Automaty a gramatiky
|
|
- Ján Havlíček
- před 7 lety
- Počet zobrazení:
Transkript
1 5 Automty grmtiky Romn Brták, KTIML Co ylo minule Množinové operce s jzyky sjednocení, pr nik, rozdíl, dopln k uzv enost opercí (lgoritmus p evodu) et zcové operce nd jzyky z et zení, mocniny, pozitivní/oecná iterce, zrcdlový orz kvocienty derivce (zlev, zprv) uzv enost opercí (lgoritmus p evodu) Sustituce homomorfismus jzyk Regulární jzyk jko slou enin elementární jzyky (prázdný, jednopísmenný) + operce sjednocení, z et zení, iterce Kleeneov v t Jzyk je regulární práv když je rozpozntelný kone ným utomtem. Automty grmtiky, Romn Brták
2 D kz Kleeneovy v ty v ty jzyky rozpozntelné kone nými utomty jsou regulární máme utomt A=(Q,X,δ,q,F), který definuje jzyk L(A) chceme ukázt, že L(A) dostneme z elementárních jzyk opercí definujme R ij = {w X* δ*(q i,w)=q j } slov p evád jící stv q i n q j potom L(A) = qi F R i slov p evád jící po áte ní stv q n n jký koncový stv q i jsou jzyky R ij regulární pokud no, potom L(A) je tké regulární, protože zchovává regulárnost definujme R k ij =slov p evád jící stv q i n q j ez mezipr chodu stvy q m m>k z ejm R ij = R n ij (n je po et stv utomtu) jsou jzyky R k ij regulární R 0 ij je regulární (žádné mezistvy, tj. mximáln jednopísmenná slov) R k+ ij = Rk ij Rk i,k+.(rk k+,k+ )*. Rk k+,j je regulární (sjednocení iterce regulárních jzyk ) i k+ j Automty grmtiky, Romn Brták Alterntivní d kz Kleeneovy v ty jzyky rozpozntelné kone nými utomty jsou regulární Indukcí podle po tu hrn v nedeterministickém utomtu A = (Q,X,δ,S,F) pro dný jzyk L(A) žádná hrn pouze jzyky neo {} (n+) hrn vyereme si jednu hrnu: p q tj. q δ(p,) sestrojíme ty i utomty ez této hrny (δ ) A = (Q,X,δ,S,F) A = (Q,X,δ,S,{p}) A = (Q,X,δ,{q},{p}) A 4 = (Q,X,δ,{q},F) Potom L(A) = L(A ) (L(A ).).(L(A ).)*L(A 4 ) Jzyky L(A ), L(A ), L(A ), L(A 4 ) jsou regulární (n hrn) p q 4 Automty grmtiky, Romn Brták
3 Regulární výrzy Množin regulárních výrz RV(X) nd kone nou neprázdnou ecedou X={x,,x n } je nejmenší množin slov v eced {x,,x n,,, +,.,*, (,)}, která: oshuje výrz výrz RV(X), RV(X) pro kždé písmeno x X oshuje výrz x x RV(X) α,β RV(X) (α+β) RV(X) α,β RV(X) (α.β) RV(X) α RV(X) α* RV(X) P íkld: ((+((.c)+d)*)+e) Konvence: vn jší závorky lze vynecht (+((.c)+d)*)+e závorky lze vynecht u. + díky socitivit +((.c)+d)*+e te ku lze vynecht +((c)+d)*+e priorit opercí (nejvyšší) *,., + (nejnižší) +(c+d)*+e Automty grmtiky, Romn Brták Hodnot regulárního výrzu Hodnotou regulárního výrzu α RV(X) je množin slov [α] (jzyk) definovná následovn : [] =, [] ={}, [x] = {x} [(α+β)] =[α] [β] [(α.β)] = [α]. [β] [α*] = [α]* Regulární výrzy odpovídjí regulárním jzyk m hodnotou regulárního výrzu je regulární jzyk kždý regulární jzyk lze reprezentovt pomocí regulárního výrzu (jzyk je hodnotou tohoto výrzu) P íkldy: [(+)* + (+)*(+)* + (+)*] = = { w w=u w=uv w=u, u,v {,}* } [(0*0*0*)*0*] = = {w w {0,}*, w =k } Automty grmtiky, Romn Brták
4 Použití regulárních výrz Prktický p ehledný zápis jzyk Teoretický zjednodušení n kterých d kz V t: L F, x X σ(x) F σ (L) F L σ(x) jsou regulární jzyky, lze je tedy reprezentovt regulárními výrzy kždý výskyt x ve výrzu pro L st í nhrdit výrzem pro σ(x) Rozší ené regulární výrzy máme i dlší regulární operce, np. pr nik (α & β) Ekvivlence regulárních výrz α β jestliže [α] = [β] (tj. výrzy reprezentují stejné jzyky) P íkld: (0*)* + (0+)* Jk to zjistíme Automty grmtiky, Romn Brták P evod regulárního výrzu n kone Metod (inkrementální): p eve elementární jzyky (prázdný, jednopísmenné) spoj použitím regulárních opercí podle výrzu ný utomt Metod (p ímá) +(c+d)*+ o ísluj symoly ve výrzu (zlev do doprv) +( c +d 4 )*+ 5 zjisti všechny možné páry symol, které se c, c d 4, c, mohou vyskytovt z seou d 4 d 4, d 4 zjisti symoly, které mohou ýt první ve slov,, d 4, 5 zjisti symoly, které mohou ýt poslední ve slov, c, d 4, 5 zjisti, zd jzyk oshuje prázdné slovo ANO vytvo nedeterministický utomt stvy: s + o íslovné symoly po átek = s konec = poslední symoly (+s pro ) p echody: s první symol x i x j, pokud je pár x i x j s d 4 5 c c d d d Automty grmtiky, Romn Brták 4
5 Od utomtu k regulárnímu výrzu 4, Pomocí Kleeneovy v ty: R 0 ij R k+ ij = Rk ij Rk i,k+.(rk k+,k+ )*. Rk k+,j Pozn.: uzel 4 m žeme ignorovt (nevedou p es n j žádné cesty do osttních uzl ) R 0 R R R ( ) * ( ) * ( ) * ( ) * + ( ) * ( ) * Automty grmtiky, Romn Brták Od utomtu k regulárnímu výrzu (p íkld ) Pomocí Kleeneovy v ty: R 0 ij R k+ ij = Rk ij Rk i,k+.(rk k+,k+ )*. Rk k+,j R R * * + + * R * * + * * + * R (+)* (+)* + * + * + Automty grmtiky, Romn Brták 5
6 Od utomtu k regulárnímu výrzu jink Ohodnocení hrn regulárním výrzem α Nejprve vytvo íme utomt s jedním vstupem jedním výstupem q 0 A F spojení hrn α α+β β elimince smy ek α β α * β β n α * β n elimince vrchol α α m β β n α m β α β α β n α m β n Automty grmtiky, Romn Brták Od utomtu k regulárnímu výrzu v p íkld 4, T St í p idt pouze nový koncový stv. Eliminujeme smy ku 4. Eliminujeme uzel 4. Eliminujeme uzel. T Eliminujeme smy ku. ( ) * T Eliminujeme uzel. ( ) * T Automty grmtiky, Romn Brták 6
7 M žeme kone né utomty ješt zoecnit Kone ný utomt provádí následující innosti: p e te písmeno zm ní stv vnit ní jednotky posune tecí hlvu doprv tecí hlv se nesmí vrcet! Co když utomtu povolíme ovládání hlvy Pozor! Automt n pásku nic nepíše! Automty grmtiky, Romn Brták Dvousm rné (dvoucestné) kone né utomty Dvousm rným (dvoucestným) kone ným utomtem nzýváme p tici A = (Q,X,δ,q 0,F), kde: Q - kone ná neprázdná množin stv (stvový prostor) X - kone ná neprázdná množin symol (vstupní eced) δ - zorzení Q X Q {-,0,+} (p echodová funkce) p echodová funkce ur uje i pohy tecí hlvy q 0 Q (po áte ní stv) F Q (množin koncových stv ) Reprezentce: stvový digrm, tulk, stvový strom Automty grmtiky, Romn Brták 7
8 Po ítání s dvousm rnými utomty Kdy dvousm rný utomt p ijímá slovo Co se d je, je-li hlv mimo tené slovo Slovo w je p ijto dvousm rným kone ným utomtem, pokud: výpo et z l n prvním písmenu slov w vlevo v po áte ním stvu tecí hlv poprvé opustil slovo w vprvo v n kterém koncovém stvu mimo tené slovo není výpo et definován (výpo et zde kon í slovo není p ijto) q 0 w q F Automty grmtiky, Romn Brták P íkld dvousm rného utomtu Nejprve poznámk: ke slov m si m žeme p idt speciální koncové znky # X je-li L(A)= {#w# w L X*} regulární, potom i L je regulární L = # R # (L(A) #X*#) P íkld: L(B) = {#u# uu L(A)} Pozor! Toto není levý ni prvý kvocient! Nech A= (Q,X,δ,q,F), definujme dvousm rný kone ný utomt B=(Q Q Q {q 0, q N,q F }), X, δ, q 0, {q F }) tkto: δ x # poznámk q 0 q 0,- q,+ q p,+ q,- p= δ(q,x) q q,- q,+ q p,+ q F,+ q F, p= δ(q,x) q p,+ q N,+ q F, p= δ(q,x) q N q N,+ q N,+ q F q N,+ q N,+ # q 0 q u # q q q q N q F Automty grmtiky, Romn Brták 8
Automaty a gramatiky. Roman Barták, KTIML. Důkaz věty o isomorfismu reduktů. Věta o isomorfismu reduktů. Pro připomenutí
3 Automty grmtiky Romn Brták, KTIML rtk@ktimlmffcunicz http://ktimlmffcunicz/~rtk Pro připomenutí 2 Njít ekvivlentní stvy w X* δ*(p,w) F δ*(q,w) F Vyřdit nedosžitelné stvy 3 Sestrojit podílový utomt Automty
Automaty a gramatiky. Trochu motivace. Roman Barták, KTIML. rní jazyky. Regulárn. Kleeneova věta. L = { w w=babau w=uabbv w=ubaa, u,v {a,b}* }
ochu motivce L = { w w=u w=uv w=u, u,v {,}* } Automty gmtiky Romn Bták, KIML tk@ktiml.mff.cuni.cz htt://ktiml.mff.cuni.cz/~tk L = L L L, kde L = { w w=u, u {,}* }, L = { w w=uv, u,v {,}* } L = { w w=u,
Automaty a gramatiky
Automty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~rtk Úvod do formálních grmtik Grmtiky, všichni je známe, le co to je? Popis jzyk pomocí prvidel, podle kterých se vytvářejí
Automaty a gramatiky. Úvod do formáln. lních gramatik. Roman Barták, KTIML. Příklady gramatik
Úvod do formáln lních grmtik Automty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~rtk Grmtiky, všichni je známe, le co to je? Popis jzyk pomocí prvidel, podle kterých se vytvářejí
6. Zobrazení δ: (a) δ(q 0, x) obsahuje x i, x i Z. (b) δ(x i, y) obsahuje y j, x i y j P 7. Množina F je množinou koncových stavů.
Vzth mezi reg. výrzy kon. utomty Automty grmtiky(bi-aag) 7. Převody mezi reg. grm., reg. výrzy kon. utomty Jn Holu Algoritmus (okrčování): 6. Zorzení δ: () δ(, x) oshuje x i, x i Z. () δ(x i, y) oshuje
písemná a ústní část porozumění látce + schopnost formalizace
Automty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~rtk Orgnizční záležitosti Přednášk: n weu (http://ktiml.mff.cuni.cz/~rtk/utomty) Proč chodit n přednášku? Cvičení: dozvíte
Automaty a gramatiky(bi-aag)
BI-AAG (2011/2012) J. Holu: 3. Operce s konečnými utomty p. 2/33 Převod NKA ndka BI-AAG (2011/2012) J. Holu: 3. Operce s konečnými utomty p. 4/33 Automty grmtiky(bi-aag) 3. Operce s konečnými utomty Jn
Je regulární? Pokud ne, na regulární ji upravte. V původní a nové gramatice odvod te řetěz 1111.
Grmtiky. Vytvořte grmtiku generující množinu řetězů { n m } pro n, m N {} tková, že n m. Pomocí této grmtiky derivujte řetezy,. 2. Grmtik je dán prvidly S ɛ S A A S B B A B. Je regulární? Pokud ne, n regulární
Definice. Necht M = (Q, T, δ, q 0, F ) je konečný automat. Dvojici (q, w) Q T nazveme konfigurací konečného automatu M.
BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 2/3 Konfigurce konečného utomtu BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 4/3 Automty
Automaty a gramatiky. Organizační záležitosti. Přednáška: na webu (http://ktiml.mff.cuni.cz/~bartak/automaty) Proč chodit na přednášku?
Orgnizční záležitosti Atomty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cni.cz http://ktiml.mff.cni.cz/~rtk Přednášk: n we (http://ktiml.mff.cni.cz/~rtk/tomty) Proč chodit n přednášk? dozvíte se více než
Převody Regulárních Výrazů. Minimalizace Konečných. Regulární jazyky 2 p.1/35
Převody Regulárních Výrzů Minimlizce Konečných Automtů Regulární jzyky 2 p.1/35 Kleeneho lger Definice 2.1 Kleeneho lger sestává z neprázdné množiny se dvěm význčnými konstntmi 0 1, dvěm inárními opercemi
Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 7. března / 46
Formální jzyky Z. Sw (VŠB-TUO) Úvod do teoretické informtiky 7. řezn 2012 1/ 46 Teorie formálních jzyků motivce Příkldy typů prolémů, při jejichž řešení se využívá pozntků z teorie formálních jzyků: Tvor
Minimalizace automatů. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 28. března / 31
Minimlizce utomtů M. Kot, Z. Sw (VŠB-TU Ostrv) Úvod do teoretické informtiky 28. řezn 2007 1/ 31 Ekvivlence utomtů 1 2 3 1 2 3 1 2 Všechny 3 utomty přijímjí jzyk všech slov se sudým počtem -ček Nejvýhodnějšíjepronásposledníznich-mánejméněstvů
Automaty a gramatiky. Pro připomenutí. Roman Barták, KTIML. Důkaz věty o dvousměrných automatech (1)
4 Automty gmtiky omn Bták, KTIML tk@ktiml.mff.cuni.cz htt://ktiml.mff.cuni.cz/~tk Po řiomenutí Automt může tké ovládt čtecí hlvu dvousměný (dvoucestný) utomt řechodová funkce: Q X Q {-,,+} Slovo w je řijto
2.5.4 Věta. Každý jazyk reprezentovaný regulárním výrazem je regulárním jazykem.
2.5. Regulární výrzy [181012-1111 ] 21 2.5 Regulární výrzy 2.5.1 Regulární jzyky jsme definovli jko ty jzyky, které jsou přijímány konečnými utomty; ukázli, že je jedno, zd jsou deterministické neo nedeterministické.
Úvod 1. 3 Regulární jazyky Konečné jazyky Pumping Lemma pro regulární jazyky a nekonečné jazyky Sjednocení...
Osh Úvod 1 1 Teoretická informtik 2 1.1 Vznik vývoj teoretické informtiky................... 2 1.1.1 Mtemtik............................. 2 1.1.2 Jzykověd............................. 5 1.1.3 Biologie...............................
Teorie jazyků a automatů I
Šárk Vvrečková Teorie jzyků utomtů I Sírk úloh pro cvičení Ústv informtiky Filozoficko-přírodovědecká fkult v Opvě Slezská univerzit v Opvě Opv, poslední ktulizce 5. květn 205 Anotce: Tto skript jsou určen
MULTIDIMENSIONÁLNÍ JAZYKY A JEJICH AUTOMATY MULTI-DIMENSIONAL LANGUAGES AND THEIR AUTOMATA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS MULTIDIMENSIONÁLNÍ
Teorie jazyků a automatů
Slezská univerzit v Opvě Filozoficko-přírodovědecká fkult v Opvě Šárk Vvrečková Teorie jzyků utomtů Skript do předmětů II Zákldy teoretické informtiky Ústv informtiky Filozoficko-přírodovědecká fkult v
Úvod do Teoretické Informatiky (456-511 UTI)
Úvod do Teoretické Informtiky (456-511 UTI) Doc. RNDr. Petr Hliněný, Ph.D. petr.hlineny@vs.cz 25. ledn 2006 Verze 1.02. Copyright c 2004 2006 Petr Hliněný. (S využitím části mteriálů c Petr Jnčr.) Osh
Vnit ní síly ve 2D - p íklad 2
Vnit ní síly ve D - p íkld Orázek 1: Zt ºoví shém. Úkol: Ur ete nlytiké pr hy vnit níh sil n konstruki vykreslete je. e²ení: Pro výpo et rekí je vhodné si spojité ztíºení nhrdit odpovídjíím náhrdním emenem.
Teorie jazyků a automatů
Šárk Vvrečková Teorie jzyků utomtů Sírk příkldů pro cvičení II Zákldy teoretické informtiky Ústv informtiky Filozoficko-přírodovědecká fkult v Opvě Slezská univerzit v Opvě Opv 24. listopdu 2016 Anotce:
Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková
Tento text není smosttným studijním mteriálem. Jde jen o prezentci promítnou n p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze n tbuli nejsou zde obsºeny. Text m ºe
pokud A Rat(M), pak také A Rat(M).
Kone né automaty Pojem automat je historicky spojen s n jakou konstruktivní, algoritmickou procedurou rozhodující n jaký problém, i abstraktn ji e eno, rozhodující o tom, zda n jaký prvek pat í do dané
Formální jazyky. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 6. března / 48
Formální jzyky M. Kot, Z. Sw (VŠB-TU Ostrv) Úvod do teoretické informtiky 6. březn 2007 1/ 48 Motivce 1: Vyhledávání v textu Potřebujeme řešit následující problém: Máme řdu různých textů(npř. soubory n
Regulární výrazy. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
Regulární výrazy M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března 2007 1/ 20 Regulární výrazy Jako například v aritmetice můžeme pomocí operátorů + a vytvářet výrazy jako (5+3)
je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5.
10. Komplexní funkce reálné proměnné. Křivky. Je-li f : (, b) C, pk lze funkci f povžovt z dvojici (u, v), kde u = Re f v = Im f. Rozdíl proti vektorovému poli je v tom, že jsou pro komplexní čísl definovány
10. Suffixové stromy 1 2014-01-23
10. Suffixové stromy V této kpitole popíšeme jednu pozoruhodnou dtovou strukturu, pomocí níž dokážeme prolémy týkjící se řetězců převádět n grfové prolémy řešit je tk v lineárním čse. Řetězce, trie suffixové
TROJÚHELNÍK. JAN MALÝ UK v Praze a UJEP v Ústí n. L. sin α = b a.
TROJÚHELNÍK JAN MALÝ UK v Prze UJEP v Ústí n. L. 1. Zn ení. Uvºujme trojúhelník ABC, jeho strny i jejih délky jsou,,, úhly α, β, γ. Osh trojúhelník zn íme P. Vý²k spu²t ná z odu C n strnu se zn í v její
odvodit vzorec pro integraci per partes integrovat sou in dvou funkcí pouºitím metody per partes Obsah 2. Odvození vzorce pro integraci per partes
Integrce per prtes Speciální metod, integrce per prtes (integrce po ástech), je pouºitelná p i integrování sou inu ou funkcí. Tento leták oozuje zmín nou meto ilustruje ji n d p íkld. Abychom zvládli tuto
Deterministický konečný automat
Deterministický konečný utomt Formálně je deterministický konečný utomt definován jko pětice (Q,Σ,δ,q 0,F) kde: Q je konečná množin stvů Σ je konečná eced δ:q Σ Qjepřechodováfunkce q 0 Qjepočátečnístv
Plánováníá a rozvrhování
Plánováníá rozvrhování Romn Brták, KTIML romn.rtk@mff.uni.z z http://ktiml.mff.uni.z/~rtk N úvod Plánoví prolém P je trojie (Σ,s 0,g) Σ je plánoví domén popisujíí stvy ke (přehody ř mezi stvy) s 0 je počáteční
Vztah jazyků Chomskeho hierarchie a jazyků TS
Vztah jazyků Chomskeho hierarchie a jazyků TS Jan Konečný; (přednáší Lukáš Havrlant) 15. října 2013 Jan Konečný; (přednáší Lukáš Havrlant) Chomskeho hierarchie a jazyky TS 15. října 2013 1 / 23 Rychlé
Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz
PES Petriho sítě p. 1/34 Petriho sítě PES 2007/2008 Prof. RNDr. Miln Češk, CS. esk@fit.vutr.z Do. Ing. Tomáš Vojnr, Ph.D. vojnr@fit.vutr.z Sz: Ing. Petr Novosd, Do. Ing. Tomáš Vojnr, Ph.D. (verze 06.04.2010)
Automaty a gramatiky. Uzávěrové vlastnosti v kostce R J BKJ DBKJ. Roman Barták, KTIML. Kvocienty s regulárním jazykem
11 Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Uzávěrové vlastnosti v kostce Sjednocení Průnik Průnik s RJ Doplněk Substituce/ homomorfismus Inverzní
íslicová technika Radek Maík Maík Radek 1
íslicová technik Rdek Mík Mík Rdek 1 íselné soustvy ritmetické operce Mík Rdek 2 Pevody mezi soustvmi (z10) Výsledek dostneme vyíslením z-dickéhoz dickéhoísl ve tvru dy. (101,11) 2 = 1.2 2 + 0.2 1 + 1.2
VIII. Primitivní funkce a Riemannův integrál
VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.
Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,
[161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p
4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.
4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost
Syntaxí řízený překlad
Syntaxí řízený překlad Překladový automat Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Zobecněný překladový automat Překladový automat
AUTOMATY VE VYHLEDÁVÁNI cvičeni
Czech Technicl University in Prgue Fculty of Informtion Technology Deprtment of Theoreticl Computer Science AUTOMATY VE VYHLEDÁVÁNI cvičeni Bořivoj Melichr Evropský sociální fond. Prh & EU: Investujeme
množina, na které je zavedena určitá struktura. Zejména, součet každých dvou prvků X = [x 1,..., x n ] R n,
Náplní předmětu bude klkulus R n R (přípdně R m ). Proč se zbývt funkcemi více proměnných? V prxi je čsto třeb uvžovt veličiny, které závisejí n více než jedné proměnné, npř. objem rotčního kužele závisí
Integrace pomocí substituce. Obsah. 1. Úvod 2 2. Integrace substitucí u = ax + b Nalezení. f(g(x)) g (x) dx pomocí substituce u = g(x) 6
Integrce pomocí sbstitce Existjí p ípdy, kdy je moºné vypo ítt zdánliv t ºké integrály pokd nejprve provedeme sbstitci. To má z následek zm n prom nné integrnd v p ípd r itých integrál se zm ní i jejich
/1: Teoretická informatika(ti) přednáška 4
456-330/1: Teoretická informatika(ti) přednáška 4 prof. RNDr Petr Jančar, CSc. katedra informatiky FI VŠB-TUO www.cs.vsb.cz/jancar LS 2009/2010 Petr Jančar (FI VŠB-TU) Teoretická informatika(ti) LS 2009/2010
Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra
Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel
( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}?
1.3.8 Intervly Předpokldy: 010210, 010301, 010302, 010303 Problém Množinu A = { x Z;2 x 5} zpíšeme sndno i výčtem: { 2;3; 4;5} Jk zpst množinu B = { x R;2 x 5}? A =. Jde o nekonečně mnoho čísel (2, 5 všechno
Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.
Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní
Turingovy stroje. Teoretická informatika Tomáš Foltýnek
Turingovy stroje Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Jaké znáte algebraické struktury s jednou operací? Co je to okruh,
Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA
Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním
2.8.5 Lineární nerovnice s parametrem
2.8.5 Lineární nerovnice s prmetrem Předpokldy: 2208, 2802 Pedgogická poznámk: Pokud v tom necháte studenty vykoupt (což je, zdá se, jediné rozumné řešení) zere tto látk tk jednu půl vyučovcí hodiny (první
Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu / 43
Zásobníkové automaty Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu 2018 1/ 43 Zásobníkový automat Chtěli bychom rozpoznávat jazyk L = {a i b i i 1} Snažíme se navrhnout zařízení (podobné konečným
doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je
28 [181105-1236 ] 2.7 Další uzávěrové vlastnosti třídy regulárních jazyků Z předchozích přednášek víme, že třída regulárních jazyků je uzavřena na sjednocení, průnik, doplněk, zřetězení, Kleeneho operaci
3.1.3 Vzájemná poloha přímek
3.1.3 Vzájemná poloh přímek Předpokldy: 3102 Dvě různé přímky v rovině mximálně jeden společný od Jeden společný od průsečík různoěžné přímky (různoěžky) P Píšeme: P neo = { P} Žádný společný od rovnoěžné
Podobnosti trojúhelníků, goniometrické funkce
1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší
Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:
IB102 Automaty, gramatiky a složitost, 6. 10. 2014 1/29 Regulární výrazy Definice 2.58. Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: 1 ε, a a pro každé a
H - Řízení technologického procesu logickými obvody
H - Řízní tchnologického procsu logickými ovody (Logické řízní) Tortický úvod Součástí řízní tchnologických procsů j i zjištění správné posloupnosti úkonů tchnologických oprcí rozhodování o dlším postupu
Integrál a jeho aplikace Tomáš Matoušek
Integrál jeho plikce Tomáš Mtoušek Křivk Definice.(Vektorováfunkce) Funkci ϕ:r R n,kteráreálnémučíslupřiřzuje n-tici reálných čísel(vektor), nzýváme funkcí vektorovou. Lze ji tké popst po složkáchjko ϕ(t)=(ϕ
3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru
Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém
Pravoúhlý trojúhelník goniometrické funkce. Výpočet stran pravoúhlého trojúhelníka pomocí goniometrických funkcí
Prvoúhlý trojúhelník goniometrické funkce V prvoúhlém trojúhelníku ABC jsou definovány funkce úhlu : sin, cos, tg, cotg tkto: sin c cos c tg cot g protilehlá odvěsn ku přeponě přilehlá odvěsn ku přeponě
ě ýúř Ý Í ý ě ýť ř ý úř ř ý ú ř ě ě Ť ů ú Í ú ě ř é ř ě ě ř é Ť ý ů ř é ř é é ř é ú é ě ř ř ř ý ý é ě ř ř ř ý ý ě é ě ž é é ě é ř ř é ř é é ý ě ě ř ř ř ý ý é ř ř ý ý ý ř ř ř ý ě Í é ě ú ě ý é ě Í ě Í ě
Návrh základních kombinačních obvodů: dekodér, enkodér, multiplexor, demultiplexor
Předmět Ústv Úloh č. 2 BDIO - Digitální obvody Ústv mikroelektroniky Návrh zákldních kombinčních obvodů: dekodér, enkodér, multiplexor, demultiplexor Student Cíle Porozumění logickým obvodům typu dekodér,
Spojitost funkce v bodě, spojitost funkce v intervalu
10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí
56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25
56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou
6. Určitý integrál a jeho výpočet, aplikace
Aplikovná mtemtik 1, NMAF071 6. Určitý integrál výpočet, plikce T. Slč, MÚ MFF UK ZS 2017/18 ZS 2017/18) Aplikovná mtemtik 1, NMAF071 6. Určitý integrál 1 / 13 6.1 Newtonův integrál Definice 6.1 Řekneme,
Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 2. března / 32
Formální jazyky Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 2. března 2017 1/ 32 Abeceda a slovo Definice Abeceda je libovolná neprázdná konečná množina symbolů(znaků). Poznámka: Abeceda se často
Ur itý integrál. Úvod. Denice ur itého integrálu
V tomto lánku se budeme v novt ur itému integrálu, který dné funkci p i zuje íslo. My²lenk integrování pochází z geometrických poºdvk - zji² ování povrch, objem délek geometrických útvr. To znmená, ºe
8. Elementární funkce
Historie přírodních věd potvrzuje, že většinu reálně eistujících dějů lze reprezentovt mtemtickými model, které jsou popsán tzv. elementárními funkcemi. Elementární funkce je kždá funkce, která vznikne
( a) Okolí bodu
0..5 Okolí bodu Předpokldy: 40 Pedgogická poznámk: Hodin zjevně překrčuje možnosti většiny studentů v 45 minutách. Myslím, že nemá cenu přethovt do dlší hodiny, příkldy s redukovnými okolími nejsou nutné,
ROZVAHA. ve zjednodušeném rozsahu ke dni 31. prosince 2013. ( v celých tisících Kč ) IČ. A. Pohledávky za upsaný základní kapitál.
Zprcováno v souldu s vyhláškou č. 500/2002 S. ve znění pozdějších předpisů ROZVAHA ve zjednodušeném rozshu ke dni 31. prosince 2013 ( v celých tisících Kč ) IČ 26213486 Ochodní firm neo jiný název účetní
Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)
KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1
ú ú ě úř ř ú ú ý úř ř ú ř ěř ú ú ú ú ý ý ý ý ř ž ř š ř ú ó ú ěž ú ý ě ť ě ě ř ř ě ý ý ř ě ř ě ó ě ú ú ú ú ú ú ó ú ř ú ú ě ť ě ý ř ě ý ý ř ů Ň ť ú ř ě ú ě ř ú ě ú ž ú ú ř ú ů ž ú ý úř ř ř š ě ý ú ů ú ú
Formální jazyky a automaty Petr Šimeček
Formální jazyky a automaty Petr Šimeček Úvod Formální jazyky a automaty jsou základním kamenem teoretické informatiky. Na počátku se zmíníme o Chomského klasifikaci gramatik, nástroje, který lze aplikovat
2. referát (Pruºnost a pevnost I.)
2. referát (Pruºnost a pevnost I.) 1 Zadání. 1 aº 16 Zadána je prutová konstrukce dle obrázku 1 sestávající se ze t í prut. Oba krajní pruty jsou vzhledem k symetrii ozna eny íslem 2, prost ední prut pak
matematika vás má it naupravidl
VÝZNAM Algebrický výrz se zvádí intuitivn bez p esn ího vmezení v kolizi s názv dvoj len, troj len, mnoho len. Stále se udr uje fle ná p edstv, e ísl ozn ují mno ství, e jsou zobecn ním vnímné skute nosti.
Čísla značí použité pravidlo, šipka směr postupu Analýza shora. Analýza zdola A 2 B 3 B * C 2 C ( A ) 1 a A + B. A Derivace zleva:
1) Syntaktická analýza shora a zdola, derivační strom, kanonická derivace ezkontextová gramatika gramatika typu 2 Nechť G = je gramatika typu 1. Řekneme, že je gramatikou typu 2, platí-li: y
Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia
- - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin
Stereometrie metrické vlastnosti 01
Stereometrie metrické vlstnosti 01 Odchylk dvou přímek Odchylk dvou různoběžek je velikost kždého z ostrých nebo prvých úhlů, které přímky spolu svírjí. Odchylk rovnoběžek je 0. Odchylk mimoběžných přímek
Větu o spojitosti a jejich užití
0..7 Větu o spojitosti jejich užití Předpokldy: 706, 78, 006 Pedgogická poznámk: Při proírání této hodiny je tře mít n pměti, že všechny věty, které studentům sdělujete z jejich pohledu neuvěřitelně složitě
Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení.
4. Booleov lger Booleov lger yl nvržen v polovině 9. století mtemtikem Georgem Boolem, tehdy nikoliv k návrhu digitálníh ovodů, nýrž jko mtemtikou disiplínu k formuli logikého myšlení. Jko příkld použijeme
Základy teoretické informatiky Formální jazyky a automaty
Základy teoretické informatiky Formální jazyky a automaty Petr Osička KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI Outline Literatura Obsah J.E. Hopcroft, R. Motwani, J.D. Ullman Introduction to
2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky.
2.cvičení 1. Polopřímk: od O dělí přímku n dvě nvzájem opčné polopřímky. Úsečk: průnik dvou polopřímek,. Polorovin: přímk dělí rovinu n dvě nvzájem opčné poloroviny. Úhel: průnik polorovin (pozor n speciální
Logické obvody. Logický obvod. Rozdělení logických obvodů - Kombinační logické obvody. - Sekvenční logické obvody
Logické ovody Cílem této kpitoly je sezn{mit se s logickými ovody, se z{kldním rozdělením logických ovodů, s jejich některými typy. Tké se nučíme nvrhovt logické ovody. Klíčové pojmy: Logický ovod,kominční
Návrh realizace transformátoru Thane C. Heinse
- 1 - Návrh realizace transformátoru Thane C. Heinse (c) Ing. Ladislav Kopecký, duben 2016 V lánku Bi-toroidní transformátor Thane C. Heinse byl uveden princip vynálezu Thane Heinse, jehož základní myšlenkou
Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ
Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá
je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné
1. Prciální derivce funkce více proměnných. Prciální derivce funkce dvou proměnných. Je-li funkce f f(, ) definován v množině D f R 2 bod ( 1, 2 ) je vnitřním bodem množin D f, pk funkce g 1 (t) f(t, 2
P íklady k procvi ení znalostí na písemnou ást bakalá ské státní zkoušky. Elektrické obvody:
P íkldy k procvi ení znlostí n písemno ást klá ské státní zkošky Elektrické ovody: 1. Stnovte st ední efektivní hodnot prod, jehož sový pr h je n orázk: 2. Stnovte st ední efektivní hodnot np tí o mplitd
Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním
Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož
NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.
NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:
Kapitola 1. Formální jazyky. 1.1 Formální abeceda a jazyk. Cíle kapitoly: Cíle této části: Klíčová slova: abeceda, slovo, jazyk, operace na jazycích
Kpitol 1 Formální jzyky Cíle kpitoly: Po prostudování kpitoly máte plně rozumět pojmům jko(formální) beced, slovo, jzyk, operce n slovech jzycích; máte zvládt práci s těmito pojmy n prktických příkldech.
2. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ
. INTEGRÁLNÍ POČET FUNKE JEDNÉ PROMĚNNÉ Při řešení technických prolémů, ve fyzice pod. je velmi čsto tře řešit orácenou úlohu k derivování. K zdné funkci f udeme hledt funkci F tkovou, y pltilo F f. Budeme
Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.
BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 2/41 Formální překlady BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 4/41 Automaty a gramatiky(bi-aag) 5. Překladové konečné
Reprezentovatelnost částek ve dvoumincových systémech
Reprezentovtelnost částek ve dvoumincových systémech Jn Hmáček, Prh Astrkt Máme-li neomezené množství mincí o předepsných hodnotách, může se stát, že pomocí nich nelze složit některé částky Pro jednoduchost
ě ý úř ě Č ý ú é š ě Ý ř ě žé Ť é ý Č é ě é ý é ě Č ě ó Č Č ě Č ž ř é ž š Í Í ě ý úř ý é é Č é ž é ě é Č é ž Í ý ůž ý é ř ů ú é ů é é é ú ů é ú ě é ú é š ě ý ý ú é ď ř ž ž ř é ě ř ž ř š šť ťň é é é é é
( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.
Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou
Limity, derivace a integrály Tomáš Bárta, Radek Erban
Limity, derivce integrály Tomáš Bárt, Rdek Erbn Úvod Definice. Zobrzení(téžfunkce) f M Njemnožinuspořádnýchdvojic(x, y) tková,žekekždému xexistujeprávějedno y,žedvojice(x,y) f.tj.kždývzor xmáprávějedenobrz
II. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y)
. NTEGRÁL V R n Úvod Určitý integrál v intervlu, b Pro funki f :, b R jsme definovli určitý integrál jko číslo, jehož hodnot je obshem obrze znázorněného n obrázíh. Pro funki f : R n R budeme zvádět integrál
10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí
10 Určitý integrál 10.1 Riemnnův integrál Definice. Konečnou posloupnost {x j } n j=0 nzýváme dělením intervlu [,b], jestliže pltí = x 0 < x 1 < < x n = b. Body x 0,...,x n nzýváme dělícími body. Normou
Ě Ý ÚŘ Ť č š č š Č Ý š é č š č ž š č č š č š Ě Ů é š Ě č š č ž š č č š é š é Č é é Š č Š č Č š č é é č Ť ž č č ž é é é č é š č š Ú Ť é š č é č ň Č Š é š é š ž Č š č Ť š Č č ú ň Ě Ě č Ě š ž š Č č š š č
Ú Ú Ú š ě š ě Ú ž ů ě ž ů š ě Š Ě ú Á Ř Ř š Ě ň Ú Ú ě ě Ú ě ú ů Ú ú ě ě ú ú š Ú Ú š ě Ú Ú ú ž Ú ů ě Ú Ú š ů š ú Ú ě ž ů Ú ě ú ů ů ů ň ě ú ž ě ůú ě ú ů ů Ř Ř Ú ú ě š ě ž Ú ě š ě ě ú ě ě ú ě Ú Ú š ě ě ú
Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů
BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické