4. Statika hmotných objekt 4.1 Stupn volnosti
|
|
- Tereza Křížová
- před 9 lety
- Počet zobrazení:
Transkript
1 4. Statika hmotných objektů 4.1 Stupně volnosti konstrukci (jako celek nebo jejíčásti) idealizujme jako hmotné body, tuhá tělesa nebo tuhé desky (viz 1. a 2. přednáška) foto:godden Structural Engineering Slide Library Courtesy National Information Service for Earthquake Engineering, University of California, Berkeley k popisu možné změny polohy těchto objektů zavádíme kinematické veličiny, tzv. stupně volnosti (m) 1
2 Pozn. - souřadnicový systém volíme tak, že kladná poloosa z směřuje ve směru působení zemské tíže. y x x z z 2
3 Stupně volnosti hmotného bodu v prostoru x v rovině x y u x u y u z u x u z z z m = 3 (posuny u x, u y, u z ) m = 2 (posuny u x, u z ) 3
4 Stupně volnosti tělesa v prostoru pootočení: x posuny: x ϕ x y = y u x u z u y + ϕ y ϕ z z z m = 6 (3 posuny u x, u y, u z + 3 pootočení ϕ x, ϕ y, ϕ z ) 4
5 Stupně volnosti desky v rovině x posuny: x pootočení: u x z = z uz + ϕ y m = 3 (2 posuny u x, u z + 1 pootočení ϕ y ) 5
6 4.2 Vazby zařízení, která spojujíčásti konstrukce nebo ji připojují k podkladu zamezují volnému pohybu objektů, t.j. odebírají stupně volnosti (r) foto:godden Structural Engineering Slide Library Courtesy National Information Service for Earthquake Engineering, University of California, Berkeley 6
7 4.2.1 Vazby hmotného bodu a tuhého tělesa v prostoru Vedení po ploše/rovině Kyvný prut Vedení po křivce/přímce r = 1 r = 1 r = 2 7
8 Kulový kloub Vetknutí (nepouž. pro hm. bod) r = 6 r = 3 8
9 Posuvný válcový kloub (nepouž. pro hm. bod) Neposuvný válcový kloub (nepouž. pro hm. bod) r = 4 r = 5 9
10 4.2.2 Vazby hmotného bodu a tuhého desky v rovině Vedení po křivce/přímce Kyvný prut n t n r = 1 r = 1 r = 1 10
11 Kloub Vetknutí (nepouž. pro hm. bod) r = 2 r = 3 11
12 kyvný prut hmotný bod kloub vetknutí zdroj fotografií 12
13 kyvný prut výsledná konstrukce složená z kyvných prutů (příhradová konstrukce) zdroj fotografií 13
14 nisee National Information Service for Earthquake Engineering University of California, Berkeley Godden Structural Engineering Slide Library Set A: Continuous beams: constant depth I-beams Set A: Continuous beams: variable depth I-beams Set A: Box girders: variable depth Set B: Three-hinged arches: bridges Set B: Two-hinged arches Set B: Tied arches: bridges Set B: Fixed arches: historic Set B: Fixed arches: modern Set D: Bridge trusses: Pin-jointed Set F: Columns: Hinged at both ends Set F: Columns: Hinged at one end, fixed at the other 14
15 4.3 Kinematická/statická určitost Stupně volnosti Podepření staticky Podepření kinematicky Pozn. m = r a není výjimkový případ m < r a není výjimkový případ m > r nebo výjimkový případ určité neurčité přeurčité určité přeurčité neurčité kce. pevně podepřena kce. pevně podepřena kce. může smovolně změnit polohu 15
16 Výjimkový případ podepření: Přestože počet vazeb je dostatečný k odebrání všech stupňů volnosti konstrukce (m r), jejich nevhodné uspořádání nezabraňuje skutečným či nekonečně malým posunům/pootočením. Není možné najít takové reakce ve vazbách, které by uvedly zatížení konstrukce do rovnováhy. Determinant soustavy podmínek rovnováhy je nulový. 16
17 4.4 Účinky vazeb účinky vazeb vyjadřujeme (nahrazujeme) silami a statickými momenty -- reakcemi, které působí ve směru odebraných stupňů volnosti orientace reakcí (konvence): kladná reakce způsobuje tah ve vazbě (je-li směr reakce vazbou dán) kladné reakce jsou orientovány shodně s kladnými poloosami souřadnicového systému (není-li směr výsledné reakce dán) 17
18 4.4.1 Vazby hmotného bodu a tuhého tělesa v prostoru Vedení po ploše/rovině Kyvný prut Vedení po křivce/přímce R R R ξ R η 18
19 Kulový kloub Vetknutí (nepouž. pro hm. bod) M Rz M Ry R y R z R x M Rx R y R x Rz 19
20 Posuvný válcový kloub (nepouž. pro hm. bod) Neposuvný válcový kloub (nepouž. pro hm. bod) M Rz M Rz R y Rz M Ry M Ry R y R z R x 20
21 4.4.2 Vazby hmotného bodu a tuhého desky v rovině Vedení po křivce/přímce Kyvný prut n t n R R R 21
22 Kloub Vetknutí (nepouž. pro hm. bod) M R R x R z R x R z 22
23 Tento dokument je určen výhradně jako doplněk k přednáškám z předmětu Stavební mechanika 1 pro studenty Stavební fakulty ČVUT v Praze. Dokument je průběžně doplňován, opravován a aktualizován a i přes veškerou snahu autora může obsahovat nepřesnosti a chyby. Datum poslední revize:
Petr Kabele
4. Statika tuhých objektů 4.1 Idealizovaný model konstrukce předpoklad: konstrukci (jako celek nebo jejíčásti) idealizujme jako body, tuhá tělesa nebo tuhé desky (viz 1. a 2. přednáška) foto:godden Structural
4.6 Složené soustavy
4.6 Složené soustavy vznikají spojením jednotlivých konstrukčních prvků (tuhých těles, tuhých desek a/nebo bodů) deska deska G G 1 vazby: vnitřní - spojují jednotlivé prvky vnější - připojují soustavu
4.6.3 Příhradové konstrukce
4.6.3 Příhradové konstrukce Forth Bridge (1890) 2529 m Akashi Kaikyō Bridge (1998) 3911 m "Forth rail bridge head-on-panorama josh-von-staudach" by Josh von Staudach - Own work. "The Forth Bridge seen
Mechanika tuhého tělesa. Dynamika + statika
Mechanika tuhého tělesa Dynamika + statika Moment hybnosti U tuhého tělesa není hybnost vhodnou veličinou pro posouzení dynamického stavu rotujícího tělesa Definujeme veličinu analogickou hybnosti, která
Složené soustavy. Úloha: Sestavení statického schématu, tj. modelu pro statický výpočet (např.výpočet reakcí)
Složené soustavy Vznikají spojením jednotlivých konstrukčních prvků Úloha: Sestavení statického schématu, tj. modelu pro statický výpočet (např.výpočet reakcí) Metoda: Konstrukci idealizujeme jako soustavu
Stupně volnosti a vazby hmotných objektů
Stupně volnosti a vazby hmotných objektů Reálnou konstrukci či její části idealizujeme výpočetním modelem, který se obvykle skládá z objektů typu hmotný bod model prvku na který působí svazek sil (často
Příhradové konstrukce
Příhradové konstrukce Základní předpoklady konstrukce je vytvořena z přímých prutů pruty jsou navzájem pospojovány v bodech =>styčnících vzájemné spojení prutů se ve všech styčnících se předpokládá kloubové
Téma 6 Rovinné nosníkové soustavy
Stavební statika, 1.ročník bakalářského studia Téma 6 Rovinné nosníkové soustavy Spojitý nosník s vloženými klouby Trojkloubový rám a oblouk Trojkloubový rám a oblouk s táhlem Katedra stavební mechaniky
Balkónové nosníky a rošty
Stavební mechanika 3 132SM3 Přednášk Balkónové nosník a rošt řešení silovou metodou Desk ákladní předpoklad, proměnné a rovnice Vnitřní síl obecně atížených prutů - opakování Obecně atížený prut (vi SM02)
Tutoriál programu ADINA
Nelineární analýza materiálů a konstrukcí (V-132YNAK) Tutoriál programu ADINA Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2010 1 Výstupy programu ADINA: Preprocesor
Zjednodušená deformační metoda (2):
Stavební mechanika 1SM Přednášky Zjednodušená deformační metoda () Prut s kloubově připojeným koncem (statická kondenzace). Řešení rovinných rámů s posuvnými patry/sloupy. Prut s kloubově připojeným koncem
Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury.
reálných 3. přednáška Reakce na rovinných staticky určitých konstrukcích Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 21. března 2016 Dřevěný trámový strop - Anežský klášter
Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky.
7. Prutové soustavy Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. s styčník (ruší 2 stupně volnosti) každý
2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ.
.8 Zobecnění vtahů mei atížením a vnitřními silami prutu (rovinný prut atížený v rovině) µ x N V M dm µ df df x =R. MdM x NdN VdV Náhradní břemena: df x = x. df =. dm µ =µ. Obecný rovinný prut: spojité
Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím
Stavební mechanika, 2.ročník bakalářského studia AST Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita Ostrava Osnova přednášky
* Modelování (zjednodušení a popis) tvaru konstrukce. pruty
2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV KOVOVÝCH A DŘEVĚNÝCH KONSTRUKCÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF METAL AND TIMBER STRUCTURES NÁVRH NOSNÉ OCELOVÉ
ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání
iloš Hüttner SR D přímé nosníky cvičení 09 adání D PŘÍÉ NOSNÍKY Příklad č. 1 Vykreslete průběhy vnitřních sil na konstrukci zobrazené na Obr. 1. Příklad převzat z katedrové wikipedie (originál ke stažení
STAVEBNÍ STATIKA. Ing. Lenka Randýsková http://fast10.vsb.cz/randyskova
STAVEBNÍ STATIKA Ing. Lenka Randýsková http://fast10.vsb.cz/randyskova Požadavky pro udlení zápotu zápoet z pedmtu Matematika I minimáln 70% aktivní úast na cviení prokázání znalostí procviované látky
Kinematická metoda výpočtu reakcí staticky určitých soustav
Kinematická metoda výpočtu reakcí staticky určitých soustav 1) Uvolnění jednoho stupně volnosti odpovídající reakci, kterou chceme určit (vytvoření kinematického mechanismu o jednom stupni volnosti). Zavedení
STATIKA. Vyšetřování reakcí soustav. Úloha jednoduchá. Ústav mechaniky a materiálů K618
STATIKA Vyšetřování reakcí soustav Úloha jednoduchá Ústav mechaniky a materiálů K618 1 Zadání Posuďte statickou určitost a vyšetřete reakce rovinné soustavy zadané dle obrázku: q 0 M Dáno: L = 2 m M =
Princip virtuálních prací (PVP)
Zatěžujme pružinu o tuhosti k silou F k ū F Princip virtuálních prací (PVP) 1 ū u Energie pružné deformace W ext (skalár) je definována jako součin konstantní síly a posunu. Protože se zde síla během posunu
ÚŘ úř Ř Á Á Ú Ř Č Č é š é ř ř š ř ž ž ú ú ó ú ý ú Á ů š é é ý ý ó ó ř ý ř ý ř ý ř ř é é ř řž ó ř é ř ó ý ž ř řž ř é é ř ř ř ř řž ž ý é é Č é ř úř úř úř ř š ý ú ř š ř ů ó ú é š ú é ó ú ř é ů ý ý ť ř é Ú
Statika soustavy těles.
Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho
Předpoklady: konstrukce je idealizována jako soustava bodů a tuhých těles (v prostoru) nebo bodů a tuhých desek (v rovině) konstrukce je v rovnováze
4.5 eakce staticky určitých konstrukcí Úloha: posoudit statickou určitost / navrhnout podepření konstrukce jistit jakými silami jsou namáhanéčásti konstrukce, jakými silami působí konstrukce na áklady
Příklad klopení rámové příčle s průběhem zatížení podle obrázku
Příklad klopení rámové příčle s průběhem zatížení podle obrázku Použit software LTBeam, který je volně ke stažení na: http://www.cticm.com Zadávání geometrie, okrajových podmínek, zatížení a spuštění výpočtu
PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY
Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 4. ŘÍJNA 202 Název zpracovaného celku: PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY Příhradové konstrukce jsou sestaveny
2.STATIKA V ROVINĚ 2.1 SÍLA, JEJÍ URČENÍ A ÚČINKY 2. Střední odborná škola a Gymnázium Staré Město
2.STATIKA V ROVINĚ 2.1 SÍLA, JEJÍ URČENÍ A ÚČINKY 2 Název školy Střední odborná škola a Gymnázium Staré Město Číslo projektu CZ.1.07/1.5.00/34.1007 Autor Ing. Zuzana Kučerová Název šablony III/2 Inovace
b=1.8m, c=2.1m. rychlostí dopadne?
MECHANIKA - PŘÍKLADY 1 Příklad 1 Vypočítejte síly v prutech prutové soustavy, je-li zatěžující síla F. Rozměry prutů jsou h = 1.2m, b=1.8m, c=2.1m. Příklad 2 Vypočítejte zrychlení tělesa o hmotnosti m
Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.
Stavební mechanika 12SM Přednášky Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Porovnání ODM a ZDM Příklad 1: (viz předchozí přednáška)
Statika tuhého tělesa Statika soustav těles. Petr Šidlof
Statika tuhého tělesa Statika soustav těles Petr Šidlof Rovnováha volného tuhého tělesa (1) Hmotný bod: v rovnováze když rovnováha sil F 0 Tuhé těleso: v rovnováze když rovnováha sil a momentů F 0, M 0
Stavební mechanika 2 (K132SM02)
Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz konzultační hodiny budou upřesněny později https://mech.fsv.cvut.cz/student/
Statika tuhého tělesa Statika soustav těles
Statika tuhého tělesa Statika soustav těles Petr Šidlof TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
a) Síla v rovině. Obr. 1.
TECHNICKÁ MECHANIKA I. - STATIKA 1. Základní pojmy 1.1. Prostor V technické mechanice znamená prostor soubor všech míst v nichž může být umístěno těleso. V našich úvahách vystačíme s Newtonovou definicí
FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Přednáška 2 pro kombinované studium Jiří Brožovský Kancelář: LP C 303/1 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz
ď ú ú Č ý ů ů ú ů ž ť ž ž ů ý ó ú ý ů ú Ž ý ú ů ú Č ď ý ž ý ž ú ů ž ý ž ž ý ý ž ů ž Č ž Š ž ž ú ů ý ů ž ú ů ž ý ť ť ů ť ů ů ůž ž ž ž ý ý ů ž ý ý Ú ů ž ý ý ů ž ž ý ú ý ž ů ů ý ý ý ů ý ý ů ý ž ý ó ů ú Ú
ž ž ž ú ú ž ž ů š ú Ž ů ž š šť š ů ú ž šť ž ž ů ů šť ň ž šť ž ú ž ů ů ž š š ú š ž ů Ž Ř Ř ď Ř Ř š ž š ů ž ú ú ú ů ú ú š ď ů ú ůž ú ů Ť ú ž ů ů š ž ú ů š ů ů ů ž š Ť ú ž ú ú š Ž Ž ů ů Ž ů š ů ů ů ů š ť
Š Á Š Š ž ů Ť Í Í ž ů ů ú Ž Ť ó Č Ž ž Š ž ž ů ž Í MM& ž ó ž ž ó ú ž Í Ž ž ž ž ů ž ů ž Š Ž ď ž ž ž Í ž ž Ž ž Ž ů Ž ů ó Ž ůž ž ž ůž ůž ž ž Í ó Ů Ť ť Á ď Ú Í Ú Ě ó ď ó Ů ů ž Š Š ž ů ž ů ž ž ž ž ž ž Ž ž ů
Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY NOSNÍKY
Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 16. ČERVNA 2012 Název zpracovaného celku: NOSNÍKY NOSNÍKY Nosníky jsou zpravidla přímá tělesa (pruty) uloţená na podporách nebo
PŘÍKLADY PŮSOBENÍ A VÝPOČTU ZATÍŽENÍ VLASTNÍ TÍHOU:
PŘÍKLADY PŮSOBENÍ A VÝPOČTU ZATÍŽENÍ VLASTNÍ TÍHOU: Vykreslete zatížení zadaných prutů od vlastní tíhy, jsou-li rozměry průřezu b,h [m], objemová hmotnost ρ [kg.m -3 ] a tíhové zrychlení a g [m.s -2 ]
s01. Základy statiky nutné pro PP
s01 1 s01. Základy statiky nutné pro PP Poznámka: Tato stať není přehledem statiky, ale pouze připomenutím některých základních poznatků, bez nichž se v PP nelze obejít. s01.1. Mechanický pohyb Pohyb chápeme
Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil
Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),
Téma 8 Příčně zatížený rám a rošt
Statika stavebních konstrukcí I.,.ročník bakalářského studia Téma 8 Příčně zatížený rám a rošt Základní vlastnosti příčně zatíženého rámu Jednoduchý příčně zatížený otevřený rám Základní vlastnosti roštu
Složené soustavy v rovině, stupně volnosti
Složené soustavy v rovině, stupně volnosti Složená soustava vznikne spojením hmotných bodů, tuhých desek a tuhých těles Foto: autor Maloměřický most s mezilehlou mostovkou, Brno, tři paralelní trojkloubové
2.13 Rovinný obloukový nosník zatížený v rovině = staticky určitě podepřený rovinný obloukový prut
.13 Rovinný obloukový nosník atížený v rovině = staticky určitě podepřený rovinný obloukový prut (střednice-rovinná křivka, atížení v rovině střednice) Geometrie obloukového prutu Poloha průřeu: s x =
ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA
ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Pojem šroubového pohybu Šroubový pohyb je definován jako pohyb, jejž lze ve vhodném referenčním bodě rozložit
p + m = 2 s = = 12 Konstrukce je staticky určitá a protože u staticky určitých konstrukcí nedochází ke změně polohy je i tvarově určitá.
TRIN_STT_P11.doc STTIK - SOUOR PŘNÁŠK 11. Prutové soustavy, základní pojmy, metody řešení. Teoreticky je PRUTOVÁ SOUSTV definována jako soustava složená z tuhých prutů, které jsou navzájem spojeny ideálními
Sylabus k přednášce předmětu BK1 SCHODIŠTĚ Ing. Hana Hanzlová, CSc., Ing. Jitka Vašková, CSc.
Schodiště jsou souborem stavebních prvků (schodišťová ramena, podesty, mezipodesty, podestové nosníky, schodnice a schodišťové stěny), které umožňují komunikační spojení různých výškových úrovní. V budovách
Princip virtuálních posunutí (obecný princip rovnováhy)
SMA2 Přednáška 05 Princip virtuálních posunutí Deformační metoda Matice tuhosti prutu pro tah/tlak Matice tuhosti prutu pro ohyb Program EduBeam Příklady Copyright (c) 2012 Vít Šmilauer Czech Technical
Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba
Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Petr Pošta Text pro soutěžící FO a ostatní zájemce o fyziku 2 1. úloha Obrázek 1.1 ukazuje pevný, homogenní míč poloměru R. Před pádem na
Princip virtuálních posunutí (obecný princip rovnováhy)
SMA Přednáška 5 Princip virtuálních posunutí Deformační metoda Matice tuhosti prutu pro tahtlak Matice tuhosti prutu pro ohyb Program EduBeam Příklady Copyright (c) Vít Šmilauer Czech Technical University
Atic, s.r.o. a Ing. arch. Libor Žák
Atic, s.r.o. a Ing. arch. Libor Žák Riegrova 44, 612 00 Brno Sdružení tel. 541 245 286, 605 323 416 email: zak.apk@arch.cz Investor : Stavba : Objekt : Jihomoravský kraj Brno, Žerotínovo nám. 3/5, PSČ
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině
2. kapitola. Co jsou to vnitřní síly, jakými způsoby se dají určit, to vše jsme se naučili v první kapitole.
2. kapitola Stavební mechanika 2 Janek Faltýnek SI J (43) Průběhy vnitřních sil Teoretická část: V tomto příkladu máme za úkol vyšetřit průběhy vnitřních sil na rovinné konstrukci zatížené libovolným spojitým
Materiály ke 12. přednášce z předmětu KME/MECHB
Materiály ke 12. přednášce z předmětu KME/MECH Zpracoval: Ing. Jan Vimmr, Ph.D. Prutové soustavy Prutové soustavy představují speciální soustavy těles, které se uplatňují při navrhování velkorozměrových
Vnitřní síly v prutových konstrukcích
Vnitřní síly v prutových konstrukcích Síla je vektorová fyikální veličina, která vyjadřuje míru působení těles nebo polí. Zavedení síly v klasické Newtonově mechanice (popis pohybu těles) dp dv F = = m
3. kapitola. Průběhy vnitřních sil na lomeném nosníku. Janek Faltýnek SI J (43) Teoretická část: Příkladová část: Stavební mechanika 2
3. kapitola Stavební mechanika Janek Faltýnek SI J (43) Průběhy vnitřních sil na lomeném nosníku Teoretická část: Naším úkolem je v tomto příkladu vyšetřit průběh vnitřních sil na lomeném rovinném nosníku
M - Rovnice - lineární a s absolutní hodnotou
Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme
Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky
Průmyslová střední škola Letohrad Ing. Soňa Chládková Sbírka příkladů ze stavební mechaniky 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního
Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D.
Příklad 1: 3;4 3;4 = =4 9 2;1,78 = = 4 9 4=16 9 =1,78 =2 =2 2 4 9 =16 9 1 = 1+ =0,49 = 1+ =0,872 =0 =10 6+ 2,22=0 =3,7 6+ 2,22=0 =3,7 + =0 3,7+3,7=0 0=0 =60,64 =0 =0 + =0 =3,7 á čá 5+ 2,22=0 =3,7 5+ 2,22+
Stavební mechanika 1 (K132SM01)
Stavební mechanika 1 (K132SM01) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz http://mech.fsv.cvut.cz/~leps/teaching/index.html Organizace předmětu
MODEL MOSTU. Ing.Jiřina Strnadová. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti. Předmět:Fyzika
MODEL MOSTU Ing.Jiřina Strnadová Předmět:Fyzika Praha a EU Investujeme do vaší budoucnosti Model mostu Teoretický úvod: Příhradové nosníky (prutové soustavy) jsou složené z prutů, které jsou vzájemně spojené
Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví
5. přednáška Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 5. května 2014 (prutové ) podle prostoru rozdělujeme na: Rovinné Prostorové Dále se budeme zabývat jen rovinnými
Á Á úř ž úř ř ů ů ř úř ř ř ý ž ý ž ý ý ůž ůž ř ů ý ý ř Ú ú ř ř ď ř ř ú ř ý ž ž ž ř ú ř Ž ý Ž ů ý ř ů řž ý ů Í ř ý ú ů Š ý ú ř ř ř ď ř ř ř ř ý ú ý ý ů ý ř ý ů ý ý ř ž ř Ž ř ý ů ď ž ř ř ú ř ž ý ž ř ř ř ú
Energetický regulační
Energetický regulační ENERGETICKÝ REGULAČNÍ ÚŘAD ROČNÍK 16 V JIHLAVĚ 25. 5. 2016 ČÁSTKA 4/2016 OBSAH: str. 1. Zpráva o dosažené úrovni nepřetržitosti přenosu nebo distribuce elektřiny za rok 2015 2 Zpráva
Úvod do soustav sil. 1. Axiom o rovnováze sil F 1 F 2. tuhém tělese na stejném paprsku jsou v rovnováze. Axiomy statiky. Statika 1. M. Vokáč.
1. cvičení Svazek sil & tlak Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 14. února 2018 do soustav sil Síla je vektor y tuhé těleso F & tlak působiště paprsek [0,0] α A[x A,y
Pohybové možnosti volných hmotných objektů v rovině
REAKCE Pohyové možnosti volných hmotných ojektů v rovině Stupeň volnosti n v : možnost vykont jednu složku posunu v ose souřdného systému neo pootočení. +x volný hmotný od v rovině: n v =2 (posun v oecném
strol. s.ucasl. Joseph E. Shigley The Iowa State University of Science and Technology Richard G. Budynas Institute of Technology
Kon. ; ; nl strol. y; ; s.ucasl. Joseph E. Shigley University of Michigan Charles R. Mischke The Iowa State University of Science and Technology Richard G. Budynas Rochester Institute of Technology VYSOKE
Statika 1. Úvod & Soustavy sil. Miroslav Vokáč 22. února ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč.
1. přednáška Úvod & Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 22. února 2016 Konzultační hodiny Ing. Miroslav Vokáč, Ph.D. Kloknerův ústav, ČVUT v Praze Šolínova 7 166 08
SOU plynárenské Pardubice Mechanika - Statika - příhradové konstrukce
Identifikátor materiálu: ICT příhradové konstrukce Registrační číslo projektu Název projektu Název příjemce podpory název materiálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního
Lineární algebra. Vektorové prostory
Lineární algebra Vektorové prostory Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu:
( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208
.. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla
Síla je vektorová veličina
Dynamika vyšetřuje příčiny pohybu, resp. změny pohybového stavu těles Za příčinu je označována síla od toho název (Dynamis řecky síla) Aristoteles (3. stol. př.n.l), Galilei (16.-17. stol) klasická* dynamika
Mechanika
Mechanika 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Mechanika Kinematika 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ SPORTOVNÍ HALA FAKULTA STAVEBNÍ ÚSTAV KOVOVÝCH A DŘEVĚNÝCH KONSTRUKCÍ BAKALÁŘSKÁ PRÁCE BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV KOVOVÝCH A DŘEVĚNÝCH KONSTRUKCÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF METAL AND TIMBER STRUCTURES SPORTOVNÍ HALA SPORTS
Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků
Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2014 Obsah Variační principy
Pružnost a plasticita II CD03
Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah
Postup řešení: Spřažené desky ve vícepodlažních budovách pro komerční a obytné účely
Postup řešení: Spřažené desky ve vícepodlažních budovách pro komerční Dokument seznamuje s přehledem různých druhů spřažených desek, které se používají ve vícepodlažních budovách, shrnuje jejich výhody,
1. Obsah. areál WELPRO, Pocinovice. mobil: +420 775 099158 e-mail: radek@pikhart.cz www. pikhart.cz. Vídeňská 841 339 01 Klatovy tel.
1. Obsah 1. Obsah 1 2. Úvod 2 3. Výpočtový model konstrukce 3 3.1. Nastavení řešiče a sítě 3 3.2. Výpočtový model - zadání profilů 4 3.3. Výpočtový model - osové schéma s popisem prutů a uvolněním vateb
Pomůcka pro demonstraci momentu setrvačnosti
Pomůcka pro demonstraci momentu setrvačnosti Cílem pomůcky je pochopit význam geometrických charakteristik pro pohybové chování těles na něž působí vnější síly. Princip pomůcky je velmi jednoduchý, jde
PROCESY V TECHNICE BUDOV 3
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 3 (2.část) Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského
Ing. Jitka Řezníčková, CSc., Ing. Jan Šleichrt, Ing. Jan Vyčichl, Ph.D.
Statika (18SAT) letní semestr 2016/2017 přednášky: Ing. Daniel Kytýř, Ph.D. cvičení: Ing. Tomáš Doktor, Ing. Petr Koudelka, Ing. Nela Krčmářová, Ing. Jitka Řezníčková, CSc., Ing. Jan Šleichrt, Ing. Jan
úř úř ř Á Á Ř Á Ú Á úř úř ř š ú ř š ř ů ř é é ů ú é ů Č Č ú úť ř š ř ů ř ř ř ú é ů ř úř úř Ž ú ř ú é é ů é Ú ž ů úř úř ů é ř ž Ú ř ř é Ú ř ř ů ř úř ř ú ů ů ř šť ř ď ř ů ů š ů úř ůž ž ř ž ů Ž ť ř ú ů ž
é é ě ž é ě ř ú ě ř ž ě Č ě ý ž ť ď ř ě ý ě é ř ř ř ý ř ř é ř ý é ě Ú ř ě ě ÚČ é ú š ě ž ú é Š ě é ř ý ř ž ř é ř ž ě é ž ů é ř ě Č ř é ř ě ž ý é ě ř ý ř ž ě ů ý ž é ž é ž ů é Ů Č é Ž é ý š ř é ě š ě ž
í ý á ř ů ř ě í Ď ě ě ě á ě á ří ý ě í á ř ů ň á ó Š á ř ů ř ě í ě ě ě á ě á íí ý í á á ř ů ř ě í ě ě ě á ě á ří ý ě í Ó ří á ř ů ř ě í ě ě ě á ě á ří ý á ř ů ř ě í ř ý ří í á ř ů ř ě í ě ě ě á ě á ý ě
Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D
Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz Organizace předtermínu a N & O zápočtových testů ze SM02 Předtermín
Postup při výpočtu prutové konstrukce obecnou deformační metodou
Vysoké učení technické v Brně Fakulta stavební Ústav stavební mechaniky Postup při výpočtu prutové konstrukce obecnou deformační metodou Petr Frantík Obsah 1 Vytvoření modelu 2 2 Styčníkové vektory modelu
ů Ž ň Ž é ř š ř š Š Š é ř ú é é ř ů š Ž ř Ó ř š ť ž é ř ů ř é é ř ú ů é Ž é š é š é řů é ú ů ť é š é Ž é é é é ů ř ů é Š é ů é é Ž é é ř š š ř é Ž é ř ř é Š ř ů ť ř ů ř Ž Š ř ž é ř š é é ú Ž ů é é Ž ů
IDEA Frame 4. Uživatelská příručka
Uživatelská příručka IDEA Frame IDEA Frame 4 Uživatelská příručka Uživatelská příručka IDEA Frame Obsah 1.1 Požadavky programu... 6 1.2 Pokyny k instalaci programu... 6 2 Základní pojmy... 7 3 Ovládání...
Těleso na podporách. asi 1,5 hodiny. Základy mechaniky, 4. přednáška
Těleso na podporách. Obsah přednášky : uvolňování jako jeden ze základních postupů mechaniky, statická určitost a neurčitost, vazby a jejich vlastnosti, řešení staticky neurčitých úloh Doba studia : asi
Obchodní akademie, Hotelová škola a Střední odborná škola, Turnov, Zborovská 519, příspěvková organizace,
Obchodní akademie, Hotelová škola a Střední odborná škola, Turnov, Zborovská 519, příspěvková organizace, Zborovská 519, 511 01 Turnov tel.: 481 319 111, www.ohsturnov.cz, e-mail: vedeni@ohsturnov.cz Maturitní
CREATION OF THE STABLE ELASTIC LOOP
National Conference with International Participation ENGINEERING MECHANICS 2006 Svratka, Czech Republic, May 15 18, 2006 paper no. 122 CREATION OF THE STABLE ELASTIC LOOP P. Frantík 1 Summary: Paper deals
Kontrolní otázky pro průběžné studium a pro přípravu ke zkoušce ze statiky. Základní pojmy
Kontrolní otázky pro průběžné studium a pro přípravu ke zkoušce ze statiky Základní pojmy Pojem hmota, základní formy existence (atributy) hmoty Čím se liší pojmy hmota a hmotnost Axiomy statiky Mechanický
Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno
Přednáška č. 9 Katedra ekonometrie FEM UO Brno Distribuční úlohy Budeme se zabývat 2 typy distribučních úloh dopravní úloha přiřazovací problém Dopravní úloha V dopravním problému se v typickém případě
Paradigmata kinematického řízení a ovládání otevřených kinematických řetězců.
Přednáška 6 Inovace výuky předmětu Robotika v lékařství Paradigmata kinematického řízení a ovládání otevřených kinematických řetězců. Kinematickým zákonem řízení rozumíme předpis, který na základě direktiv
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV KOVOVÝCH A DŘEVĚNÝCH KONSTRUKCÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF METAL AND TIMBER STRUCTURES PŘEPOČET A VARIANTNÍ
Desky. Petr Kabele. Pružnost a pevnost 132PRPE Přednášky. Deska/stěna/skořepina, desky základní předpoklady, proměnné a rovnice
Pružnost a pevnost 13PRPE Přednášk Desk Deska/stěna/skořepina, desk ákladní předpoklad, proměnné a rovnice Petr Kabele České vsoké učení technické v Prae Fakulta stavební Úvod Přemístění, deformaci a napjatost
Advance Design 2013 / SP1
Advance Design 2013 / SP1 Tento dokument popisuje vylepšení v Advance Design 2013 Service Pack 1. První Service Pack pro Advance design 2013 obsahuje více než 110 vylepšení a oprav. Měl by být nainstalován