je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5.
|
|
- Blažena Staňková
- před 5 lety
- Počet zobrazení:
Transkript
1 10. Komplexní funkce reálné proměnné. Křivky. Je-li f : (, b) C, pk lze funkci f povžovt z dvojici (u, v), kde u = Re f v = Im f. Rozdíl proti vektorovému poli je v tom, že jsou pro komplexní čísl definovány lgebrické operce. Hodnoty tkové funkce můžeme povžovt z podmnožinu komplexní roviny C, kde jsou její body závislé n prmetru t (, b), podobně jko je prmetricky určen úsečk v rovině. Uvedeme nejprve definice pojmů, které jsme si zvedli u reálných funkcí reálné proměnné. Definice: Jestliže je f : (, b) C komplexní funkce reálné proměnné, kde f(t) = u(t) + jv(t), pk definujeme: ) lim f(t) = lim u(t) + j lim v(t); t t0 t t0 t t0 b) f (t) = u (t) + jv (t); c) f(t) dt = u(t) dt + j v(t) dt; d) β α f(t) dt = β α u(t) dt + j β α v(t) dt. Poznámk: U těchto funkcí nezvádíme pojmy, jko je rostoucí, klesjící, konkávní konvexní funkce, či lokální nebo bsolutní extrém. Definice: Hldký oblouk Množinu C C nzýváme hldkým (regulárním) obloukem, jestliže pltí: ) C = {z; z = ϕ(t), t b}; b) funkce ϕ je spojitá v intervlu, b prostá v intervlu (, b); c) funkce ϕ má spojitou derivci v intervlu, b ϕ (t) 0 pro t (, b). Funkci ϕ nzýváme prmetrizcí oblouku C rovnici C : z = ϕ(t), t, b nzýváme prmetrickou rovnicí oblouku C. Bod ϕ() nzýváme počátečním bodem bod ϕ(b) nzýváme koncovým bodem oblouku C. Definice: Orientce oblouku Je-li C oblouk, pk smysl, ve kterém proběhneme body oblouku ve směru od počátečního bodu ke koncovému bodu nzýváme jeho orientcí. Oblouk se zvolenou orientcí nzýváme orientovný znčíme jej. Poznámk: Kždý oblouk C má dvě nvzájem opčné orientce. Tkto orientovné oblouky budeme oznčovt ( C ). Pro oblouk C, který je dán prmetrickou rovnicí C : z = ϕ(t), t b, je jedn z orientcí určen jeho prmetrizcí. Je to t, pro kterou je počátečním bodem bod ϕ(). p.b. Im Im k.b. C ( C ) Re Re Obr Obr
2 Definice: Orientovná cest, křivk C je sjednocení oblouků C i, 1 i m tkové, že: ) C = m i=1c i ; b) oblouky lze orientovt tk, že koncový bod oblouku (C i ) je počátečním bodem oblouku (C i+1 ), 1 i m 1. Poznámk: Orientce oblouků (C i ) určují orientci cesty. Jejím počátečním bodem je počáteční bod oblouku (C 1 ) jejím koncovým bodem je koncový bod oblouku (C m ). Cest, u které počáteční koncový bod splynou se nzývá uzvřená. 11. Křivkový integrál Nechť je orientovný oblouk v oblsti G C f : G C je spojitá funkce. N oblouku vybereme po řdě body z 0, z 1,..., z n. Je-li prmetrizce oblouku C, pk : z = ϕ(t), t b z k = ϕ(t k ), 0 k n, = t 0 < t 1 <... < t n = b. Body z k tvoří dělení D oblouku body t k tvoří dělení D intervlu, b. N oblouku zvolme body z k tk, že z k = ϕ(t k), t k 1 t k t k, 1 k n. Oznčme D = mx{ z k z k 1 ; 1 k n} normu dělení D. Potom definujeme S(f; D) = n k=1 f(z k)(z k z k 1 ) integrální součet funkce f příslušný dělení D. Z uvedených podmínek existuje limit ( ) lim S(f; D), D 0 která nezávisí n volbě dělících bodů z k bodů z k. Je jednoznčně určen hodnotmi funkce f obloukem. Definice: Limitu ze vzthu ( ) nzýváme křivkovým integrálem funkce f po orientovném oblouku oznčujeme jej ( ) f(z) dz. Vět. Je-li : z = ϕ(t), t b prmetrizce oblouku C, pk ( ) f(z) dz = b f(ϕ(t))ϕ (t) dt. Vět. Vlstnosti integrálu f(z) dz = f(z) dz; ( C ) (αf(z) + βg(z)) dz = α f(z) dz + β g(z) dz; 48
3 1 dz = ϕ(b) ϕ() = z n z 0, kde z 0 je počáteční bod z n je koncový bod oblouku. 12. Cuchyov vět Vět. Jordnov Je-li C uzvřená cest, pk rozděluje komplexní rovinu C n dvě disjunktní oblsti, jejichž je společnou hrnici. Jedn z oblstí je omezená, nzýváme jí vnitřkem cesty C znčíme Int, druhá je neomezená, nzýváme ji vnějškem cesty C znčíme Ext. Orientci cesty C tkovou, že při pohybu po cestě ve směru určeném orientcí zůstává vnitřek Int vlevo nzýváme kldnou. Opčnou orientci nzýváme zápornou. Vět. Cuchyov Nechť C je uzvřená cest G C je oblst tková, že obshuje cestu C její vnitřek Int. Je-li funkce f holomorfní v oblsti G, pk f(z) dz = 0. Vět. Je-li G C oblst funkce f je holomorfní v oblsti G {z 0 }, z 0 G C 1 C 2 jsou tkové uzvřené cesty, že C 1 Int(C 2 ) G, pk f(z) dz = f(z) dz, (C 1 ) kde cesty (C 1 ) (C 2 ) jsou obě kldně nebo záporně orientovány. Příkld. Je-li kldně orientovná uzvřená cest, pk pro z 0 Int je 0, n 1, (z z 0 ) n dz =, n = 1. (C 2 ) 13. Cuchyův vzorec Vět. Cuchyův vzorec. Nechť je funkce f : G C holomorfní v oblsti G. Pk pro kždou uzvřenou cestu C, která leží spolu se svým vnitřkem Int v oblsti G pltí: f(z) ( ) dz = f(z 0 ), z 0 Int, z z 0 kde je kldně orientovná. Vět. Nechť je funkce f : G C holomorfní v oblsti G. Pk pro kždou uzvřenou cestu C, která leží spolu se svým vnitřkem Int v oblsti G pltí, že funkce Φ, která je definovná pro z Int vzthem Φ(z) = 1 dw Int, n kde je kldně orientovná, je holomorfní v oblsti Int Φ (z) = n dw, z Int. n+1 Důsledek. Pro n = 1 dostneme z Cuchyov vzorce vzth Φ(z) = f(z) = 1 49 dw, z Int. w z
4 Podle věty je tedy f (z) = 1 Odtud plyne z věty pro n = 2, že (f (z)) = f (z) = 2 dw, z Int. 2 dw, z Int. 3 Postupně dostneme opkovným použitím věty, že pro n N je ( ) f (n) (z) = n! dw, z Int. n+1 Protože může být cest C volen libovolně, znmená to, že funkce f má derivci libovolného řádu v kždém bodě oblsti G. Vět. Je-li funkce f holomorfní v oblsti G C, pk má derivce všech řádů v oblsti G jejich hodnoty jsou určeny pomocí hodnot funkce f vzorcem ( ). 14. Tylorov vět Vět. Nechť je funkce f : G C holomorfní v oblsti G z 0 G. Je-li K kružnice se středem v bodě z 0 tková, že leží spolu se svým vnitřkem Int(K ) v oblsti, pk pro všechny hodnoty z Int(K ) je f(z) = f (k) (z 0 ) k! (z z 0 ) k. Důsledek. Je-li f(z) = pk je funkce f(z) holomorfní v kruhu {z; z z 0 < r} k = f (k) (z 0 ) k! k (z z 0 ) k, z z 0 < r, = 1 f(z) dz, (z z 0 ) k+1 kde je kldně orientovná uzvřená cest, která leží v kruhu {z; z z 0 < r} z 0 Int. Vět. Je-li f(z) = k (z z 0 ) k, z z 0 < r, pk pro n N z z 0 < r je f (n) (z) = k=n k(k 1)... (k n + 1) k (z z 0 ) k n = Vět. Je-li = (m + n)(m + n 1)... (m + 1) m+n (z z 0 ) m. m=0 f(z) = k z k, z < r, 50
5 pk f(αz) = k α k z k, z < r α f(z m ) = pk kde k z km, z < m r. Vět. Je-li f(z) = k (z z 0 ) k, z z 0 < r 1, g(z) = b k (z z 0 ) k, z z 0 < r 2, f(z) + g(z) = ( k + b k )(z z 0 ) k, z z 0 < min{r 1 ; r 2 } f(z)g(z) = c k (z z 0 ) k, z z 0 < min{r 1 ; r 2 }, k c k = n b k n, n = 0, 1, 2,.... n=1 51
INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL
INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci
Více17 Křivky v rovině a prostoru
17 Křivky v rovině prostoru Definice 17.1 (rovinné křivky souvisejících pojmů). 1. Nechť F (t) [ϕ(t), ψ(t)] je 2-funkce spojitá n, b. Rovinnou křivkou nzveme množinu : {F (t) : t, b } R 2. 2-funkce F [ϕ,
VíceVIII. Primitivní funkce a Riemannův integrál
VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.
VíceKŘIVKOVÉ INTEGRÁLY. Křivka v prostoru je popsána spojitými funkcemi ϕ, ψ, τ : [a, b] R jako množina bodů {(ϕ(t), ψ(t), τ(t)); t
KŘIVKOVÉ INTEGRÁLY Má-li se spočítt npř. spotřeb betonu n rovný plot s měnící se výškou, stčí spočítt integrál z této výšky podle zákldny plotu. o když je le zákldnou plotu nikoli rovná úsečk, le křivá
VíceIntegrální počet - III. část (určitý vlastní integrál)
Integrální počet - III. část (určitý vlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednášk z AMA1 Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 18 Obsh 1 Určitý vlstní (Riemnnův)
VíceIntegrální počet - II. část (určitý integrál a jeho aplikace)
Integrální počet - II. část (určitý integrál jeho plikce) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednášk z ESMAT Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 23 Obsh 1 Určitý vlstní (Riemnnův)
VíceKomplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.
7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1
Více10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí
10 Určitý integrál 10.1 Riemnnův integrál Definice. Konečnou posloupnost {x j } n j=0 nzýváme dělením intervlu [,b], jestliže pltí = x 0 < x 1 < < x n = b. Body x 0,...,x n nzýváme dělícími body. Normou
VícePetr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Určitý integrál Petr Hsil Přednášk z mtemtiky Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu (reg. č. CZ.1.07/2.2.00/28.0021)
VíceR n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na
Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.
Více6. Určitý integrál a jeho výpočet, aplikace
Aplikovná mtemtik 1, NMAF071 6. Určitý integrál výpočet, plikce T. Slč, MÚ MFF UK ZS 2017/18 ZS 2017/18) Aplikovná mtemtik 1, NMAF071 6. Určitý integrál 1 / 13 6.1 Newtonův integrál Definice 6.1 Řekneme,
VíceVIII. Primitivní funkce a Riemannův integrál
VIII. Primitivní funkce Riemnnův integrál VIII.2. Primitivní funkce Definice. Nechť funkce f je definován n neprázdném otevřeném intervlu I. Řekneme, že funkce F : I R je primitivní funkce k f n intervlu
Víceintegrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu.
Přednášk 1 Určitý integrál V této přednášce se budeme zbývt určitým integrálem. Eistuje několik definic určitého integrálu funkce jedné reálné proměnné. Jednotlivé integrály se liší v tom, jké funkce lze
VíceII. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y)
. NTEGRÁL V R n Úvod Určitý integrál v intervlu, b Pro funki f :, b R jsme definovli určitý integrál jko číslo, jehož hodnot je obshem obrze znázorněného n obrázíh. Pro funki f : R n R budeme zvádět integrál
VíceZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.
VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální
VíceIntegrál a jeho aplikace Tomáš Matoušek
Integrál jeho plikce Tomáš Mtoušek Křivk Definice.(Vektorováfunkce) Funkci ϕ:r R n,kteráreálnémučíslupřiřzuje n-tici reálných čísel(vektor), nzýváme funkcí vektorovou. Lze ji tké popst po složkáchjko ϕ(t)=(ϕ
Více7. Integrální počet Primitivní funkce, Neurčitý integrál
7. Integrální počet 7.. Primitivní funkce, Neurčitý integrál Definice 7. Říkáme, že F (x) je v intervlu (, b) (přitom může být tké =, b = + ) primitivní funkcí k finkci f(x), jestliže pro všechn x (, b)
Více26. listopadu a 10.prosince 2016
Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální
VíceINTEGRACE KOMPLEXNÍ FUNKCE
INTEGRAE KOMPLEXNÍ FUNKE LEKE34-KIN auchyova obecná auchyova auchyův vzorec vičení KŘIVKOVÝ INTEGRÁL Na konci kapitoly o derivaci je uvedena souvislost existence derivace s potenciálním polem. Existuje
VíceNEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.
NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:
Více1. Těleso komplexních čísel Definice. Množinou komplexních čísel rozumíme množinu R 2.
1. Těleso komplexních čísel Definice. Množinou komplexních čísel rozumíme množinu R 2. Množinu komplexních čísel znčíme C. N množině C definujeme operce sčítání + jko v R 2 násobení. předpisem (x, y).(u,
Vícemnožina, na které je zavedena určitá struktura. Zejména, součet každých dvou prvků X = [x 1,..., x n ] R n,
Náplní předmětu bude klkulus R n R (přípdně R m ). Proč se zbývt funkcemi více proměnných? V prxi je čsto třeb uvžovt veličiny, které závisejí n více než jedné proměnné, npř. objem rotčního kužele závisí
VíceV předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.
NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:
Více+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c
) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším
Více4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.
4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost
VíceLDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26
Určitý integrál Zákldy vyšší mtemtiky LDF MENDELU Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu http://kdemie.ldf.mendelu.cz/cz
VíceANALYTICKÁ GEOMETRIE
Technická niverzit v Liberci Fklt přírodovědně-hmnitní pedgogická Ktedr mtemtiky didktiky mtemtiky NLYTICKÁ GEOMETRIE Pomocný čební text Petr Pirklová Liberec, listopd 2015 NLYTICKÁ GEOMETRIE LINEÁRNÍCH
VíceDiferenciální počet. Spojitost funkce
Dierenciální počet Spojitost unkce Co to znmená, že unkce je spojitá? Jký je mtemtický význm tvrzení, že gr unkce je spojitý? Jké jsou vlstnosti unkce v bodě? Jké jsou vlstnosti unkce v intervlu I? Vlstnosti
VíceDefinice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1
9. Vriční počet. Definice. Nechť k 0 celé, < b R. Definujeme C k ([, b]) = { ỹ [,b] : ỹ C k (R) } ; C 0 ([, b]) = { y C ([, b]) : y() = y(b) = 0 }. Důležitá konstrukce. Shlzovcí funkce (molifiér, bump
VíceOBECNÝ URČITÝ INTEGRÁL
OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,
VíceNMAF061, ZS Písemná část zkoušky 25. leden 2018
Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 3 4 5 6 Celkem bodů Bodů 6 6 4
Vícex + F F x F (x, f(x)).
I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných
VíceINTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL
INTEGRAE KOMPLEXNÍ FUNKE Komplexní integrce je do určité míry vrchol klsické nlýzy. Jádrem komplexní integrce je uchyov vět, což je komplexní form zákonu zchování, v podsttě jde o zákldní věty nlýzy. KŘIVKOVÝ
Více15. Nulové body a póly. Věta. Je-li funkce f : G holomorfní v oblasti G a f(z 0 ) 0 pro z 0 G, pak
5. Nulové body a póly Věta. Je-li funkce f holomorfní v oblasti G C, a f(z 0 ) 0 pro bod z 0 G, pak existuje okolí U(z 0 ) bodu z 0 takové, že f(z) 0 pro z U(z 0 ). Definice: Je-li funkce f holomorfní
VícePřehled základních vzorců pro Matematiku 2 1
Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,
VíceZavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA
Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním
Více8. Elementární funkce
Historie přírodních věd potvrzuje, že většinu reálně eistujících dějů lze reprezentovt mtemtickými model, které jsou popsán tzv. elementárními funkcemi. Elementární funkce je kždá funkce, která vznikne
VíceKapitola Křivkový integrál 1. druhu Délka oblouku
x 5 x 6 x 7 x 8 pitol 3 řivkové integrály 3. řivkový integrál. druhu líčová slov: délk oblouku, délk křivky, křivkový integrál. druhu po oblouku, křivkový integrál. druhu po křivce, neorientovný křivkový
Více11. cvičení z Matematické analýzy 2
11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y
VíceI Diferenciální a integrální počet funkcí jedné proměnné 3
Obsh I Diferenciální integrální počet funkcí jedné proměnné 3 Preklkulus 5. Reálná čísl................................................ 5. Funkce jejich zákldní vlstnosti....................................3
Více14. cvičení z Matematické analýzy 2
4. cvičení z temtické nlýzy 2 22. - 26. květn 27 4. Greenov vět) Použijte Greenovu větu k nlezení práce síly F x, y) 2xy, 4x 2 y 2 ) vykonné n částici podél křivky, která je hrnicí oblsti ohrničené křivkmi
VíceANALYTICKÁ GEOMETRIE V PROSTORU
ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici
VíceHlavní body - magnetismus
Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického
Více5.5 Elementární funkce
5.5 Elementární funkce Lemm 5.20. Necht x R. Potom existuje kldné C R (závisející n x) tkové, že pro kždé n N h ( 1, 1) pltí (x + h) n x n nhx n 1 h 2 C n. Definice. Exponenciální funkci exp definujme
Více6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.
KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou
VíceMatematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci
Mtemtik 1A. PetrSlčJiříHozmn Fkult přírodovědně-humnitní pedgogická Technická univerzit v Liberci petr.slc@tul.cz jiri.hozmn@tul.cz 21.11.2016 Fkult přírodovědně-humnitní pedgogická TUL ZS 2016-2017 1/
VíceMatice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra
Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel
VíceIntegrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál)
Integrální počet - IV. část (plikce n určitý vlstní integrál, nevlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednášk z AMA Michl Fusek (fusekmi@feec.vutbr.cz) / 4 Obsh
VíceI Diferenciální a integrální počet funkcí jedné proměnné 5
Obsh I Diferenciální integrální počet funkcí jedné proměnné 5 Preklkulus 7. Reálná čísl................................................ 7. Funkce jejich zákldní vlstnosti...................................
VíceDERIVACE A INTEGRÁLY VE FYZICE
DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická
Více18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34.
I. Určete integrály proved te zkoušku. Určete intervl(y), kde integrál eistuje... 3. 4. 5. 6. 7. 8. 9. 0... 3. 4. 5. 6. 7. e d substituce t = ln ln(ln ) d substituce t = ln(ln ), dt = ln 3 e 4 d substituce
VíceKŘIVKOVÉ INTEGRÁLY. Na vyřešení tohoto úkolu zavedeme tzv. křivkové integrály. Mám rád hezké křivky...
KŘIVKOVÉ INTEGRÁLY Má-li se spočítt npř. spotřeb betonu n rovný plot s měnící se výškou, stčí spočítt integrál z této výšky podle zákldny plotu. o když je le zákldnou plotu nikoli rovná úsečk, le křivá
Více13. Exponenciální a logaritmická funkce
@11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze
VíceNMAF061, ZS Písemná část zkoušky 16. leden 2018
Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 1 3 4 5 6 Celkem bodů Bodů 7 6
VíceKřivkový integrál funkce
Kpitol 6 Křivkový integrál funkce efinice způsob výpočtu Hlvním motivem pro definici určitého integrálu funkce jedné proměnné byl úloh stnovit obsh oblsti omezené grfem dné funkce intervlem n ose x. Řd
VíceŘADY KOMPLEXNÍCH FUNKCÍ
ŘADY KOMPLEXNÍCH FUNKCÍ OBECNÉ VLASTNOSTI Řady komplexních čísel z n byly částečně probírány v kapitole o číselných řadách. Definice říká, že n=0 z n = z, jestliže z je limita částečných součtů řady z
VíceDefinice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:
Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé
VíceZ aklady funkcion aln ı anal yzy Kubr Milan 16. ˇ cervna 2005
Zákldy funkcionální nlýzy Kubr Miln 6. červn 2005 Obsh Metrické prostory.. Zákldní vlstnosti......................................2 Úplné, seprbilní kompktní prostory......................... 7.3 Zobrzení
Více1/15. Kapitola 2: Reálné funkce více proměnných
1/15 Kapitola 2: Reálné funkce více proměnných Vlastnosti bodových množin 2/15 Definice: ε-ové okolí... O ε (X) = {Y R n ρ(x, Y ) < ε} prstencové ε-ové okolí... P ε (X) = {Y R n 0 < ρ(x, Y ) < ε} Definice:
VíceLimity, derivace a integrály Tomáš Bárta, Radek Erban
Limity, derivce integrály Tomáš Bárt, Rdek Erbn Úvod Definice. Zobrzení(téžfunkce) f M Njemnožinuspořádnýchdvojic(x, y) tková,žekekždému xexistujeprávějedno y,žedvojice(x,y) f.tj.kždývzor xmáprávějedenobrz
VíceII. 5. Aplikace integrálního počtu
494 II Integrální počet funkcí jedné proměnné II 5 Aplikce integrálního počtu Geometrické plikce Určitý integrál S b fx) dx lze geometricky interpretovt jko obsh plochy vymezené grfem funkce f v intervlu
VíceText m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková
Tento text není smosttným studijním mteriálem. Jde jen o prezentci promítnou n p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze n tbuli nejsou zde obsºeny. Text m ºe
VíceKřivka a její délka. Kapitola 5. 1 Motivace a základní pojmy
Kpitol 5 Křivk její délk 1 Motivce zákldní pojmy Křivk je pojem, který je v mtemtice zkoumán již od ntického strověku. Intuitivně vždy vyjdřovl objekt, který vznikne spojitou deformcí intervlu n reálné
Více2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem
2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice
Více1. Pokyny pro vypracování
1. Pokyny pro vyprcování Zvolený příkld z druhé kpitoly vyprcujte písemně (nejlépe vysázejte pomocí LATEXu) dodejte osobně po předchozí domluvě milem n krbek@physics.muni.cz. Dále si vyberte tři z jednodušších
VíceNeřešené příklady z analýzy funkcí více proměnných
České vysoké učení technické v Prze Fkult elektrotechnická Neřešené příkldy z nlýzy funkcí více proměnných Miroslv Korbelář Pol Vivi Prh 16 Tento dokument byl vytvořen s podporou grntu RPAPS č. 1311/15/15163C5.
Více2. Pokud nedojde k nejasnostem, budeme horní a dolní součty značit pouze
8. Určitý integrál 8.1. Newtonův integrál Definice 8.1 Buďte,b R. Řekneme,žeNewtonůvintegrálzfunkce fnintervlu(,b) existuje(znčímejej(n) f(x)dx),jestliže 1.existuje primitivní funkce F k f n intervlu(,
VíceFunkce jedné proměnné
Funkce jedné proměnné Lineární funkce f: y = kx + q, D f = R, H f = R, grf je přímk množin odů [x, y], x D f, y = f(x) q úsek n ose y, tj. od [0, q], k směrnice, k = tn φ = 2 2 1 1, A[ 1, 2 ], B[ 1, 2
VíceKapitola 1. Taylorův polynom
Kpitol Tylorův polynom Definice. Budeme psát f = o(g) v R, je-li lim x ( f )(x) =, f = O(g) g v R, je-li ( f ) omezená n nějkém U (). g Příkld. lim x (x + x + 3) 5 (x 5 x 3 + 7x 9) = lim x + o(x ) x x
VíceKomplexní analýza. Reziduová věta a její aplikace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Reziduová věta a její aplikace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Reziduová věta a její aplikace / Motivace Mějme
VíceMatematika 5 FSV UK, ZS Miroslav Zelený
Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení
VíceMatematické metody v kartografii
Mtemtické metody v krtogrfii. Přednášk Referenční elipsoid zákldní vzthy. Poloměry křivosti. Délky poledníkového rovnoběžkového oblouku. 1. Zákldní vzthy n rotčním elipoidu Rotční elipsoid dán následujícími
VíceObecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)
KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1
VíceMKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.
MKI -00 Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. V jakém rozmezí se může pohybovat poloměr konvergence regulární
VíceZavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.
KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový
VíceÚlohy krajského kola kategorie A
67. ročník mtemtické olympiády Úlohy krjského kol ktegorie A 1. Pvel střídvě vpisuje křížky kolečk do políček tbulky (zčíná křížkem). Když je tbulk celá vyplněná, výsledné skóre spočítá jko rozdíl X O,
VíceLINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y
VíceAž dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním
Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná Vybraná spojitá rozdělení
PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Vybrná spojitá rozdělení Zákldní soubor u spojité náhodné proměnné je nespočetná množin. Z je tedy podmnožin množiny reálných čísel (R). Distribuční funkce
VíceVzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.
Vzdělávcí mteriál vytvořený v projektu OP VK Název školy: Gymnázium, Zářeh, náměstí Osvoození 20 Číslo projektu: Název projektu: Číslo název klíčové ktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek pro
VíceObčas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:
PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se
VícePředpoklady: a 1, a 0, f spojité na intervalu I, a 1 0 na I. Vydělením a 1 (x) dostaneme LDR ve tvaru (p, q spojité):
Diferenciální rovnice Obyčejná diferenciální rovnice n-tého řádu: F x, y, y, y,, y n Řešení n intervlu I: funkce y : I R tková, že pro kždé x I je F x, yx, y x,, y n x Mximální řešení: neexistuje řešení
Víceje parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné
1. Prciální derivce funkce více proměnných. Prciální derivce funkce dvou proměnných. Je-li funkce f f(, ) definován v množině D f R 2 bod ( 1, 2 ) je vnitřním bodem množin D f, pk funkce g 1 (t) f(t, 2
VíceVEKTOROVÁ POLE Otázky
VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,
Více7. Aplikace derivace 7E. Křivky. 7E. Křivky
7E. Křivky Derivace nacházejí uplatnění také při studiu křivek. Obrazně řečeno křivka v rovině je množina bodů, která vznikne pohybem pera po papíře. Předpokládáme přitom, že hrot pera je stále v kontaktu
Víceje daná funkce. Množinu všech primitivních funkcí k f na I nazveme neurčitým f(x)dx nebo f.
MATEMATICKÁ ANALÝZA INTEGRÁLNÍ POČET PŘEDNÁŠEJÍCÍ ALEŠ NEKVINDA. Přednášk Oznčme R = R {, } jko v minulém semestru. V tomto semestru se budeme zbývt opčným úkonem k derivování. Primitivní funkce. Definice.
VíceKomplexní analýza. Holomorfní funkce. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Holomorfní funkce Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Holomorfní funkce 1 / 8 Derivace Definice Necht f je komplexní
Více1 Integrál komplexní funkce pokračování
Integrál komplexní funkce pokračování Definice. Nechť D a F ) je taková funkce, že F ) = f) pro všechna D. Pak F ) naýváme primitivní funkcí k funkci f) v oblasti D. Protože při integraci funkce f po křivce,
VíceZáklady teorie matic
Zákldy teorie mtic 1. Pojem mtice nd číselným tělesem In: Otkr Borůvk (uthor): Zákldy teorie mtic. (Czech). Prh: Acdemi, 1971. pp. 9--12. Persistent URL: http://dml.cz/dmlcz/401328 Terms of use: Akdemie
VíceMatematika V. Dynamická optimalizace
Matematika V. Dynamická optimalizace Obsah Kapitola 1. Variační počet 1.1. Derivace funkcí na vektorových prostorech...str. 3 1.2. Derivace integrálu...str. 5 1.3. Formulace základní úlohy P1 var. počtu,
VíceJednou z nejdůležitějších funkcí, které se v matematice a jejích aplikacích používají je
74 Příloha A Funkce Γ(z) Úvod Jednou z nejdůležitějších funkcí, které se v matematice a jejích aplikacích používají je nesporně funkce Γ(z). Její důležitost se vyrovná exponenciální funkci i funkcím goniometrickým.
VíceA DIRACOVA DISTRIBUCE 1. δ(x) dx = 1, δ(x) = 0 pro x 0. (1) Graficky znázorňujeme Diracovu distribuci šipkou jednotkové velikosti (viz obr. 1).
A DIRACOVA DISTRIBUCE A Dircov distribuce A Definice Dircovy distribuce Dircovu distribuci δx) lze zvést třemi ekvivlentními způsoby ) Dirc [] ji zvedl vzthy δx) dx, δx) pro x ) Grficky znázorňujeme Dircovu
Více5.1.5 Základní vztahy mezi body přímkami a rovinami
5.1.5 Zákldní vzthy mezi body přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů. Přímk - jednorozměrná podmnožin prostoru (množin bodů) Rovin - dvojrozměrná podmnožin prostoru (množin
VíceObsah rovinného obrazce
Osh rovinného orzce Nejjednodušší plikcí určitého integrálu je výpočet oshu rovinného orzce. Zčneme větou. Vět : Je-li funkce f spojitá nezáporná n n orázku níže roven f ( ) d. ;, je osh rovinného orzce
Vícem n. Matice typu m n má
MATE ZS KONZ B Mtice, hodnost mtice, Gussův tvr Mtice uspořádné schém reálných čísel: m m n n mn Toto schém se nzývá mtice typu m řádků n sloupců. m n. Mtice typu m n má Oznčujeme ji A, B,někdy používáme
VíceSprávné řešení písemné zkoušky z matematiky- varianta A Přijímací řízení do NMgr. studia učitelských oborů 2010
právné řešení písemné koušky mtemtiky- vrint A Přijímcí říení do NMgr. studi učitelských oborů Příkld. Vyšetřete průběh funkce v jejím mimálním definičním oboru nčrtněte její grf y Určete pritu (sudá/lichá),
VíceMatematika II: Pracovní listy Integrální počet funkce jedné reálné proměnné
Mtemtik II: Prcovní listy Integrální počet funkce jedné reálné proměnné Petr Schreiberová, Petr Volný Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Ostrv 8 Obsh Neurčitý integrál.
VíceDERIVACE FUNKCE KOMPLEXNÍ PROMĚNNÉ
DERIVACE FUNKCE KOMPLEXNÍ PROMĚNNÉ vlastnosti holomorfní DERIVACE U reálných funkcí více reálných proměnných nebylo možné definovat derivaci analogicky definici reálné jedné reálné proměnné (nešlo dělit...)
VíceMatematika pro informatiky
(FIT ČVUT v Praze) Konvexní analýza 13.týden 1 / 1 Matematika pro informatiky Jaroslav Milota Fakulta informačních technologíı České vysoké učení technické v Praze Letní semestr 2010/11 Extrémy funkce
Více