INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL

Rozměr: px
Začít zobrazení ze stránky:

Download "INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL"

Transkript

1 INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci využit, to je souvislost s křivkovým integrálem jeho nezávislost n cestě. Pokud nebude uvedeno jink, uzvřená křivk je orientován kldně. Nejdříve je nutné vysvětlit, jk bude vypdt odpovídjící křivkový integrál. Necht f je funkce n otevřené množině G. Pole jí odpovídjící je komplexní pole f, if). Potřebuje se vyjádřit křivkový integrál 2.druhu tohoto pole po křivce v G vyjádřené prmetricky funkcí Φ =, ψ) : [, b] G: f dx + if dy) = = f x, y) + if 2 x, y) ) dx + if x, y) f 2 x, y) ) dy f x, y) dx f 2 x, y) dy + i f 2 x, y) dx + f x, y) dy b f t), ψt)) t) f 2 t), ψt))ψ t) ) dt + = b + i f2 t), ψt)) t) + f t), ψt))ψ t) ) dt b = f t), ψt)) + if 2 t), ψt)) ) t) dt + b + f t), ψt)) + if 2 t), ψt)) ) iψ t) dt b b = ft) + iψt)) t) + iψ t)) dt = fφt))φ t) dt. DEFINIE. Integrály v předchozí rovnosti se znčí fz) dz nzývjí se integrál funkce f po křivce nebo, pokud křivk není podsttná, křivkový integrál funkce f. Tedy b fz) dz = fφt))φ t) dt. Připomeňte si, že křivkový integrál prvního druhu funkce f po téže křivce je roven b f ds = ft), ψt)) 2 t) + ψ 2 t) dt = Smotný výpočet křivkového integrálu je podle vzorečku typu kuchřk sndný. b fz) dz = fφt))φ t) dt b fφt)) Φ t) dt. Klsická záležitost bude nzávislost tohoto integrálu n zvolené prmetrizci dné křivky.

2 Protože definice fz) dz je vlstně známý křivkový integrál 2.druhu, je sndné přepst pro tento speciální přípd jeho vlstnosti: VĚTA. Necht f, g jsou funkce definovné n příslušných orientovných křivkách,, 2. Následující 3 rovnosti pltí, jkmile mjí smysl prvé strny. Čtvrtá vlstnost pltí, jkmile má smysl levá strn.. αfz) + βgz)) dz = α fz) dz + β gz) dz; 2. + fz) dz = 2 fz) dz + fz) dz; 2 3. fz) dz = fz) dz; 4. fz) dz fz) ds L) mx z fz), kde L) je délk křivky. Poznámky Příkldy Otázky PRIMITIVNÍ FUNKE Bude potřeb z teorie pole převést ještě jeden pojem, to pojem potenciální funkce. Dostne se pojem primitivní funkce, který je sice dosttečně jsný, le je lépe ho definovt i pro komplexní obor. DEFINIE. Funkce F se nzývá primitivní k funkci f n otevřené množině G, jestliže pro kždé z G pltí F z) = fz). VĚTA. Necht n oblsti U má funkce f derivci f. Pk pltí f z) dz = fβ) fα) pro libovolnou křivku jdoucí z bodu α do bodu β. Nyní je již možné uvést druhou část chrkterizce vektorového pole. Protože vnitřky uzvřených křivek ležících v G musí tké ptřit do G, je nutné předpokládt, že G je jednoduše souvislá. VĚTA. Následující podmínky jsou ekvivlentní pro funkci f mjící spojité prciální derivce.řádu svých složek n jednoduše souvislé oblsti G:. f je holomorfní n G; 2. integrály z f po křivkách ležících v G nezávisí n cestě tj. závisí jen n počátečním koncovém bodě křivky); 3. kždý integrál z f po jednoduché uzvřené křivce v G je nulový; 4. f má n G primitivní funkci F. Poznámky 2 Otázky 2 2 AUHYOVA VĚTA Předchozí větu přeformulujeme. Je to velmi důležité tvrzení proto bude zformulováno znovu z obecných předpokldů: 2

3 VĚTA. uchy) Necht f je holomorfní n jednoduché uzvřené křivce n jejím vnitřku. Potom je fz) dz = 0. Poznmenejme jk již bylo zmíněno v Poznámkách 2), je možné dokázt Greenovu větu bez předpokldu spojitosti použitých prciálních derivcí, nebo je možné dokázt přímo, že v implikci ) 3) není tto spojitost potřeb. Použije-li se obecná Greenov vět i pro vícenásobně souvislé oblsti, dostne se následující tvrzení: VĚTA. uchy) Necht,..., n jsou jednoduché uzvřené kldně orientovné křivky, přičemž,..., n leží uvnitř vnitřky křivek,..., n jsou nvzájem disjunktní. Necht f je holomorfní n jednoduché uzvřené křivce n jejím vnitřku kromě vnitřků křivek,..., n. Potom je n fz) dz = fz) dz. i= i uchyov vět se dostne pro n = 0. Tvrzení pro n = je velmi důležité, je vhodné ho zformulovt jko důsledek. DŮSLEDEK. Jestliže jednoduchá uzvřená křivk obshuje ve svém vnitřku jednoduchou uzvřenou křivku D obě jsou kldně orientovné, pk fz) dz = D fz) dz pro kždou funkci f holomorfní n obou křivkách mezi nimi. Tohoto důsledku se používá pro nhrzení komplikovné křivky jednodušší křivkou D, npř. kružnicí. Následující důležité tvrzení tkovéto náhrdy v důkzu využívá. Je to tzv. uchyův vzorec, z kterého vyplývá, že hodnoty holomorfní funkce uvnitř křivky jsou určeny hodnotmi n křivce. VĚTA. uchyův vzorec) Necht je jednoduchá uzvřená křivk f je holomorfní uvnitř n. Potom pro kždý bod w ležící ve vnitřku pltí fz) dz = fw). 2πi z w Vzoreček fz) dz = fw) 2πi z w počítá hodnotu funkce ve vnitřním bodě integrcí přes obvod množiny. Z pohledu diferenciálních rovnic zde uchyovy Riemnnovy podmínky) je to v pořádku. Řešení existuje je jednoznčné. Poznámky 3 Příkldy 3 Otázky 3 3 DŮSLEDKY AUHYOVA VZORE uchyův vzorec má mnoho důsledků. Nejdříve je vhodné si uvědomit, že lze používt větu z kpitoly o integrálech s prmetrem, která uvádí podmínky pro záměnu derivce integrálu: LEMMA. Necht fw, z) je komplexní funkce dvou komplexních proměnných, která je je spojitá ve druhé proměnné n jednoduché uzvřené křivce, holomorfní v první proměnné v oblsti G má v G spojité prciální derivce podle složek první proměnné. Potom funkce F w) = fw, z) dz je holomorfní v G pltí F w) = f w w, z) dz. Nyní slíbené důsledky uchyov vzorce. DŮSLEDEK. 3

4 . Holomorfní funkce v oblsti G má v G derivce všech řádů, pro které pltí vzorec f n) w) = n! fz) dz, 2πi z w) n+ kde je libovolná jednoduchá uzvřená křivk ležící i s vnitřkem v G bod w leží ve vnitřku. 2. Je-li f holomorfní v kruhu z w r, pk f n) w) n! rn mx{ fz); z w = r}. 3. Liouville) Kždá omezená celistvá funkce je konstntní. 4. Je-li nekonstntní funkce f holomorfní n uvnitř jednoduché uzvřené křivky, pk pro kždý bod w z vnitřku je fw) < mx{ fz) ; z }. Důsledkem předchozího prvního tvrzení je jednk fkt, že holomorfní funkce má spojité prciální derivce svých složek všech řádů), že hrmonické funkce mjí derivce všech řádů, že funkce mjící primitivní funkci je holomorfní. Tto poslední vlstnost dává již dříve slibovnou Morerovu větu bez předpokldu spojitosti prciálních derivcí): VĚTA. Morer) Necht c fz) dz = 0 pro kždou jednoduchou uzvřenou křivku ležící i s vnitřkem v otevřené množině G. Pk je f holomorfní. Liouvillov vět má jko jednoduchý důsledek zákldní větu lgebry: VĚTA. Kždý polynom P stupně spoň má nulový bod, tj. existuje z tk, že P z) = 0. Poznámky 4 Příkldy 4 Otázky STANDARDY z kpitoly INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL DEFINIE. Zápisem b fz) dz = fφt))φ t) dt. definujeme integrál funkce f po křivce prmetrizovné Φ nebo, pokud křivk není podsttná, nzýváme jej křivkový integrál funkce f. VĚTA. Necht f, g jsou funkce definovné n příslušných orientovných křivkách,, 2. Následující 3 rovnosti pltí, jkmile mjí smysl prvé strny. Čtvrtá vlstnost pltí, jkmile má smysl levá strn.. αfz) + βgz)) dz = α fz) dz + β gz) dz; 2. + fz) dz = 2 fz) dz + fz) dz; 2 3. fz) dz = fz) dz; 4

5 4. fz) dz fz) ds L) mx z fz), kde L) je délk křivky. PRIMITIVNÍ FUNKE DEFINIE. Funkce F se nzývá primitivní k funkci f n otevřené množině G, jestliže pro kždé z G pltí F z) = fz). VĚTA. Necht n oblsti U má funkce f derivci f. Pk pltí f z) dz = fβ) fα) pro libovolnou křivku jdoucí z bodu α do bodu β. VĚTA. Následující podmínky jsou ekvivlentní pro funkci f mjící spojité prciální derivce.řádu svých složek n jednoduše souvislé oblsti G:. f je holomorfní n G; 2. integrály z f po křivkách ležících v G nezávisí n cestě tj. závisí jen n počátečním koncovém bodě křivky); 3. kždý integrál z f po jednoduché uzvřené křivce v G je nulový; 4. f má n G primitivní funkci F. AUHYOVA VĚTA VĚTA. uchy) Necht f je holomorfní n jednoduché uzvřené křivce n jejím vnitřku. Potom je fz) dz = 0. VĚTA. uchy) Necht,..., n jsou jednoduché uzvřené kldně orientovné křivky, přičemž,..., n leží uvnitř vnitřky křivek,..., n jsou nvzájem disjunktní. Necht f je holomorfní n jednoduché uzvřené křivce n jejím vnitřku kromě vnitřků křivek,..., n. Potom je n fz) dz = fz) dz. i= i DŮSLEDEK. Jestliže jednoduchá uzvřená křivk obshuje ve svém vnitřku jednoduchou uzvřenou křivku D obě jsou kldně orientovné, pk fz) dz = D fz) dz pro kždou funkci f holomorfní n obou křivkách mezi nimi. Tohoto důsledku se používá pro nhrzení komplikovné křivky jednodušší křivkou D, npř. kružnicí. VĚTA. uchyův vzorec) Necht je jednoduchá uzvřená křivk f je holomorfní uvnitř n. Potom pro kždý bod w ležící ve vnitřku pltí fz) dz = fw). 2πi z w Vzoreček fz) 2πi z w dz = fw) 5

6 počítá hodnotu funkce ve vnitřním bodě integrcí přes obvod množiny. DŮSLEDKY AUHYOVA VZORE LEMMA. Necht fw, z) je komplexní funkce dvou komplexních proměnných, která je je spojitá ve druhé proměnné n jednoduché uzvřené křivce, holomorfní v první proměnné v oblsti G má v G spojité prciální derivce podle složek první proměnné. Potom funkce F w) = fw, z) dz je holomorfní v G pltí F w) = f w w, z) dz. Důsledky uchyov vzorce: DŮSLEDEK.. Holomorfní funkce v oblsti G má v G derivce všech řádů, pro které pltí vzorec f n) w) = n! fz) dz, 2πi z w) n+ kde je libovolná jednoduchá uzvřená křivk ležící i s vnitřkem v G bod w leží ve vnitřku. 2. Je-li f holomorfní v kruhu z w r, pk f n) w) n! rn mx{ fz); z w = r}. 3. Liouville) Kždá omezená celistvá funkce je konstntní. 4. Je-li nekonstntní funkce f holomorfní n uvnitř jednoduché uzvřené křivky, pk pro kždý bod w z vnitřku je fw) < mx{ fz) ; z }. Důsledkem předchozího prvního tvrzení je jednk fkt, že holomorfní funkce má spojité prciální derivce svých složek všech řádů), že hrmonické funkce mjí derivce všech řádů, že funkce mjící primitivní funkci je holomorfní. Tto poslední vlstnost dává již dříve slibovnou Morerovu větu bez předpokldu spojitosti prciálních derivcí): VĚTA. Morer) Necht c fz) dz = 0 pro kždou jednoduchou uzvřenou křivku ležící i s vnitřkem v otevřené množině G. Pk je f holomorfní. Liouvillov vět má jko jednoduchý důsledek zákldní větu lgebry: VĚTA. Kždý polynom P stupně spoň má nulový bod, tj. existuje z tk, že P z) = 0. K trdičnímu výkldu uchyovy věty ptří důkz uchyovy věty pro trojúhelník: VĚTA. Necht je funkce f holomorfní n otevřené množině U křivk popisuje obvod trojúhelník T U. Pk fz) dz = 0. Existuje jeden pěkný trikový důkz principu mxim modulu: Při výpočtu integrálu z dz pro křivku neprocházející počátkem můžeme křivku lokálně nhrzovt částmi jednotkové kružnice díky předchozí větě. 6

7 elkem můžeme přetvořit křivku n cestu procházející pouze jednotkovou kružnicí. Tkto integrci převedeme n známý integrál přes jednotkovou kružnici, který je roven 2πi. Tedy vidíme, že výsledek bude roven n-krát 2πi, kde n udává počet oběhů křivky okolo počátku proti směru hodinových ručiček). Obecně počítáme tento počet oběhů křivky cesty, cyklu) okolo dného bodu z 0 jko integrál dz 2πi z z 0 tomuto číslu říkáme index bodu z 0 ke křivce, znčíme indz 0, ). Index je spojitá, celočíselná užitečná funkce. Index vzroste o jedničku, pokud přeskočíme přes křivku zprv dolev. Vlstnost o nbývání mxim bsolutní hodnoty holomorfní funkce f n hrnici je možné použít i n nbývání minim stčí vzít /f. Je-li nekonstntní funkce f holomorfní n uvnitř jednoduché uzvřené křivky nenbývá tm nikde hodnoty 0, pk pro kždý bod w z vnitřku je fw) > min{ fz) ; z }. Příkld. Spočtěte z w)n dz pro n Z, kde je kružnice se středem v bodě w. Řešení. Popis kružnice je w + re it, t [0, 2π], výsledek je 0 pro n, 2πi pro n =. Příkld. Spočtěte pomocí obecné uchyovy věty integrál dz zz 2 + 6), kde se skládá ze dvou kružnic: z = orientovné kldně z = 3 orientovné záporně. Příkld. Pomocí uchyovy věty spočtěte z2 ) dz přes kružnici o středu 0 poloměru 2. Řešení. Zlomek z 2 ) se rozloží: z 2 = 2 z ) z + podle obecné uchyovy věty nyní stčí spočítt integrály zlomků /z ) /z +) přes kružnice z = z + = vyjde 2πi) odečíst je. Příkld. Pomocí derivce uchyov vzorce vypočtěte integrály jsou jednoduché uzvřené křivky obshující 0 ve svém vnitřku): cosh z cos z e z2 z 4 dz, z 3 dz, z 2 dz. Příkld. Funkce /z je holomorfní n \ {0}. Ukžte, že nemá n svém definičním oboru primitivní funkci. Příkld. Ukžte, že dvě primitivní funkce k f n oblsti G se liší o konstntu. Příkld. Spočítejte křivkový integrál kde je kldně orientovný obvod jednotkového kruhu z dz, {z : z < }. Řešení. Budeme integrovt po křivce t) = e it pro t [0, 2π]. 2π z dz = 2π 0 e it ieit dt = i dt = 2πi. 0 7

8 Příkld. Vypočítejte integrál ze z dz, ψ podél křivky ψt) = t + it 3, 0 t, orientovné ve směru vzrůstu prmetru t. Řešení. Můžeme sice postupovt jko dříve, tj. doszením prmetrizce do integrndu, le jednodušší bude použít větu o integrci primitivní funkce. Funkce ze z je holomorfní n, tkže k ní existuje primitivní funkce F. Tu nvíc sndno spočítáme per-prtes. Tedy F z) = z )e z, hledný integrál je roven ze z dz = F ψ)) F ψ0)) = F + i) F 0) ψ = + ie i+ = e sin + ie cos. Příkld. Spočítejte integrál e 2z z + ) 4 dz, kde = {z : z = 3}. Řešení. Oznčme fz) = e 2z, pk podle uchyov integrálního vzorce máme f n ) = n! fz) dz. 2πi z + ) n+ Pro n = 3 je f z) = 8e 2z, podle uvedeného vzorce dostneme vzth 8e 2 = 3! 2πi f ) = 8e 2 e 2z z + ) 4 dz. Odtud již sndno zjistíme, že zdný integrál má hodnotu e 2z z + ) 4 dz = i8 3 πe 2. Příkld. Spočítejte integrál 2xy x 2) dx + x + y 2) dy, kde je uzvřená pozitivně orientovná křivk ohrničující oblst vymezenou funkcemi y = x 2, x = y 2. Řešení. Zbývejme se nejdříve prvním přípdem, tj. y = x 2. Integrál prmetrizujeme: 0 2x)x 2 ) x 2) dx + x + x 2 ) 2) dx 2 ) = Podobně tomu bude pro x = y 2 : 0 2y 2 )y) y 2 ) 2) dy 2 ) + y 2 + y 2) 0 dy = elkový výsledek tedy bude 2xy x 2) dx + x + y 2) dy = = x 3 + x 2 + 2x 5) dx = y 4 2y 5 + 2y 2) dy =

INTEGRACE KOMPLEXNÍ FUNKCE

INTEGRACE KOMPLEXNÍ FUNKCE INTEGRAE KOMPLEXNÍ FUNKE LEKE34-KIN auchyova obecná auchyova auchyův vzorec vičení KŘIVKOVÝ INTEGRÁL Na konci kapitoly o derivaci je uvedena souvislost existence derivace s potenciálním polem. Existuje

Více

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL INTEGRAE KOMPLEXNÍ FUNKE Komplexní integrce je do určité míry vrchol klsické nlýzy. Jádrem komplexní integrce je uchyov vět, což je komplexní form zákonu zchování, v podsttě jde o zákldní věty nlýzy. KŘIVKOVÝ

Více

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5.

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5. 10. Komplexní funkce reálné proměnné. Křivky. Je-li f : (, b) C, pk lze funkci f povžovt z dvojici (u, v), kde u = Re f v = Im f. Rozdíl proti vektorovému poli je v tom, že jsou pro komplexní čísl definovány

Více

KŘIVKOVÉ INTEGRÁLY. Křivka v prostoru je popsána spojitými funkcemi ϕ, ψ, τ : [a, b] R jako množina bodů {(ϕ(t), ψ(t), τ(t)); t

KŘIVKOVÉ INTEGRÁLY. Křivka v prostoru je popsána spojitými funkcemi ϕ, ψ, τ : [a, b] R jako množina bodů {(ϕ(t), ψ(t), τ(t)); t KŘIVKOVÉ INTEGRÁLY Má-li se spočítt npř. spotřeb betonu n rovný plot s měnící se výškou, stčí spočítt integrál z této výšky podle zákldny plotu. o když je le zákldnou plotu nikoli rovná úsečk, le křivá

Více

OBECNÝ URČITÝ INTEGRÁL

OBECNÝ URČITÝ INTEGRÁL OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.

Více

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

17 Křivky v rovině a prostoru

17 Křivky v rovině a prostoru 17 Křivky v rovině prostoru Definice 17.1 (rovinné křivky souvisejících pojmů). 1. Nechť F (t) [ϕ(t), ψ(t)] je 2-funkce spojitá n, b. Rovinnou křivkou nzveme množinu : {F (t) : t, b } R 2. 2-funkce F [ϕ,

Více

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x. VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální

Více

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje. 4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Primitivní funkce Definice. Nechť funkce f je definován n neprázdném otevřeném intervlu I. Řekneme, že funkce F : I R je primitivní funkce k f n intervlu

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

26. listopadu a 10.prosince 2016

26. listopadu a 10.prosince 2016 Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální

Více

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu.

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu. Přednášk 1 Určitý integrál V této přednášce se budeme zbývt určitým integrálem. Eistuje několik definic určitého integrálu funkce jedné reálné proměnné. Jednotlivé integrály se liší v tom, jké funkce lze

Více

11. cvičení z Matematické analýzy 2

11. cvičení z Matematické analýzy 2 11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y

Více

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4) KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1

Více

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.

Více

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby: .. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto

Více

14. cvičení z Matematické analýzy 2

14. cvičení z Matematické analýzy 2 4. cvičení z temtické nlýzy 2 22. - 26. květn 27 4. Greenov vět) Použijte Greenovu větu k nlezení práce síly F x, y) 2xy, 4x 2 y 2 ) vykonné n částici podél křivky, která je hrnicí oblsti ohrničené křivkmi

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26

LDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26 Určitý integrál Zákldy vyšší mtemtiky LDF MENDELU Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu http://kdemie.ldf.mendelu.cz/cz

Více

7. Integrální počet Primitivní funkce, Neurčitý integrál

7. Integrální počet Primitivní funkce, Neurčitý integrál 7. Integrální počet 7.. Primitivní funkce, Neurčitý integrál Definice 7. Říkáme, že F (x) je v intervlu (, b) (přitom může být tké =, b = + ) primitivní funkcí k finkci f(x), jestliže pro všechn x (, b)

Více

II. 5. Aplikace integrálního počtu

II. 5. Aplikace integrálního počtu 494 II Integrální počet funkcí jedné proměnné II 5 Aplikce integrálního počtu Geometrické plikce Určitý integrál S b fx) dx lze geometricky interpretovt jko obsh plochy vymezené grfem funkce f v intervlu

Více

NMAF061, ZS Písemná část zkoušky 25. leden 2018

NMAF061, ZS Písemná část zkoušky 25. leden 2018 Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 3 4 5 6 Celkem bodů Bodů 6 6 4

Více

Integrální počet - II. část (určitý integrál a jeho aplikace)

Integrální počet - II. část (určitý integrál a jeho aplikace) Integrální počet - II. část (určitý integrál jeho plikce) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednášk z ESMAT Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 23 Obsh 1 Určitý vlstní (Riemnnův)

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

ŘADY KOMPLEXNÍCH FUNKCÍ

ŘADY KOMPLEXNÍCH FUNKCÍ ŘADY KOMPLEXNÍCH FUNKCÍ OBECNÉ VLASTNOSTI Řady komplexních čísel z n byly částečně probírány v kapitole o číselných řadách. Definice říká, že n=0 z n = z, jestliže z je limita částečných součtů řady z

Více

KŘIVKOVÉ INTEGRÁLY. Na vyřešení tohoto úkolu zavedeme tzv. křivkové integrály. Mám rád hezké křivky...

KŘIVKOVÉ INTEGRÁLY. Na vyřešení tohoto úkolu zavedeme tzv. křivkové integrály. Mám rád hezké křivky... KŘIVKOVÉ INTEGRÁLY Má-li se spočítt npř. spotřeb betonu n rovný plot s měnící se výškou, stčí spočítt integrál z této výšky podle zákldny plotu. o když je le zákldnou plotu nikoli rovná úsečk, le křivá

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním

Více

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí 10 Určitý integrál 10.1 Riemnnův integrál Definice. Konečnou posloupnost {x j } n j=0 nzýváme dělením intervlu [,b], jestliže pltí = x 0 < x 1 < < x n = b. Body x 0,...,x n nzýváme dělícími body. Normou

Více

Křivkový integrál prvního druhu verze 1.0

Křivkový integrál prvního druhu verze 1.0 Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Přehled základních vzorců pro Matematiku 2 1

Přehled základních vzorců pro Matematiku 2 1 Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,

Více

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál)

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál) Integrální počet - IV. část (plikce n určitý vlstní integrál, nevlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednášk z AMA Michl Fusek (fusekmi@feec.vutbr.cz) / 4 Obsh

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

Křivkový integrál funkce

Křivkový integrál funkce Kpitol 6 Křivkový integrál funkce efinice způsob výpočtu Hlvním motivem pro definici určitého integrálu funkce jedné proměnné byl úloh stnovit obsh oblsti omezené grfem dné funkce intervlem n ose x. Řd

Více

Integrální počet - III. část (určitý vlastní integrál)

Integrální počet - III. část (určitý vlastní integrál) Integrální počet - III. část (určitý vlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednášk z AMA1 Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 18 Obsh 1 Určitý vlstní (Riemnnův)

Více

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož

Více

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x. KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou

Více

Matematika II: Pracovní listy Integrální počet funkce jedné reálné proměnné

Matematika II: Pracovní listy Integrální počet funkce jedné reálné proměnné Mtemtik II: Prcovní listy Integrální počet funkce jedné reálné proměnné Petr Schreiberová, Petr Volný Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Ostrv 8 Obsh Neurčitý integrál.

Více

Matematika II: Testy

Matematika II: Testy Mtemtik II: Testy Petr Schreiberová Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Mtemtik II - testy 69. Řy 9 - Test Ktedr mtemtiky deskriptivní geometrie, VŠB - Technická univerzit

Více

je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné

je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné 1. Prciální derivce funkce více proměnných. Prciální derivce funkce dvou proměnných. Je-li funkce f f(, ) definován v množině D f R 2 bod ( 1, 2 ) je vnitřním bodem množin D f, pk funkce g 1 (t) f(t, 2

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

Definice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1

Definice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1 9. Vriční počet. Definice. Nechť k 0 celé, < b R. Definujeme C k ([, b]) = { ỹ [,b] : ỹ C k (R) } ; C 0 ([, b]) = { y C ([, b]) : y() = y(b) = 0 }. Důležitá konstrukce. Shlzovcí funkce (molifiér, bump

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

Integrál a jeho aplikace Tomáš Matoušek

Integrál a jeho aplikace Tomáš Matoušek Integrál jeho plikce Tomáš Mtoušek Křivk Definice.(Vektorováfunkce) Funkci ϕ:r R n,kteráreálnémučíslupřiřzuje n-tici reálných čísel(vektor), nzýváme funkcí vektorovou. Lze ji tké popst po složkáchjko ϕ(t)=(ϕ

Více

6. Určitý integrál a jeho výpočet, aplikace

6. Určitý integrál a jeho výpočet, aplikace Aplikovná mtemtik 1, NMAF071 6. Určitý integrál výpočet, plikce T. Slč, MÚ MFF UK ZS 2017/18 ZS 2017/18) Aplikovná mtemtik 1, NMAF071 6. Určitý integrál 1 / 13 6.1 Newtonův integrál Definice 6.1 Řekneme,

Více

Riemannův určitý integrál.

Riemannův určitý integrál. Riemnnův určitý integrál. Definice 1. Budiž

Více

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25 56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou

Více

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem 2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice

Více

4. cvičení z Matematiky 2

4. cvičení z Matematiky 2 4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y

Více

1. Těleso komplexních čísel Definice. Množinou komplexních čísel rozumíme množinu R 2.

1. Těleso komplexních čísel Definice. Množinou komplexních čísel rozumíme množinu R 2. 1. Těleso komplexních čísel Definice. Množinou komplexních čísel rozumíme množinu R 2. Množinu komplexních čísel znčíme C. N množině C definujeme operce sčítání + jko v R 2 násobení. předpisem (x, y).(u,

Více

VEKTOROVÁ POLE Otázky

VEKTOROVÁ POLE Otázky VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

NMAF061, ZS Písemná část zkoušky 16. leden 2018

NMAF061, ZS Písemná část zkoušky 16. leden 2018 Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 1 3 4 5 6 Celkem bodů Bodů 7 6

Více

je daná funkce. Množinu všech primitivních funkcí k f na I nazveme neurčitým f(x)dx nebo f.

je daná funkce. Množinu všech primitivních funkcí k f na I nazveme neurčitým f(x)dx nebo f. MATEMATICKÁ ANALÝZA INTEGRÁLNÍ POČET PŘEDNÁŠEJÍCÍ ALEŠ NEKVINDA. Přednášk Oznčme R = R {, } jko v minulém semestru. V tomto semestru se budeme zbývt opčným úkonem k derivování. Primitivní funkce. Definice.

Více

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Bylo uvedeno, že rozdíl F (b) F () funkčních hodnot primitivní funkce k

Více

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci Mtemtik 1A. PetrSlčJiříHozmn Fkult přírodovědně-humnitní pedgogická Technická univerzit v Liberci petr.slc@tul.cz jiri.hozmn@tul.cz 21.11.2016 Fkult přírodovědně-humnitní pedgogická TUL ZS 2016-2017 1/

Více

Kapitola Křivkový integrál 1. druhu Délka oblouku

Kapitola Křivkový integrál 1. druhu Délka oblouku x 5 x 6 x 7 x 8 pitol 3 řivkové integrály 3. řivkový integrál. druhu líčová slov: délk oblouku, délk křivky, křivkový integrál. druhu po oblouku, křivkový integrál. druhu po křivce, neorientovný křivkový

Více

množina, na které je zavedena určitá struktura. Zejména, součet každých dvou prvků X = [x 1,..., x n ] R n,

množina, na které je zavedena určitá struktura. Zejména, součet každých dvou prvků X = [x 1,..., x n ] R n, Náplní předmětu bude klkulus R n R (přípdně R m ). Proč se zbývt funkcemi více proměnných? V prxi je čsto třeb uvžovt veličiny, které závisejí n více než jedné proměnné, npř. objem rotčního kužele závisí

Více

Integrály definované za těchto předpokladů nazýváme vlastní integrály.

Integrály definované za těchto předpokladů nazýváme vlastní integrály. Mtemtik II.5. Nevlstní integrály.5. Nevlstní integrály Cíle V této kpitole poněkud rozšíříme definii Riemnnov určitého integrálu i n přípdy, kdy je integrční oor neohrničený (tj. (, >,

Více

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Určitý integrál Petr Hsil Přednášk z mtemtiky Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

DERIVACE A INTEGRÁLY VE FYZICE

DERIVACE A INTEGRÁLY VE FYZICE DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická

Více

Diferenciální počet. Spojitost funkce

Diferenciální počet. Spojitost funkce Dierenciální počet Spojitost unkce Co to znmená, že unkce je spojitá? Jký je mtemtický význm tvrzení, že gr unkce je spojitý? Jké jsou vlstnosti unkce v bodě? Jké jsou vlstnosti unkce v intervlu I? Vlstnosti

Více

2. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ

2. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ . INTEGRÁLNÍ POČET FUNKE JEDNÉ PROMĚNNÉ Při řešení technických prolémů, ve fyzice pod. je velmi čsto tře řešit orácenou úlohu k derivování. K zdné funkci f udeme hledt funkci F tkovou, y pltilo F f. Budeme

Více

Obsah rovinného obrazce

Obsah rovinného obrazce Osh rovinného orzce Nejjednodušší plikcí určitého integrálu je výpočet oshu rovinného orzce. Zčneme větou. Vět : Je-li funkce f spojitá nezáporná n n orázku níže roven f ( ) d. ;, je osh rovinného orzce

Více

5.2.4 Kolmost přímek a rovin II

5.2.4 Kolmost přímek a rovin II 5..4 Kolmost přímek rovin II Předpokldy: 503 Př. 1: Zformuluj stereometrické věty nlogické k plnimetrické větě: ným bodem lze v rovině k dné přímce vést jedinou kolmici. Vět: ným bodem lze v prostoru k

Více

VEKTOROVÁ POLE VEKTOROVÁ POLE

VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x, y), f 2 (x, y)) jako vektor s

Více

1. Pokyny pro vypracování

1. Pokyny pro vypracování 1. Pokyny pro vyprcování Zvolený příkld z druhé kpitoly vyprcujte písemně (nejlépe vysázejte pomocí LATEXu) dodejte osobně po předchozí domluvě milem n krbek@physics.muni.cz. Dále si vyberte tři z jednodušších

Více

8. cvičení z Matematiky 2

8. cvičení z Matematiky 2 8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

Matematické metody v kartografii

Matematické metody v kartografii Mtemtické metody v krtogrfii. Přednášk Referenční elipsoid zákldní vzthy. Poloměry křivosti. Délky poledníkového rovnoběžkového oblouku. 1. Zákldní vzthy n rotčním elipoidu Rotční elipsoid dán následujícími

Více

Neřešené příklady z analýzy funkcí více proměnných

Neřešené příklady z analýzy funkcí více proměnných České vysoké učení technické v Prze Fkult elektrotechnická Neřešené příkldy z nlýzy funkcí více proměnných Miroslv Korbelář Pol Vivi Prh 16 Tento dokument byl vytvořen s podporou grntu RPAPS č. 1311/15/15163C5.

Více

( a) Okolí bodu

( a) Okolí bodu 0..5 Okolí bodu Předpokldy: 40 Pedgogická poznámk: Hodin zjevně překrčuje možnosti většiny studentů v 45 minutách. Myslím, že nemá cenu přethovt do dlší hodiny, příkldy s redukovnými okolími nejsou nutné,

Více

II. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y)

II. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y) . NTEGRÁL V R n Úvod Určitý integrál v intervlu, b Pro funki f :, b R jsme definovli určitý integrál jko číslo, jehož hodnot je obshem obrze znázorněného n obrázíh. Pro funki f : R n R budeme zvádět integrál

Více

Kapitola 1. Taylorův polynom

Kapitola 1. Taylorův polynom Kpitol Tylorův polynom Definice. Budeme psát f = o(g) v R, je-li lim x ( f )(x) =, f = O(g) g v R, je-li ( f ) omezená n nějkém U (). g Příkld. lim x (x + x + 3) 5 (x 5 x 3 + 7x 9) = lim x + o(x ) x x

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

5.2. Určitý integrál Definice a vlastnosti

5.2. Určitý integrál Definice a vlastnosti Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)

Více

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34.

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34. I. Určete integrály proved te zkoušku. Určete intervl(y), kde integrál eistuje... 3. 4. 5. 6. 7. 8. 9. 0... 3. 4. 5. 6. 7. e d substituce t = ln ln(ln ) d substituce t = ln(ln ), dt = ln 3 e 4 d substituce

Více

13. Exponenciální a logaritmická funkce

13. Exponenciální a logaritmická funkce @11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze

Více

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. MKI -00 Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. V jakém rozmezí se může pohybovat poloměr konvergence regulární

Více

Masarykova univerzita

Masarykova univerzita Msrykov univerzit Přírodovědecká fkult Diplomová práce Web k témtu: Integrální počet Bc. Ev Schlesingerová Brno 9 Prohlášení Prohlšuji, že jsem tuto diplomovou práci npsl sm s použitím uvedené litertury.

Více

Zkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p.

Zkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p. 1. V oboru reálných čísel řešte soustvu rovnic x 2 xy + y 2 = 7, x 2 y + xy 2 = 2. (J. Földes) Řešení. Protože druhou rovnici můžeme uprvit n tvr xy(x + y) = 2, uprvme podobně i první rovnici: (x + y)

Více

5.5 Elementární funkce

5.5 Elementární funkce 5.5 Elementární funkce Lemm 5.20. Necht x R. Potom existuje kldné C R (závisející n x) tkové, že pro kždé n N h ( 1, 1) pltí (x + h) n x n nhx n 1 h 2 C n. Definice. Exponenciální funkci exp definujme

Více

extrém (zde y 0 je správná pozice struny a F je funkce odpovídající tahu struny).

extrém (zde y 0 je správná pozice struny a F je funkce odpovídající tahu struny). VARIAČNÍ POČET Budeme hledt nejkrtší spojnici dvou bodů n kytře pomocí struny. Bude to úsečk. Proč? Protože při neptrném nedodržení linerity se strun po utžení brání. Funkce ε F (y 0 + εϕ musí mít v bodě

Více

vás seznámí s učivem, které v dané kapitole poznáte a které byste po jejím prostudování měli umět.

vás seznámí s učivem, které v dané kapitole poznáte a které byste po jejím prostudování měli umět. POKYNY KE STUDIU Pokyny ke studiu V úvodu si vysvětlíme jednotnou pevnou strukturu kždé kpitoly tetu, která by vám měl pomoci k rychlejší orientci při studiu Pro zvýrznění jednotlivých částí tetu jsou

Více

6.1. Limita funkce. Množina Z má dva hromadné body: ±. Tedy Z ={+, }.

6.1. Limita funkce. Množina Z má dva hromadné body: ±. Tedy Z ={+, }. 6.1. Limit funkce Číslo R nzveme hromdným bodem množiny A R, pokud v kždém jeho okolí leží nekonečně mnoho bodů z množiny A. Body z A, které neptří mezi hromdné body A, se nzývjí izolovné. Alterntivně

Více

Přednáška 9: Limita a spojitost

Přednáška 9: Limita a spojitost 4 / XI /, 5: Přednášk 9: Limit spojitost V minulých přednáškách jsme podrobněji prozkoumli důležitý pojem funkce. Při řešení konkrétních problémů se nše znlosti (npř. nměřená dt) zpisují jko funkční hodnoty

Více

Primitivní funkce. Definice a vlastnosti primitivní funkce

Primitivní funkce. Definice a vlastnosti primitivní funkce Obsh PŘEDMLUVA OBSAH 5 I. PRIMITIVNÍ FUNKCE 7 Definice vlstnosti primitivní funkce............ 7 Metody výpočtu primitivních funkcí............. Rcionální funkce................... 7 Ircionální funkce...................

Více

Spojitost funkce v bodě, spojitost funkce v intervalu

Spojitost funkce v bodě, spojitost funkce v intervalu 10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí

Více

Křivka a její délka. Kapitola 5. 1 Motivace a základní pojmy

Křivka a její délka. Kapitola 5. 1 Motivace a základní pojmy Kpitol 5 Křivk její délk 1 Motivce zákldní pojmy Křivk je pojem, který je v mtemtice zkoumán již od ntického strověku. Intuitivně vždy vyjdřovl objekt, který vznikne spojitou deformcí intervlu n reálné

Více

9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie

9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie 9 Axonometrie Mongeov projekce má řdu předností: jednoduchost, sndná měřitelnost délek úhlů. Je všk poměrně nenázorná. Podsttnou část technických výkresů proto tvoří kromě půdorysu, nárysu event. bokorysu

Více

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková Tento text není smosttným studijním mteriálem. Jde jen o prezentci promítnou n p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze n tbuli nejsou zde obsºeny. Text m ºe

Více

Komplexní analýza. Reziduová věta a její aplikace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Reziduová věta a její aplikace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Reziduová věta a její aplikace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Reziduová věta a její aplikace / Motivace Mějme

Více

Větu o spojitosti a jejich užití

Větu o spojitosti a jejich užití 0..7 Větu o spojitosti jejich užití Předpokldy: 706, 78, 006 Pedgogická poznámk: Při proírání této hodiny je tře mít n pměti, že všechny věty, které studentům sdělujete z jejich pohledu neuvěřitelně složitě

Více

Výpočet obsahu rovinného obrazce

Výpočet obsahu rovinného obrazce Výpočet oshu rovinného orzce Pro výpočet oshu čtverce, odélník, trojúhelník, kružnice, dlších útvrů, se kterými se můžeme setkt v elementární geometrii, máme k dispozici vzorce Kdchom chtěli vpočítt osh

Více

( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady:

( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady: 4.4. Sinová vět II Předpokldy 44 Kde se stl hy? Námi nlezené řešení je správné, le nenšli jsme druhé hy ve hvíli, kdy jsme z hodnoty sin β určovli úhel β. β je úhel z intervlu ( ;π ). Jk je vidět z jednotkové

Více

Základy teorie matic

Základy teorie matic Zákldy teorie mtic 1. Pojem mtice nd číselným tělesem In: Otkr Borůvk (uthor): Zákldy teorie mtic. (Czech). Prh: Acdemi, 1971. pp. 9--12. Persistent URL: http://dml.cz/dmlcz/401328 Terms of use: Akdemie

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost plsticit II. ročník klářského studi doc. In. Mrtin Krejs, Ph.D. Ktedr stvení mechnik Řešení nosných stěn pomocí Airho funkce npětí inverzní metod Stěnová rovnice ΔΔ(, ) Stěnová rovnice, nzývná

Více