Balkónové nosníky a rošty

Rozměr: px
Začít zobrazení ze stránky:

Download "Balkónové nosníky a rošty"

Transkript

1 Stavební mechanika 3 132SM3 Přednášk Balkónové nosník a rošt řešení silovou metodou Desk ákladní předpoklad, proměnné a rovnice

2 Vnitřní síl obecně atížených prutů - opakování Obecně atížený prut (vi SM02) Souřadnicové sstém globální lokální (směr a orientace vnitř. sil) lokání (funkční ávislost vnitřních sil na poloe průřeu, často ) s s 2

3 Vnitřní síl obecně atížených prutů - opakování Obecně atížený prut (vi SM02) Vnitřní síl Lokální os:... tečna ke střednici,... hlavní těžišťové os c b 3

4 Balkónové nosník a rošt Balkónový nosník Podepřený lomený rovinný prut atížený kolmo na svou rovinu. Nosník umístíme do rovin, atížení působí ve směru. Předpokládáme. Pravoúhlý nosník... os prutů () rovnoběžné s nebo. 4

5 Balkónové nosník a rošt Rošt Rovinná soustava vájemně se křížících prutů atížená kolmo na svou rovinu. Rošt umístíme do rovin, atížení působí ve směru. Předpokládáme. Pravoúhlý rošt... os prutů () rovnoběžné s nebo. 5

6 Balkónové nosník a rošt Vnitřní síl a přemístění Konstrukci umístíme do rovin, atížení působí ve směru. Pak vnitřní síl a přemístění v rovině konstrukce budou nulové: (vhledem k lokálním i globálním osám) Obecně nenulové mohou být:

7 Balkónové nosník a rošt Řešení silovou metodou 1) Ze statick neurčité konstrukce vtvoříme uvolněním vaeb statick určitou ákladní soustavu (ZS). Účink těchto vaeb nahradíme nenámými reakcemi,, (Uvažujeme poue reakce, které mohou být nenulové s ohledem na atížení působící kolmo na rovinu konstrukce, vi předchoí snímek). Př. 1: Možné ákladní soustav: Daná konstrukce: 7

8 Balkónové nosník a rošt Př. 2: Daná konstrukce: Možné ákladní soustav: válcový kloub (přenáší, ) 2 oddělené osnov prutů 8

9 Balkónové nosník a rošt 2) Rovnovážný stav vnitřních a vnějších sil na ZS vjádříme jako lineární kombinaci atěžovacích stavů od skutečného atížení (stav 0) a od jednotkových sil nebo momentů odpovídajících nenámým reakcím (stav 1, 2,...) 3) Zajistíme splnění spojitosti - kompatibilit (spojitosti prutů a vaeb), čímž obdržíme podmínečné rovnice. Př. 1: 0: :

10 4 Balkónové nosník a rošt 4) Koeficient podmínečných rovnic $% odpovídají přemístění v místě a směru nenámé $ od atěžovacího stavu &. Tato přemístění určíme pomocí PVs. $% '( $ % (* +, $ % (* -,. + $ % (* -/ 0 3 vliv ohbu bývá dominantní vliv kroucení při jednodušení anedbáváme, vi dále vliv smku výnamný u krátkých vsokých prutů, jinak anedbáváme,. moment tuhosti průřeu v kroucení, (vi PRPE) pro masivní průře:, : 2 10

11 Balkónové nosník a rošt 5) Poté, co vpočteme koeficient $%, nenámými v podmínečných rovnicích ůstávají poue síl a moment,, =0: =0 =0: =0 Řešením rovnic obdržíme hodnot sil a momentů,, 6) Výsledné vnitřní síl na statick neurčité konstrukci určíme jako kombinaci: = = =

12 Balkónové nosník a rošt Příklad 3: Určete průběh vnitřních sil. Uvažujte vliv kroucení, ale vliv smku anedbejte = >?@ - 8, = >?@, =1, D9 E 9,. =1, D9 E 9 Základní soustava: 12

13 Balkónové nosník a rošt Průběh momentů na ZS: 13

14 Balkónové nosník a rošt Průběh momentů na ZS: 14

15 4 Balkónové nosník a rošt Výpočet koeficientů $% '( $ % (* +, $ % (* -,. 3 15

16 Balkónové nosník a rošt Podmínečné rovnice ,130 > =4,805 > =7,826 >E 9 = 0,193 >E 16

17 Balkónové nosník a rošt Průběh momentů na dané konstrukci:

18 Balkónové nosník a rošt Řešení silovou metodou be vlivu kroucení (jednodušený výpočet) Předpokládáme, že v prutech nevnikají krouticí moment (tuhost v kroucení 0). V křížení vájemně kolmých prutů se pak mei prut přenáší poue svislá síla vaba ajišťuje poue společný průhb. Vabu nahraujeme kvným prutem, např.: 18

19 Balkónové nosník a rošt Statick určitou ákladní soustavu vtvoříme tak, že rošt rodělíme na jednotlivé nosník přetnutím vnitřních kvných prutů a úpravou vnějších vaeb, např. 19

20 Balkónové nosník a rošt Příklad 4: Určete průběh vnitřních sil. Zanedbejte vliv kroucení i smku = >?@, 1, D9 E 9 Základní soustava: 20

21 Balkónové nosník a rošt Průběh momentů na ZS Výpočet koeficientů 21

22 Balkónové nosník a rošt Podmínečné rovnice Průběh vnitřních sil Srovnejme s řešením př vliv kroucení je v tomto případě v řádu jednotek procent. 22

23 Desk Deska vs. stěna (vi PRPE) Plošné konstrukční prvk s rovinnou střednicovou plochou. Deska... atížení a reakce od podepření působí na kolmo na střednicovou rovinu. Stěna... atížení a reakce od podepření působí ve střednicové rovině. 23

24 Desk Desk ákladní předpoklad Kirchhoffova hpotéa: úsečk, které jsou kolmé ke střednicové rovině v nedeformovaném stavu desk, ůstávají kolmé ke střednicové ploše i v deformovaném stavu. 24

25 Desk Rodělení deformace po objemu desk V důsledku Kirchhoffov hpoté jsou nenulové poue složk deformace L,L,M. Tto složk mají po tloušťce desk lineární průběh a můžeme je vjádřit v ávislosti na 2. derivacích průhbu (, ) (křivostech) (, ) L,, = O, O L,, = O, O M,, = 2 O, OO = P = P = P L M L 25

26 Desk Rodělení napětí po objemu desk Za složk napětí můžeme vjádřit pomocí materiálových rovnic (de předpokládáme lineárně elastického chování materiálu): Q + 1 S L +SL Q + 1 S L +SL R -M I napětí je pak roděleno po tloušťce desk lineárně: Q Q R 26

27 Desk Vnitřní síl v desce Podobně jako u prutu vjádříme vnitřní síl jako výsledné účink napětí po tloušťce desk. Měrné ohbové moment: m h 2 = h 2 σ d m h 2 = σ d h 2 σ m τ τ m σ m m m m Měrné krouticí moment: m h 2 = h 2 τ d m h 2 = τ d h ( m = m ) 2 m m Měrné ohbové a krouticí moment vjadřují intenit vtažené na jednotku šířk desk. 27

28 Desk S vužitím materiálových rovnic a vtahů mei deformacemi a průhbem můžeme vjádřit vnitřní síl: VW E ( + 1 S L +SL 3 U O O +SO O DVW VW E ( + 1 S L +SL 3 U O O +SO O DVW VW E ( -M 3 1 S U O OO DVW U +h 12 1 S... desková tuhost 28

29 Desk Z podmínek rovnováh v bodě kontinua ve směrech os a vplývá, že v desce musí vnikat i smková napětí R a R, jejichž výslednicemi jsou měrné posouvající síl. VW Y R 3 D VW VW Y R 3 D VW v m v m m Tto podmínk vedou i na vtah m m mei měrnými posouvajícími m v sílami a moment: m m v OE O +OE O OE O +OE O 29

30 Desk Desková rovnice Ze bývající podmínk rovnováh ve směru os a eliminací měrných posouvajících sil obdržíme statickou rovnici desk: 2 m m f = m f (, ) Substitucí dříve odvoených vtahů do statické rovnice ískáme tv. deskovou rovnici... diferenciální rovnici pro průhb desk: U O9 O 9 +2 O9 O O +O9 O 9 Z 0 30

31 Desk Okrajové podmínk Desková rovnice je parciální diferenciální rovnice 4. řádu. Pro naleení partikulárního řešení je třeba v každém bodě na obvodě desk definovat 2 okrajové podmínk. Např.: vetknutí n w n = 0 w = 0 kloubové podepření t n mn = 0 w = 0 volný okraj t n m n mnt = 0 + vn = 0 t t 31

32 Desk Shrnutí řídících rovnic Průhb Vnější síl Geometrické rovnice Statické rovnice Křivosti Materiálové rovnice Měrné moment 32

33 Desk Shrnutí řídících rovnic D w w w f = Z P = O O P = O O P = 2 O OO 2 m m f = m P,P,P E =U P +SP E =U SP +P E =U 1 S P E,E,E 33

34 Tento dokument je určen výhradně jako doplněk k přednáškám předmětu Stavební mechanika 3 pro student Stavební fakult ČVUT v Prae. Dokument je průběžně doplňován, opravován a aktualiován a i přes veškerou snahu autora může obsahovat nepřesnosti a chb. Autor srdečně děkuje kolegům prof. Milanovi Jiráskovi a doc. Jitce Bittnarové a to, že mu laskavě posktli své přednáškové materiál jako droj nejen inspirace, ale i některých formulací, obráků a příkladů. Datum poslední revie:

Desky. Petr Kabele. Pružnost a pevnost 132PRPE Přednášky. Deska/stěna/skořepina, desky základní předpoklady, proměnné a rovnice

Desky. Petr Kabele. Pružnost a pevnost 132PRPE Přednášky. Deska/stěna/skořepina, desky základní předpoklady, proměnné a rovnice Pružnost a pevnost 13PRPE Přednášk Desk Deska/stěna/skořepina, desk ákladní předpoklad, proměnné a rovnice Petr Kabele České vsoké učení technické v Prae Fakulta stavební Úvod Přemístění, deformaci a napjatost

Více

4. Statika hmotných objekt 4.1 Stupn volnosti

4. Statika hmotných objekt 4.1 Stupn volnosti 4. Statika hmotných objektů 4.1 Stupně volnosti konstrukci (jako celek nebo jejíčásti) idealizujme jako hmotné body, tuhá tělesa nebo tuhé desky (viz 1. a 2. přednáška) foto:godden Structural Engineering

Více

Pružnoplastická analýza

Pružnoplastická analýza Pružnost a pevnost 132PRPE Přednášk Pružnoplastická analýa Nepružné cování materiálů. Pružnoplastický a plastický stav průřeu oýbanýc prutů. Mení plastická analýa nosníku. Petr Kabele České vsoké učení

Více

Zjednodušená deformační metoda (2):

Zjednodušená deformační metoda (2): Stavební mechanika 1SM Přednášky Zjednodušená deformační metoda () Prut s kloubově připojeným koncem (statická kondenzace). Řešení rovinných rámů s posuvnými patry/sloupy. Prut s kloubově připojeným koncem

Více

2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ.

2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ. .8 Zobecnění vtahů mei atížením a vnitřními silami prutu (rovinný prut atížený v rovině) µ x N V M dm µ df df x =R. MdM x NdN VdV Náhradní břemena: df x = x. df =. dm µ =µ. Obecný rovinný prut: spojité

Více

Pružnost a pevnost. 2. přednáška, 10. října 2016

Pružnost a pevnost. 2. přednáška, 10. října 2016 Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné

Více

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f. I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n

Více

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 )

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 ) . Vyjádřete koeficienty vektoru (, 8, 9) vzhledem k následující bázi vektorového prostoru V : (,, 5), (,, ), (5,, ). [,, ].. Určete všechny hodnoty parametru u, pro které vektor a patří do vektorového

Více

15 s. Analytická geometrie lineárních útvarů

15 s. Analytická geometrie lineárních útvarů 5 s Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý

Více

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Stavební mechanika 12SM Přednášky Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Porovnání ODM a ZDM Příklad 1: (viz předchozí přednáška)

Více

Řešený příklad: Prostý nosník s příčným podepřením v působišti zatížení

Řešený příklad: Prostý nosník s příčným podepřením v působišti zatížení Dokument SX007a-CZ-EU Strana 0 Eurokód Vpracovali Valérie LEMAIRE Datum duben 005 Kontroloval Alain BUREAU Datum duben 005 Řešený příklad: Prostý nosník s příčným podepřením v V tomto příkladu je řešen

Více

Funkce více proměnných

Funkce více proměnných Funkce více proměnných Funkce více proměnných Euklidův prostor Body, souřadnice, vzdálenost bodů Množina bodů, které mají od bodu A stejnou vzdálenost Uzavřený interval, otevřený interval Okolí bodu

Více

2.13 Rovinný obloukový nosník zatížený v rovině = staticky určitě podepřený rovinný obloukový prut

2.13 Rovinný obloukový nosník zatížený v rovině = staticky určitě podepřený rovinný obloukový prut .13 Rovinný obloukový nosník atížený v rovině = staticky určitě podepřený rovinný obloukový prut (střednice-rovinná křivka, atížení v rovině střednice) Geometrie obloukového prutu Poloha průřeu: s x =

Více

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

Mechanika tuhého tělesa. Dynamika + statika

Mechanika tuhého tělesa. Dynamika + statika Mechanika tuhého tělesa Dynamika + statika Moment hybnosti U tuhého tělesa není hybnost vhodnou veličinou pro posouzení dynamického stavu rotujícího tělesa Definujeme veličinu analogickou hybnosti, která

Více

{ } Poznámky 1. Jestliže integrand lze zapsat ve tvaru součinu tří funkcí jedné nezávisle proměnné. b d h

{ } Poznámky 1. Jestliže integrand lze zapsat ve tvaru součinu tří funkcí jedné nezávisle proměnné. b d h 3. TROJROZMĚRNÝ (TROJNÝ) INTEGRÁL Analogick jako dvojroměrný integrál avádíme integrál trojroměrný nebo také trojný. Dvojroměrný integrál bl obecně definován pro funkci dvou neávisle proměnných f(, ) na

Více

NK 1 Konstrukce. Základní prvky konstrukce

NK 1 Konstrukce. Základní prvky konstrukce NK 1 Konstrukce Přednášky: Doc. Ing. Karel Lorenz, CSc., Prof. Ing. Milan Holický, DrSc., Ing. Jana Marková, Ph.D. FA, Ústav nosných konstrukcí, Kloknerův ústav Cvičení: Ing. Naďa Holická, CSc., Fakulta

Více

Rovnoměrně ohýbaný prut

Rovnoměrně ohýbaný prut Přednáška 02 Prostý ohb Hpotéa o achování rovinnosti průřeu Křivost prutu, vtah mei momentem a křivostí Roložení napětí při ohbu Pružný průřeový modul Vliv teplot na křivost Copright (c) 2011 Vít Šmilauer

Více

6.3 Momenty setrvačnosti a deviační momenty rovinných obrazců. yda. 1) I y, I z > 0. 2) I y, I z závisí na vzdálenosti plochy od osy II I I I I

6.3 Momenty setrvačnosti a deviační momenty rovinných obrazců. yda. 1) I y, I z > 0. 2) I y, I z závisí na vzdálenosti plochy od osy II I I I I 6.3 Moment setrvačnosti a deviační moment rovinných obraců Statické moment rovinného obrace -k ose xiální moment setrvačnosti rovinného obrace -k ose -k ose Pon.: 1), > 0 S d d d. S d -k ose [m 3 ] [m

Více

NAMÁHÁNÍ NA TAH NAMÁHÁNÍ NA TAH

NAMÁHÁNÍ NA TAH NAMÁHÁNÍ NA TAH Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 10. BŘEZNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA TAH NAMÁHÁNÍ NA TAH Přímá tyč je namáhána na tah, je-li zatíţena dvěma silami

Více

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY FUNKCÍ DVOU PROMĚNNÝCH Robert Mařík 2. října 2009 Obsah z = x 4 +y 4 4xy + 30..................... 3 z = x 2 y 2 x 2 y 2........................ 18 z = y ln(x 2 +y)..........................

Více

Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 9 Katedra ekonometrie FEM UO Brno Distribuční úlohy Budeme se zabývat 2 typy distribučních úloh dopravní úloha přiřazovací problém Dopravní úloha V dopravním problému se v typickém případě

Více

Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba

Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Petr Pošta Text pro soutěžící FO a ostatní zájemce o fyziku 2 1. úloha Obrázek 1.1 ukazuje pevný, homogenní míč poloměru R. Před pádem na

Více

Kvadratické rovnice pro učební obory

Kvadratické rovnice pro učební obory Variace 1 Kvadratické rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jkaékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické

Více

Normálová napětí v prutech namáhaných na ohyb

Normálová napětí v prutech namáhaných na ohyb Pružnost a plasticita, 2.ročník kombinovaného studia Normálová napětí v prutech namáhaných na ohb Základní vtah a předpoklad řešení Výpočet normálového napětí Dimenování nosníků namáhaných na ohb Složené

Více

Vnitřní síly v prutových konstrukcích

Vnitřní síly v prutových konstrukcích Vnitřní síly v prutových konstrukcích Síla je vektorová fyikální veličina, která vyjadřuje míru působení těles nebo polí. Zavedení síly v klasické Newtonově mechanice (popis pohybu těles) dp dv F = = m

Více

Téma Přetvoření nosníků namáhaných ohybem

Téma Přetvoření nosníků namáhaných ohybem Pružnost psticit,.ročník bkářského studi Tém Přetvoření nosníků nmáhných ohbem Přetvoření nosníků - tížení nerovnoměrnou tepotou Přetvoření nosníků tížení siové Zákdní vth předpokd řešení Vth mei sttickými

Více

Přednáška 09. Smyk za ohybu

Přednáška 09. Smyk za ohybu Přednáška 09 Smk a ohbu Vnitřní síl na nosníku ve vtahu k napětí Smkové napětí pro obdélníkový průře Smkové napětí pro obecný průře Smkové ochabnutí Svar, šroub, spřahovací trn Příklad Copright (c) 2011

Více

ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI

ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI ZÁKLADNÍ PŘEDPOKLADY A POJMY 1. Látka, která vtváří příslušné těleso je dokonale lineárně pružné, mezi napětím a přetvořením je lineární závislost.. Látka hmotného

Více

SLOUP NAMÁHANÝ TLAKEM A OHYBEM

SLOUP NAMÁHANÝ TLAKEM A OHYBEM SOUP NAMÁHANÝ TAKEM A OHYBEM Posuďte únosnost centrick tlačeného sloupu délk 50 m profil HEA 4 ocel S 55 00 00. Schéma podepření a atížení je vidět na následujícím obráku: M 0 M N N N 5m 5m schéma pro

Více

5. Ohýbané nosníky Únosnost ve smyku, momentová únosnost, klopení, MSP, hospodárný nosník.

5. Ohýbané nosníky Únosnost ve smyku, momentová únosnost, klopení, MSP, hospodárný nosník. 5. Ohýbané nosník Únosnost ve smku, momentová únosnost, klopení, P, hospodárný nosník. Únosnost ve smku stojina pásnice poue pro válcované V d h t w Posouení na smk: V pružně: τ = ( τ pl, Rd) I V V t w

Více

3.2.4 Podobnost trojúhelníků II

3.2.4 Podobnost trojúhelníků II 3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).

Více

M - Rovnice - lineární a s absolutní hodnotou

M - Rovnice - lineární a s absolutní hodnotou Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme

Více

Stavební mechanika 3. 9. přednáška, 2. května 2016

Stavební mechanika 3. 9. přednáška, 2. května 2016 Stavební mechanika 3 9. přednáška,. května 06 Stavební mechanika 3 9. přednáška,. května 06 Silová metoda ) opakování použití principu virtuálních il ) vliv mykové deormace 3) motivační příklad 4) zobecnění

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 03 - technické předmět Ing. Jan Jemelík 1 Každé

Více

9. Umělé osvětlení. 9.1 Základní veličiny. e. (9.1) I =. (9.6)

9. Umělé osvětlení. 9.1 Základní veličiny. e. (9.1) I =. (9.6) 9. Umělé osvětlení Umělé osvětlení vhodně doplňuje nebo cela nahrauje denní osvětlení v případě jeho nedostatku a tím přispívá ke lepšení rakové pohody člověka. Umělé osvětlení ale potřebuje droj energie,

Více

MODEL MOSTU. Ing.Jiřina Strnadová. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti. Předmět:Fyzika

MODEL MOSTU. Ing.Jiřina Strnadová. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti. Předmět:Fyzika MODEL MOSTU Ing.Jiřina Strnadová Předmět:Fyzika Praha a EU Investujeme do vaší budoucnosti Model mostu Teoretický úvod: Příhradové nosníky (prutové soustavy) jsou složené z prutů, které jsou vzájemně spojené

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

4. Výčtem prvků f: {[2,0],[3,1],[4,2],[5,3]}

4. Výčtem prvků f: {[2,0],[3,1],[4,2],[5,3]} 1/27 FUNKCE Základní pojmy: Funkce, definiční obor, obor hodnot funkce Kartézská soustava souřadnic, graf funkce Opakování: Číselné množiny, úpravy výrazů, zobrazení čísel na reálné ose Funkce: Zápis:

Více

Téma Přetvoření nosníků namáhaných ohybem

Téma Přetvoření nosníků namáhaných ohybem Pružnost plsticit,.ročník bklářského studi Tém Přetvoření nosníků nmáhných ohbem Zákldní vth předpokld řešení Přetvoření nosníků od nerovnoměrného oteplení etod přímé integrce diferenciální rovnice ohbové

Více

T leso. T leso. nap ě tí na prostorovém elementu normálové - působí kolmo k ploše smykové - působí v ploše

T leso. T leso. nap ě tí na prostorovém elementu normálové - působí kolmo k ploše smykové - působí v ploše Prostorový model ákladní veli č in a vtah nejlépe odrážejí skte č nost obtížn ě ř ešitelný sstém rovnic obtížn ě jší interpretace výsledků ákladní vtah posktjí rámec pro odvoení D a 2D modelů D a 2D model

Více

Matematika - Tercie Matematika tercie Výchovné a vzdělávací strategie Učivo ŠVP výstupy

Matematika - Tercie Matematika tercie Výchovné a vzdělávací strategie Učivo ŠVP výstupy - Tercie Matematika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo

Více

PŘÍKLAD VÝPOČTU RÁMU PODLE ČSN EN

PŘÍKLAD VÝPOČTU RÁMU PODLE ČSN EN PŘÍKLAD VÝPOČTU RÁU PODLE ČS E 99-- Jaub Dolejš*), Zdeně Sool**).Zadání avrhněte sloup plnostěnného dvouloubového rámu, jehož roměr jsou patrné obráu. Horní pásnice příčle je po celé délce ajištěna proti

Více

Mongeova projekce - řezy hranatých těles

Mongeova projekce - řezy hranatých těles Mongeova projekce - řezy hranatých těles KG - L MENDELU KG - L (MENDELU) Mongeova projekce - řezy hranatých těles 1 / 73 Obsah 1 Zobrazení těles v základní poloze 2 Řez hranolu rovinou Osová afinita Sestrojení

Více

Matice a maticová algebra, soustavy lineárních rovnic, kořeny polynomu a soustava nelin.rovnic

Matice a maticová algebra, soustavy lineárních rovnic, kořeny polynomu a soustava nelin.rovnic co byste měli umět po dnešní lekci: definovat matici, přistupovat k jejím prvkům provádět základní algebraické operace spočíst inverzní matici najít řešení soustavy lineárních rovnic určit vlastní čísla

Více

derivace až do řádu n včetně. Potom existuje právě jeden polynom nejvýše n-tého stupně, který je aproximací funkce f v bodě x

derivace až do řádu n včetně. Potom existuje právě jeden polynom nejvýše n-tého stupně, který je aproximací funkce f v bodě x 11+12 přednáška Některé aplikace derivací 1Věta o aproximaci unkce Nechť je libovolná unkce,která má v nějakém okolí bodu x derivace až do řádu n včetně Potom existuje právě jeden polynom nejvýše n-tého

Více

Smyková napětí v ohýbaných nosnících

Smyková napětí v ohýbaných nosnících Pružnost a plasticita, 2.ročník kominovaného studia Smková napětí v ohýaných nosnících Základní vtah a předpoklad řešení ýpočet smkového napětí odélníkového průřeu Dimenování nosníků namáhaných na smk

Více

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1.

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1. . Funkce dvou a více proměnných. Úvod. Určete definiční obor funkce a proveďte klasifikaci bodů z R vzhledem k a rozhodněte zda je množina uzavřená či otevřená. Určete a načrtněte vrstevnice grafu funkce

Více

SMA2 Přednáška 09 Desky

SMA2 Přednáška 09 Desky SMA Přednáška 09 Desk Měrné moment na deskách Diferenciální rovnice tenké izotropní desk Metod řešení diferenciální rovnice desk Přibližné řešení obdélníkových desek Příklad Copright (c) 01 Vít Šmilauer

Více

MONOTÓNNOST FUNKCE. Nechť je funkce f spojitá v intervalu I a nechť v každém vnitřním bodě tohoto intervalu existuje derivace f ( x)

MONOTÓNNOST FUNKCE. Nechť je funkce f spojitá v intervalu I a nechť v každém vnitřním bodě tohoto intervalu existuje derivace f ( x) 11.+12. přednáška S výjimkou velmi jednoduchých unkcí (lineární, parabolické) potřebujeme k vytvoření názorné představy o unkci a k načrtnutí jejího grau znát další inormace o unkci (intervaly monotónnosti,

Více

Petr Kabele

Petr Kabele 4. Statika tuhých objektů 4.1 Idealizovaný model konstrukce předpoklad: konstrukci (jako celek nebo jejíčásti) idealizujme jako body, tuhá tělesa nebo tuhé desky (viz 1. a 2. přednáška) foto:godden Structural

Více

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic .3.19 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =

Více

Integrální definice vnitřních sil na prutu

Integrální definice vnitřních sil na prutu Přednáška 04 Integrální definice vnitřních sil Ohb prutu v rovinách x, x Šikmý ohb Kombinace normálové síl s ohbem Poloha neutrální os Jádro průřeu Příklad Copright (c) 011 Vít Šmilauer Cech Technical

Více

STAVEBNÍ STATIKA. Ing. Lenka Randýsková http://fast10.vsb.cz/randyskova

STAVEBNÍ STATIKA. Ing. Lenka Randýsková http://fast10.vsb.cz/randyskova STAVEBNÍ STATIKA Ing. Lenka Randýsková http://fast10.vsb.cz/randyskova Požadavky pro udlení zápotu zápoet z pedmtu Matematika I minimáln 70% aktivní úast na cviení prokázání znalostí procviované látky

Více

Výpočet tenkostěnných nosníků. Magdaléna Doleželová

Výpočet tenkostěnných nosníků. Magdaléna Doleželová Výpočet tenkotěnných noníků agdaléna Doleželová Výpočet tenkotěnných noníků. Úvod. Deplanace průřeu. Normálové namáhání V. Tečná napětí V. Deformace V. Příklad V. Přehled použité literatur . Úvod Dělení

Více

PROCESY V TECHNICE BUDOV 3

PROCESY V TECHNICE BUDOV 3 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 3 (2.část) Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského

Více

M. Hojdarová, J. Krejčová, M. Zámková

M. Hojdarová, J. Krejčová, M. Zámková VŠPJ Matematika II pro studenty oboru Finance a řízení M. Hojdarová, J. Krejčová, M. Zámková RNDr. Marie Hojdarová, CSc., RNDr. Jana Krejčová, Ph.D., RNDr. Ing. Martina Zámková, Ph.D. ISBN 978-80-88064-07-7

Více

Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.

Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I. Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.b Co je množinou středů všech kružnic v rovině, které prochází

Více

Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu.

Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu. Svarové spoje Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu. Vybrané druhy svarů a jejich posouzení dle EN ČSN 1993-1-8. Koutový svar -T-spoj - přeplátovaný

Více

TVORBA PROGRAMU PRO URČOVÁNÍ PRŮBĚHŮ A HODNOT

TVORBA PROGRAMU PRO URČOVÁNÍ PRŮBĚHŮ A HODNOT VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF SOLID MECHANICS,

Více

Předpoklady: konstrukce je idealizována jako soustava bodů a tuhých těles (v prostoru) nebo bodů a tuhých desek (v rovině) konstrukce je v rovnováze

Předpoklady: konstrukce je idealizována jako soustava bodů a tuhých těles (v prostoru) nebo bodů a tuhých desek (v rovině) konstrukce je v rovnováze 4.5 eakce staticky určitých konstrukcí Úloha: posoudit statickou určitost / navrhnout podepření konstrukce jistit jakými silami jsou namáhanéčásti konstrukce, jakými silami působí konstrukce na áklady

Více

ŠROUBOVÉ SPOJE VÝKLAD

ŠROUBOVÉ SPOJE VÝKLAD ŠROUBOVÉ SPOJE VÝKLAD Šroubové spoje patří mezi rozebíratelné spoje s tvarovým stykem (lícovaný šroub), popřípadě silovým stykem (šroub prochází součástí volně, je zatížený pouze silou působící kolmo k

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

6 Mezní stavy únosnosti

6 Mezní stavy únosnosti 6 ezní stav únosnosti 6.1 šeobecně (1) Dílčí součinitele spolehlivosti materiálu, definované v.4.3, se mají uvažovat pro různé charakteristické hodnot únosnosti v této kapitole následovně: únosnost průřezů

Více

Pomůcka pro demonstraci momentu setrvačnosti

Pomůcka pro demonstraci momentu setrvačnosti Pomůcka pro demonstraci momentu setrvačnosti Cílem pomůcky je pochopit význam geometrických charakteristik pro pohybové chování těles na něž působí vnější síly. Princip pomůcky je velmi jednoduchý, jde

Více

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501 ..7 Neúplné kvadratické rovnice Předpoklady: Pedagogická poznámka: Tato hodina patří mezi vzácné výjimky, kdy naprostá většina studentů skončí více než pět minut před zvoněním. Nechávám je dělat něco jiného

Více

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu Přednáška 08 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův ákon Příklad emní tlak v klidu Copyright (c) 2011 Vít Šmilauer Cech Technical University in

Více

Přednáška 1 Obecná deformační metoda, podstata DM

Přednáška 1 Obecná deformační metoda, podstata DM Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí

Více

Téma 7 Smyková napětí v ohýbaných nosnících

Téma 7 Smyková napětí v ohýbaných nosnících Pružnost a plasticita,.ročník bakalářského studia Téma 7 Smková napětí v ohýbaných nosnících Základní vtah a předpoklad řešení Výpočet smkového napětí vbraných průřeů Dimenování nosníků namáhaných na smk

Více

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka.

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka. OHYBOVÁ ČÁRA ZA PROSTÉHO OHYBU - rovinné průřez zůstávají po deformaci rovinnými, avšak natáčejí se. - při prostém ohbu hlavní centrální osa setrvačnosti všech průřezů leží v rovině vnějších sil, která

Více

Statika 2. Smyk za ohybu. Miroslav Vokáč miroslav.vokac@klok.cvut.cz. 18. listopadu 2015. ČVUT v Praze, Fakulta architektury. Statika 2. M.

Statika 2. Smyk za ohybu. Miroslav Vokáč miroslav.vokac@klok.cvut.cz. 18. listopadu 2015. ČVUT v Praze, Fakulta architektury. Statika 2. M. 4. přednáška Miroslav Vokáč miroslav.vokac@klok.cvut.c ČVUT v Prae, Fakulta architektury 18. listopadu 2015 TAH F U tlačených docháí před dosažením pevnosti materiálu ke trátě stability, k vybočení prutu

Více

3.1 Shrnutí základních poznatků

3.1 Shrnutí základních poznatků 3.1 Shrnutí ákladních ponatků Uvažujme nosník, tj. prut, jejichž délka převládá nad charakteristickými roměr průřeu. Při tvorbě výpočtového modelu nosník totožňujeme s jeho podélnou osou a uvažujeme skutečný

Více

Lokální a globální extrémy funkcí jedné reálné proměnné

Lokální a globální extrémy funkcí jedné reálné proměnné Lokální etrémy Globální etrémy Použití Lokální a globální etrémy funkcí jedné reálné proměnné Nezbytnou teorii naleznete Breviáři vyšší matematiky (odstavec 1.). Postup při hledání lokálních etrémů: Lokální

Více

Stavební mechanika 2 (K132SM02)

Stavební mechanika 2 (K132SM02) Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz konzultační hodiny budou upřesněny později https://mech.fsv.cvut.cz/student/

Více

1. kapitola. Vnitřní síly v průřezu prostorového prutu. Janek Faltýnek SI J (43) Teoretická část: Stavební mechanika 2.

1. kapitola. Vnitřní síly v průřezu prostorového prutu. Janek Faltýnek SI J (43) Teoretická část: Stavební mechanika 2. 1. kapitola Stavební echanika Janek Faltýnek SI J (43) Vnitřní síl v průřeu prostorového prutu eoretická část: ) erinologie ejdříve bcho si ěli říci co se rouí pod poje prut. Jako prut se onačuje konstrukční

Více

Semestrální práce NÁVRH ÚZKOPÁSMOVÉHO ZESILOVAČE. Daniel Tureček zadání číslo 18 cvičení: sudý týden 14:30

Semestrální práce NÁVRH ÚZKOPÁSMOVÉHO ZESILOVAČE. Daniel Tureček zadání číslo 18 cvičení: sudý týden 14:30 Semestrální práce NÁVRH ÚZKOPÁSMOVÉHO ZESILOVAČE Daniel Tureček zadání číslo 18 cvičení: sudý týden 14:30 1. Ověření stability tranzistoru Při návrhu úzkopásmového zesilovače s tranzistorem je potřeba

Více

Ing. Miloš Zich, Ph.D., tel. 541147860, mail: pracovna E208 společné i individuální konzultace, zápočty, zkoušky

Ing. Miloš Zich, Ph.D., tel. 541147860, mail: pracovna E208 společné i individuální konzultace, zápočty, zkoušky Kurz: Vyučující: BL04 Vodohospodářské betonové konstrukce Ing. Miloš Zich, Ph.D., tel. 541147860, mail: zich.m@fce.vutbr.cz, pracovna E208 společné i individuální konzultace, zápočty, zkoušky Poznámka:

Více

VZPĚRNÁ PEVNOST. λ = [ 1 ], kde

VZPĚRNÁ PEVNOST. λ = [ 1 ], kde VZPĚRNÁ PEVNOST Namáhání na vzpěr patří mezi zvláštní způsoby namáhání. Pokud je délka součásti srovnatelná s přůřezovými rozměry, součást je namáhána na tlak. Je-li délka mnohonásobně větší než jsou rozměry

Více

9.2.5 Sčítání pravděpodobností I

9.2.5 Sčítání pravděpodobností I 9.2.5 Sčítání pravděpodobností I Předpoklady: 9203 Pedagogická poznámka: Následující problém sice zadávám jako příklad, ale minimálně na začátku s žáky počítám na tabuli. I kvůli tomu, aby jejich úprava

Více

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208 .. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla

Více

Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků

Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2014 Obsah Variační principy

Více

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou .8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 0,, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli jednotlivé kroky postupu při řešení rovnic (nerovnic)

Více

1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je

1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ PRUŽNOST A PEVNOST I Řešené příklad Výpočet osových kvadratických momentů Pátek, 9. května 8 Jan Tihlařík 1 Osové kvadratické moment průřeů

Více

a) Síla v rovině. Obr. 1.

a) Síla v rovině. Obr. 1. TECHNICKÁ MECHANIKA I. - STATIKA 1. Základní pojmy 1.1. Prostor V technické mechanice znamená prostor soubor všech míst v nichž může být umístěno těleso. V našich úvahách vystačíme s Newtonovou definicí

Více

- světlo je příčné vlnění

- světlo je příčné vlnění Podstata polarizace: - světlo je příčné vlnění - směr vektoru el. složky vlnění (el. intenzity) nemá stálý směr (pól, ke kterému by intenzita směrovala) takové světlo (popř.vlnění) nazýváme světlo (vlnění)

Více

Mřížky a vyústky NOVA-C-2-R2. Vyústka do kruhového potrubí. Obr. 1: Rozměry vyústky

Mřížky a vyústky NOVA-C-2-R2. Vyústka do kruhového potrubí. Obr. 1: Rozměry vyústky -1-1-H Vyústka do kruhového potrubí - Jednořadá 1 Dvouřadá 2 L x H Typ regulačního ústrojí 1) R1, RS1, RN1 R2, RS2, RN2 R, RS, RN Lamely horizontální 2) H vertikální V Provedení nerez A- A-16 Povrchová

Více

Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D

Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz Organizace předtermínu a N & O zápočtových testů ze SM02 Předtermín

Více

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu. Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 6 Katedra ekonometrie FEM UO Brno Uvažujme obecnou úlohu lineárního programování, tj. úlohu nalezení takového řešení vlastních omezujících podmínek a 11 x 1 + a 1 x +... + a 1n x n = b 1 a

Více

7. DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH... 83. 7.1. Definiční oblasti... 83 Úlohy k samostatnému řešení... 83

7. DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH... 83. 7.1. Definiční oblasti... 83 Úlohy k samostatnému řešení... 83 Sbírka úloh z matematik 7 DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH 8 7 Definiční oblasti 8 Úloh k samostatnému řešení 8 7 Parciální derivace 8 Úloh k samostatnému řešení 8 7 Tečná rovina a normála 8

Více

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

Rovinná a prostorová napjatost

Rovinná a prostorová napjatost Rovinná a prostorová napjatost Vdělme v bodě tělesa elementární hranolek o hranách d, d, d Vnitřní síl ve stěnách hranolku se projeví jako napětí na příslušné ploše a le je roložit do směrů souřadnicových

Více

Převodníky AD a DA. AD a DA. Převodníky AD a DA. Základní charakteristika

Převodníky AD a DA. AD a DA. Převodníky AD a DA. Základní charakteristika Převodníky AD a DA K.D. - přednášky 1 Převodník AD v MCU Základní charakteristika Většinou převodník s postupnou aproximací. Pro více vstupů (4 16) analogový multiplexor na vstupu. Převod způsobem sample

Více

PRUŽNOST A PEVNOST 2 V PŘÍKLADECH

PRUŽNOST A PEVNOST 2 V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ PRUŽNOST A PEVNOST V PŘÍKLADECH doc. Ing. Karel Frydrýšek, Ph.D., ING-PAED IGIP Ing. Milan Sivera Ing. Richard Klučka Ing. Josef Sedlák

Více

IDEA StatiCa novinky

IDEA StatiCa novinky strana 1/8 verze 5.1 strana 2/8 IDEA StatiCa Steel... 3 IDEA StatiCa Connection... 3 Spoje pomocí šroubovaných příložných plechů (příložky)... 3 Přípoje uzavřených profilů kruhové i obdélníkové... 3 Tenkostěnné

Více

Statika 2. Smyk za ohybu a prostý smyk. Miroslav Vokáč 12. listopadu ČVUT v Praze, Fakulta architektury.

Statika 2. Smyk za ohybu a prostý smyk. Miroslav Vokáč 12. listopadu ČVUT v Praze, Fakulta architektury. 4. přednáška a prostý smyk Miroslav Vokáč miroslav.vokac@cvut.c ČVUT v Prae, Fakulta architektury 12. listopadu 2018 Věta o vájemnosti tečných napětí x B τ x (B) x B τ x (B) Věta o vájemnosti tečných napětí:

Více

INTEGRÁLNÍ POČET NEURČITÝ INTEGRÁL,

INTEGRÁLNÍ POČET NEURČITÝ INTEGRÁL, INTEGRÁLNÍ POČET NEURČITÝ INTEGRÁL, URČITÝ INTEGRÁL Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve

Více

Rovinná napjatost a Mohrova kružnice

Rovinná napjatost a Mohrova kružnice Rovinná napjatost a ohrova kružnice Dvojosý stav napjatosti - ukák anačení orientace napětí v rovině x Na obr. vlevo dole jsou vnačen složk napětí. Kladná orientace napětí x a je v případě, že vektor směřují

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY NOSNÍKY

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY NOSNÍKY Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 16. ČERVNA 2012 Název zpracovaného celku: NOSNÍKY NOSNÍKY Nosníky jsou zpravidla přímá tělesa (pruty) uloţená na podporách nebo

Více