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 24/25 2. prosince 24 Předmluva iii
arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.
Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál
6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.
KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou
Transformace Aplikace Trojný integrál. Objem, hmotnost, moment
Trojný integrál Dvojný a trojný integrál Objem, hmotnost, moment obecne ji I Nez zavedeme transformaci dvojne ho integra lu obecne, potr ebujeme ne kolik pojmu. Definice Necht je da no zobrazenı F : R2
PŘÍKLADY K MATEMATICE 3
PŘÍKLADY K ATEATIE 3 ZDENĚK ŠIBRAVA. Křivkové integrály.. Křivkový integrál prvního druhu. Příklad.. Vypočítejme křivkový integrál A =, ), B = 4, ). Řešení: Úsečka AB je hladká křivka. Funkce ψt) = 4t,
Výpočet průsečíků paprsku se scénou
Výpočet průsečíků paprsku se scénou 1996-2008 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz NPGR004, intersection.pdf 2008 Josef Pelikán, http://cgg.ms.mff.cuni.cz/~pepca
KŘIVKOVÝ INTEGRÁL V SYSTÉMU MAPLE
KŘIVKOVÝ INTEGRÁL V SYSTÉMU MAPLE Jiří Novotný Ústav matematiky a deskriptivní geometrie, Fakulta stavební, Vysoké učení technické v Brně Abstrakt: V rámci řešení projektu Inovace bakalářského studia Počítačová
Křivkový integrál prvního druhu verze 1.0
Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm
[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2
4.1 Křivkový integrál ve vektrovém poli přímým výpočtem 4.1 Spočítejte práci síly F = y i + z j + x k při pohybu hmotného bodu po orientované křivce, která je dána jako oblouk ABC na průnikové křivce ploch
F n = F 1 n 1 + F 2 n 2 + F 3 n 3.
Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,
14. cvičení z Matematické analýzy 2
4. cvičení z temtické nlýzy 2 22. - 26. květn 27 4. Greenov vět) Použijte Greenovu větu k nlezení práce síly F x, y) 2xy, 4x 2 y 2 ) vykonné n částici podél křivky, která je hrnicí oblsti ohrničené křivkmi
Michal Zamboj. January 4, 2018
Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj January 4, 018 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu
Derivace goniometrických funkcí
Derivace goniometrických funkcí Shrnutí Jakub Michálek, Tomáš Kučera Odvodí se základní vztahy pro derivace funkcí sinus a cosinus za pomoci věty o třech itách, odvodí se také několik typických it pomocí
VI. Derivace složené funkce.
VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,
Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.
Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních
Matematika III 5. přednáška Lineární programování, integrace funkcí více proměnných
Matematika III 5. přednáška Lineární programování, integrace funkcí více proměnných Michal Bulant Masarykova univerzita Fakulta informatiky 16. 10. 2007 Obsah přednášky 1 Lineární programování 2 Integrály
Michal Zamboj. December 23, 2016
Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj December 3, 06 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu
1/15. Kapitola 2: Reálné funkce více proměnných
1/15 Kapitola 2: Reálné funkce více proměnných Vlastnosti bodových množin 2/15 Definice: ε-ové okolí... O ε (X) = {Y R n ρ(x, Y ) < ε} prstencové ε-ové okolí... P ε (X) = {Y R n 0 < ρ(x, Y ) < ε} Definice:
Integrace funkcí více proměnných, numerické metody
Matematika III 6. přednáška Integrace funkcí více proměnných, numerické metody Michal Bulant Masarykova univerzita Fakulta informatiky 27. 10. 2010 Obsah přednášky 1 Literatura 2 Integrální počet více
Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0
Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud
15 Fourierova transformace v hypersférických souřadnicích
15 HYPERSFÉRICKÉ SOUŘADNICE 1 15 Fourierova transformace v hypersférických souřadnicích 151 Definice hypersférických souřadnic r, ϑ N,, ϑ 1, ϕ v E N Hypersférické souřadnice souvisejí s kartézskými souřadnicemi
KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
Řešení : Těleso T je elementárním oborem integrace vzhledem k rovině (x,y) a proto lze přímo aplikovat Fubiniovu větu pro trojný integrál.
E. rožíková, M. Kittlerová, F. Mrá: Sbírka příkladů Matematik II (6 III.6. Aplikace trojných integrálů Příklad 6. Užitím vorce pro výpočet objemu tělesa pomocí trojného integrálu (tj.v ddd ukažte, že objem
VEKTOROVÁ POLE Otázky
VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,
f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.
8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce
PRUŽNOST A PEVNOST 2 V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECNICKÁ UNIVEZITA OSTAVA FAKULTA STOJNÍ PUŽNOST A PEVNOST V PŘÍKLADEC Kvadratický moment I doc. Ing. Karel Frydrýšek, Ph.D., ING-PAED IGIP Ing. Milan Sivera Ing. ichard Klučka Ing.
Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f
Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,
ŘADY KOMPLEXNÍCH FUNKCÍ
ŘADY KOMPLEXNÍCH FUNKCÍ OBECNÉ VLASTNOSTI Řady komplexních čísel z n byly částečně probírány v kapitole o číselných řadách. Definice říká, že n=0 z n = z, jestliže z je limita částečných součtů řady z
Matematika pro chemické inženýry
Matematika pro chemické inženýry Drahoslava Janovská Plošný integrál Přednášky Z 216-217 ponzorováno grantem VŠCHT Praha, PIGA 413-17-6642, 216 Povinná látka. Bude v písemkách a bude se zkoušet při ústní
Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky
Kapitola 8 Plocha a její obsah 1 efinice plochy Plochu intuitivně chápeme jako útvar v prostoru, který vznikne spojitou deformací části roviny Z geometrického pohledu je plochu možno interpretovat jako
Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,
Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,
5. Lokální, vázané a globální extrémy
5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,
Vlastní čísla a vlastní vektory
5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi
1. Přirozená topologie R n
Příklady PŘÍKLADY A CVIČENÍ. Přirozená topologie R n. Dokažte, že čtverec M = {(x, y) R n ; x + y } je kompaktní množina. Řešení: Stačí ukázat, že množina M je uzavřená a ohraničená. Uzavřenost lze dokázat
Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s
Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
F (x) = f(x). Je-li funkce f spojitá na intervalu I, pak existuje k funkci f primitivní funkce na intervalu I.
KAPITOLA 7: 7. Úvod Primitivní funkce [MA-6:P7.] Definice: Funkce F je primitivní funkcí k funkci f na intervalu I, jestliže pro každé I eistuje F a platí F f. Poznámky: Obsahuje-li I některý z krajních
f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =
Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu
EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH
EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R
Diferenciální rovnice 1
Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.
Elementární křivky a plochy
Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin
Aproximace posuvů [ N ],[G] Pro každý prvek se musí nalézt vztahy
Aproimace posuvů Pro každý prvek se musí nalézt vztahy kde jsou prozatím neznámé transformační matice. Neznámé funkce posuvů se obvykle aproimují ve formě mnohočlenů kartézských souřadnic. Například 1.
Funkce a základní pojmy popisující jejich chování
a základní pojmy ující jejich chování Pro zobrazení z reálných čísel do reálných čísel se používá termín reálná funkce reálné proměnné. 511 f bude v této části znamenat zobrazení nějaké neprázdné podmnožiny
Základní topologické pojmy:
Křivky Marie Ennemond Camille Jordan (88 9): Křivka je množina bodů, která je surjektivním obrazem nějakého intervalu Giuseppe Peano (858 9): Zobrazení intervalu na čtverec Wacław Franciszek Sierpiński
1. Definiční obor funkce dvou proměnných
Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou
11. cvičení z Matematiky 2
11. cvičení z Mateatiky. - 6. května 16 11.1 Vypočtěte 1 x + y + z dv, kde : x + y + z 1. Věta o substituci á analogický tva a podínky pouze zanedbatelné nožiny nyní zahnují i plochy, oviny atd.: f dv
Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "
ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje
PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.
PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
VEKTOROVÁ POLE VEKTOROVÁ POLE
Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x, y), f 2 (x, y)) jako vektor s
Matematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
Kapitola List v prostoru R 3 a jeho parametrizace
Kapitola 4 Plošné integrály 4. ist v prostoru R 3 a jeho parametrizace Klíčová slova: přípustná oblast, zanedbatelná množina, list v R 3, parametrizace listu, obor parametrů, kraj listu, tečné vektorové
1 Analytická geometrie
1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice
Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,
Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()
Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].
Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.
Derivace goniometrických. Jakub Michálek,
Derivace goniometrických funkcí Jakub Michálek, Tomáš Kučera Shrnutí Odvodí se základní vztahy pro derivace funkcí sinus a cosinus za pomoci věty o třech limitách, odvodí se také dvě důležité limity. Vypočítá
Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32
Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;
PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE
PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí