derivace až do řádu n včetně. Potom existuje právě jeden polynom nejvýše n-tého stupně, který je aproximací funkce f v bodě x

Rozměr: px
Začít zobrazení ze stránky:

Download "derivace až do řádu n včetně. Potom existuje právě jeden polynom nejvýše n-tého stupně, který je aproximací funkce f v bodě x"

Transkript

1 11+12 přednáška Některé aplikace derivací 1Věta o aproximaci unkce Nechť je libovolná unkce,která má v nějakém okolí bodu x derivace až do řádu n včetně Potom existuje právě jeden polynom nejvýše n-tého stupně, který je aproximací unkce v bodě x ve tvaru n ( j) ( x ) Tn x) =å ( x- x j! ( j= ) j Poznámka: Polynom T n (x) se nazývá Taylorův polynom n-tého řádu unkce v bodě x Velmi často používáme Taylorův polynom unkce v bodě Z historických důvodů mu říkáme Maclaurinův polynom 2 Rovnice tečny a normály ke grau unkce 3 Věta o monotónnosti unkce 4 Vyšetřování průběhu unkce EXTRÉMY FUNKCE Pro mnohé vědní obory je důležité rozhodnout, pro které hodnoty nezávisle proměnné veličiny nabývá daná unkce extrémů tj maximální resp minimální hodnoty Budeme rozlišovat extrémy buď v okolí určitého bodu - lokální extrémy - nebo v celém deiničním oboru - globální extrémy Funkce má v čísle x lokální maximum, existuje-li okolí čísla ( x) ( ), x Funkce má v čísle x lokální minimum, existuje-li okolí čísla ( x) ( ) ³ x x tak, že xîu ( ) " je d x x tak, že xîu ( ) " je Platí-li v uvedených nerovnostech jen znaménko nerovnosti, hovoříme o ostrém lokálním x x > maximu ( ) < ( ) resp ostrém lokálním minimu ( ) ( ) x Souhrnný název pro lokální maximum a lokální minimum je lokální extrémy x d x Fermatova věta: nutná podmínka existence lokálního extrému Má-li unkce v čísle x lokální extrém a existuje-li ( ), pak ( x ) = x 1

2 Poznámka: Protože uvedená podmínka je jen podmínkou nutnou, může se stát, že ( x ) =, avšak unkce v tomto bodě extrém nemávěta opačná neplatí! 1 postačující podmínka pro existenci lokálního extrému : Mění-li 1derivace znaménko v okolí stacionárního bodu nebo bodu, v němž neexistuje derivace, potom v tomto bodě nastává extrém Metoda vyšetřování lokextrémů: 1 Najdeme všechny stacionární body dané unkce a body,v nichž neexistuje derivace 2 Vyšetříme, zda v okolí těchto bodů 1derivace mění znaménko; mění-li znaménko z (+) na (-) Þ bod lok maxima mění-li znaménko z (-) na (+) Þ bod lok minima Vyšetřování lok extrémů pomocí 2 derivace Věta: 2 postačující podmínka pro existenci extrému Nechť ( x ) = a nechť existuje ( ) je-li ( ) >, má unkce v je-li ( ) <, má unkce v Potom x x lokální minimum, x lokální maximum Poznámka: Je-li ( x ) =, větu nelze použít Věta: Nechť ( x ) = ( x ) = = ( x ) = a ( n-1) ( n) ( x ) ¹, je-li n sudé, v bodě x je lokální extrém, a to lokálníminimum, je-li lokální maximum, je-li ( n) ( x ) >, ( n) ( x ) <, je-li n liché, v bodě x není lokální extrém Shrnutí: Pokud má daná dierencovatelná unkce nějaký lokální extrém (lokální maximum či minimum), je zřejmé, že její tečna v tomto bodě musí být vodorovná, tzn derivace této unkce musí být v tomto bodě nulová (Pokud unkce v nějakých bodech tečnu, resp derivaci nemá, derivace o takových bodech samozřejmě nic prozradit nedokáže) Pokud v tomto bodě lze spočítat i druhou derivaci, prozradí její znaménko, o jaký extrém se jedná: V bodech, kde je první derivace nula a druhá derivace je kladná, se nachází lokální minimum V bodech, kde je první derivace nula a druhá derivace je záporná, se nachází lokální maximum 2

3 V bodech, kde je jak první, tak druhá derivace nulová, se nachází tzv stacionární bod, který může a nemusí být extrémem (V bodech, kde unkce nemá první či druhou derivaci, je nutno použít jiná kritéria) Příklad: Najděte extrémy unkce y = x x 3

4 Konvexnost, konkávnost a inlexe křivek Konvexnost a konkávnost je označení pro změny rychlosti růstu unkce, tzn zakřivení jejího grau Pokud unkce na některém intervalu svůj růst zrychluje (případně zpomaluje svůj pokles), tzn gra je zakřivený směrem nahoru, označuje se zde unkce jako konvexní, naopak, pokud je gra zakřiven směrem dolů (a unkce zpomaluje růst nebo zvyšuje pokles), je zde unkce konkávní Přechod mezi konvexní a konkávní částí grau se označuje jako inlexní bod V inlexním bodě se mění zakřivení grau unkce a tečna grau v tomto bodě gra protíná Na obrázku je unkce konkávní např v intervalu x 1, x2, inlexním bodem je např x 4 Nechť unkce má v čísle x " xî Ud( x ), x¹ x leží bod [ x, ( x) ] nad tečnou x derivaci ( ) Existuje-li d -okolí ( ) ( x ) + ( x ) ( x ) tº y= -, x U d tak, že říkáme, že unkce je konvexní v bodě x Nechť unkce má v čísle x derivaci ( x ) Existuje-li d -okolí U d ( x ) tak, že " xî Ud( x ), x¹ x leží bod [ x, ( x) ] pod tečnou t, říkáme, že unkce je konkávní v bodě x Je-li unkce konvexní (konkávní) ve všech bodech intervalu, je konvexní (konkávní) v tomto intervalu Konvexnost resp konkávnost určíme podle znaménka 2 derivace x 4

5 Věta: Platí : je-li ( ) >, je unkce v bodě je-li ( ) <, je unkce v bodě x konvexní x konkávní Funkce má v bodě U d x tak, že v levém okolí x je unkce konvexní a v pravém okolí x je konkávní nebo naopak Geometricky to značí, že gra unkce přechází z polohy nad tečnou do polohy pod tečnou nebo naopak x inlexní bod, existuje-li ( ) Poznámka: Má-li unkce druhou derivaci, pak inlexní bod může být jen v bodě, kde 4 Podmínka je nutná, není postačující, neboť např unkce y= x v x má ( ) = ( ) = y, avšak v bodě x je konvexní = Věta: postačující podmínka pro existenci inlexního bodu Má-li unkce v bodě x druhou derivaci rovnou ( ( x ) = ), přičemž v levém okolí bodu x má jiné znaménko než v pravém okolí bodu x, pak má v bodě x inlexní bod Poznámka: Inlexní bod může nastat také v bodě, v němž 1 derivace je nevlastní (tečna je rovnoběžná s osou y) V tomto bodě neexistuje druhá derivace, avšak unkce se mění z konvexní na konkávní nebo obráceně Asymptoty Asymptota (asymptotická přímka) křivky je taková přímka, jejíž vzdálenost od křivky se s rostoucí souřadnicí limitně zmenšuje Pomocí asymptot můžeme zkoumat chování grau unkce v nevlastních bodech a v okolí bodů nespojitosti 2druhu 5

6 1 Asymptoty bez směrnice (rovnoběžné s osou y) Je-li lim ( x) = ± nebo ( x) = ± x x + unkce ( x) lim je přímka o rovnici x= x asymptotou grau x x - Asymptoty tohoto druhu mohou být jen v bodech nespojitosti unkce nebo ve vlastních koncových bodech jejího deiničního oboru 2 Asymptoty se směrnicí Přímka y = kx+ q je asymptotou grau unkce y= ( x), jestliže existují vlastní limity k ( x) = lim a q= [ ( x) - k x] x x lim (analogicky pro x - ) x Průběh unkce Vyšetřováním průběhu unkce rozumíme zjištění níže uvedených vlastností, které umožní nakreslení grau unkce Postup při vyšetřování průběhu unkce : 1 Určíme D() a obor hodnot 2 Vyšetříme, zda je sudá, lichá, periodická 3 Určíme jednostranné limity v bodech nespojitosti, případně v krajních bodech deiničních intervalů, a vyšetříme chování unkce v okolí těchto bodů 4 Stanovíme průsečíky s osami 5 Určíme intervaly monotónnosti a stacionární body (pomocí ( x) ) 6 Určíme body, v nichž nastávají lokální extrémy 7 Stanovíme inlexní body a intervaly, kde je unkce konkávní či konvexní 8 Vypočítáme rovnice asymptot se směrnicí (asymptoty bez směrnice viz bod 3) 9 Vypočítáme souřadnice několika určitých bodů na křivce a nakreslíme gra Postup při náčrtku grau: 1) osy x,y; 2) asymptoty bez směrnice; 3) asymptoty se směrnicí; 4) vyznačíme průsečíky s osami; 5) body, v nichž nastává extrém; 6) inlexní body 7) doplnit body z tabulky (bod 9) Příklad: Vyšetřujme průběh unkce y= x ln x 6

7 Fyzika Jednoznačně nejdůležitější oblastí použití derivace ve yzice jsou derivace podle časové proměnné, vyjadřující rychlost změny nějaké proměnné v čase Nejběžnější pak jsou časové derivace polohy, které se vyskytují v klasické kinematice: Rychlost (okamžitá rychlost, koncept průměrné rychlosti se obejde bez dierenciálního počtu) je derivace souřadnice polohy tělesa podle času Zrychlení je derivace rychlosti podle času, tzn druhá derivace polohy podle času Ryv je derivace zrychlení podle času, tzn třetí derivace polohy podle času Kromě těchto základních pojmů se derivace objevují v mnoha teoriích yzikálních polí, Maxwellových rovnicích atd 7

MONOTÓNNOST FUNKCE. Nechť je funkce f spojitá v intervalu I a nechť v každém vnitřním bodě tohoto intervalu existuje derivace f ( x)

MONOTÓNNOST FUNKCE. Nechť je funkce f spojitá v intervalu I a nechť v každém vnitřním bodě tohoto intervalu existuje derivace f ( x) 11.+12. přednáška S výjimkou velmi jednoduchých unkcí (lineární, parabolické) potřebujeme k vytvoření názorné představy o unkci a k načrtnutí jejího grau znát další inormace o unkci (intervaly monotónnosti,

Více

Učební dokument FUNKCE. Vyšetřování průběhu funkce. Mgr. Petra MIHULOVÁ. 4.roč.

Učební dokument FUNKCE. Vyšetřování průběhu funkce. Mgr. Petra MIHULOVÁ. 4.roč. Učební dokument FUNKCE Vyšetřování průběhu funkce Mgr. Petra MIHULOVÁ.roč. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti Vyš etř ová ní přů be hů fůnkce á šeštřojení její ho gřáfů Určování

Více

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

Derivace a průběh funkce.

Derivace a průběh funkce. Derivace a průběh funkce. Robert Mařík 14. října 2008 Obsah 1 Základní myšlenky. 2 2 Přesné věty a definice 10 3 Okolí nevlastních bodů. 16 4 Sestrojení grafu funkce. 19 1 Základní myšlenky. y x Uvažujme

Více

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f. I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n

Více

Obsah. x y = 1 + x 2... 3 y = 3x + 1... 49. y = 2(x2 x + 1) (x 1) 2 101. x 3. y = x2 + 1 x 2 1... 191. y =... 149

Obsah. x y = 1 + x 2... 3 y = 3x + 1... 49. y = 2(x2 x + 1) (x 1) 2 101. x 3. y = x2 + 1 x 2 1... 191. y =... 149 Průběh funkce Robert Mařík 26. září 28 Obsah y = 1 2............................. y = 1............................. 49 y = 2(2 1).......................... ( 1) 2 11 y =............................. 149

Více

1 Průběh funkce. Pomůcka pro cvičení: 1. semestr Bc studia Průběh funkce - ruční výpočet

1 Průběh funkce. Pomůcka pro cvičení: 1. semestr Bc studia Průběh funkce - ruční výpočet Pomůcka pro cvičení:. semestr Bc studia Průběh funkce - ruční výpočet Průběh funkce balíček: plots Při vyšetřování průběhu funkce využijte dosavadních příkazů z Maple, které znáte. Nové příkazy budou postupně

Více

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

Průběh (jednorozměrné) funkce

Průběh (jednorozměrné) funkce Průběh (jednorozměrné) unkce Úlohy na vyšetřování průběhu unkcí (jedno i vícerozměrných) patří k poměrně častým úlohám dierenciálního počtu. V tomto krátkém tetu se omezím pouze na jednorozměrné unkce,

Více

Lokální a globální extrémy funkcí jedné reálné proměnné

Lokální a globální extrémy funkcí jedné reálné proměnné Lokální etrémy Globální etrémy Použití Lokální a globální etrémy funkcí jedné reálné proměnné Nezbytnou teorii naleznete Breviáři vyšší matematiky (odstavec 1.). Postup při hledání lokálních etrémů: Lokální

Více

2.4.11 Nerovnice s absolutní hodnotou

2.4.11 Nerovnice s absolutní hodnotou .. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na

Více

Funkce více proměnných

Funkce více proměnných Funkce více proměnných Funkce více proměnných Euklidův prostor Body, souřadnice, vzdálenost bodů Množina bodů, které mají od bodu A stejnou vzdálenost Uzavřený interval, otevřený interval Okolí bodu

Více

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY FUNKCÍ DVOU PROMĚNNÝCH Robert Mařík 2. října 2009 Obsah z = x 4 +y 4 4xy + 30..................... 3 z = x 2 y 2 x 2 y 2........................ 18 z = y ln(x 2 +y)..........................

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 Diferenciální počet funkcí jedné proměnné - Úvod Diferenciální počet funkcí jedné proměnné - úvod V přírodě se neustále dějí změny. Naší snahou je nalézt příčiny

Více

M - Rovnice - lineární a s absolutní hodnotou

M - Rovnice - lineární a s absolutní hodnotou Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme

Více

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2.

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2. Výklad Dalším typem extrémů, kterým se budeme zabývat jsou tzv. vázané extrémy. Hledáme extrémy nějaké funkce vzhledem k předem zadaným podmínkám. Definice 6.2.1. Řekneme, že funkce f : R n D f R má v

Více

15 s. Analytická geometrie lineárních útvarů

15 s. Analytická geometrie lineárních útvarů 5 s Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý

Více

2.7.2 Mocninné funkce se záporným celým mocnitelem

2.7.2 Mocninné funkce se záporným celým mocnitelem .7. Mocninné funkce se záporným celým mocnitelem Předpoklady: 70 Mocninné funkce se záporným celým mocnitelem: znamená? 3 y = = = = 3 y y y 3 = ; = ; = ;.... Co to Pedagogická poznámka: Nechávám studenty,

Více

IX. Vyšetřování průběhu funkce

IX. Vyšetřování průběhu funkce IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde

Více

10.1.13 Asymptoty grafu funkce

10.1.13 Asymptoty grafu funkce .. Asmptot grafu funkce Předpoklad:, Asmptot grafu už známe kreslili jsme si je jako přímk, ke kterým se graf funkce přibližuje. Nakreslení asmptot, pak umožňuje přesnější kreslení grafu. Například u hperbol

Více

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 )

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 ) . Vyjádřete koeficienty vektoru (, 8, 9) vzhledem k následující bázi vektorového prostoru V : (,, 5), (,, ), (5,, ). [,, ].. Určete všechny hodnoty parametru u, pro které vektor a patří do vektorového

Více

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková .. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.

Více

( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715

( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715 .7.6 Rovnice s neznámou pod odmocninou II Předpoklady: 75 Př. : Vyřeš rovnici y + + y = 4 y + + y = 4 / ( y + + y ) = ( 4) y + + 4 y + y + 4 y = 6 5y + 4 y + y = 8 5y + 4 y + y = 8 - v tomto stavu nemůžeme

Více

4. Výčtem prvků f: {[2,0],[3,1],[4,2],[5,3]}

4. Výčtem prvků f: {[2,0],[3,1],[4,2],[5,3]} 1/27 FUNKCE Základní pojmy: Funkce, definiční obor, obor hodnot funkce Kartézská soustava souřadnic, graf funkce Opakování: Číselné množiny, úpravy výrazů, zobrazení čísel na reálné ose Funkce: Zápis:

Více

Kapitola 7: Integrál. 1/14

Kapitola 7: Integrál. 1/14 Kapitola 7: Integrál. 1/14 Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní funkcí k

Více

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou .8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 0,, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli jednotlivé kroky postupu při řešení rovnic (nerovnic)

Více

Kapitola 4: Průběh funkce 1/11

Kapitola 4: Průběh funkce 1/11 Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající

Více

Kapitola 4: Průběh funkce 1/11

Kapitola 4: Průběh funkce 1/11 Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající

Více

3. Ve zbylé množině hledat prvky, které ve srovnání nikdy nejsou napravo (nevedou do nich šipky). Dát do třetí

3. Ve zbylé množině hledat prvky, které ve srovnání nikdy nejsou napravo (nevedou do nich šipky). Dát do třetí DMA Přednáška Speciální relace Nechť R je relace na nějaké množině A. Řekneme, že R je částečné uspořádání, jestliže je reflexivní, antisymetrická a tranzitivní. V tom případě značíme relaci a řekneme,

Více

Matematická analýza III.

Matematická analýza III. 4. Extrémy funkcí více proměnných Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Tato kapitola nás seznámí s metodami určování lokálních extrémů funkcí více proměnných a ukáže využití těchto metod v praxi.

Více

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 6 Katedra ekonometrie FEM UO Brno Uvažujme obecnou úlohu lineárního programování, tj. úlohu nalezení takového řešení vlastních omezujících podmínek a 11 x 1 + a 1 x +... + a 1n x n = b 1 a

Více

Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 9 Katedra ekonometrie FEM UO Brno Distribuční úlohy Budeme se zabývat 2 typy distribučních úloh dopravní úloha přiřazovací problém Dopravní úloha V dopravním problému se v typickém případě

Více

2.1.13 Funkce rostoucí, funkce klesající I

2.1.13 Funkce rostoucí, funkce klesající I .1.13 Funkce rostoucí, funkce klesající I Předpoklad: 111 Pedagogická poznámka: Následující příklad je dobrý na opakování. Můžete ho studentům zadat na čas a ten kdo ho nestihne nebo nedokáže vřešit, b

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21

LDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21 Průběh funkce Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( 2) 3 = 8 4 = 2 ; 16 = 4 ; 1 = 1 a podobně. 2

Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( 2) 3 = 8 4 = 2 ; 16 = 4 ; 1 = 1 a podobně. 2 Lineární rovnice o jedné neznámé O rovnicích obecně Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( ) 8 ; 6 ; a podobně. ; Na rozdíl od rovností obsahuje rovnice kromě čísel

Více

7.1 Extrémy a monotonie

7.1 Extrémy a monotonie KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x

Více

M. Hojdarová, J. Krejčová, M. Zámková

M. Hojdarová, J. Krejčová, M. Zámková VŠPJ Matematika II pro studenty oboru Finance a řízení M. Hojdarová, J. Krejčová, M. Zámková RNDr. Marie Hojdarová, CSc., RNDr. Jana Krejčová, Ph.D., RNDr. Ing. Martina Zámková, Ph.D. ISBN 978-80-88064-07-7

Více

2.7.1 Mocninné funkce s přirozeným mocnitelem

2.7.1 Mocninné funkce s přirozeným mocnitelem .7. Mocninné funkce s přirozeným mocnitelem Předpoklad: 0 Pedagogická poznámka: K následujícím třem hodinám je možné přistoupit dvěma způsob. Já osobně doporučuji postupovat podle učebnice. V takovém případě

Více

Kvadratické rovnice pro učební obory

Kvadratické rovnice pro učební obory Variace 1 Kvadratické rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jkaékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické

Více

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501 ..7 Neúplné kvadratické rovnice Předpoklady: Pedagogická poznámka: Tato hodina patří mezi vzácné výjimky, kdy naprostá většina studentů skončí více než pět minut před zvoněním. Nechávám je dělat něco jiného

Více

3.2.4 Podobnost trojúhelníků II

3.2.4 Podobnost trojúhelníků II 3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 10. přednáška Blanka Šedivá KMA zimní semestr 016/017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 016/017 1 / 1 Použití derivace pro vyšetřování průběhu funkce

Více

Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.

Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I. Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.b Co je množinou středů všech kružnic v rovině, které prochází

Více

4.6.6 Složený sériový RLC obvod střídavého proudu

4.6.6 Složený sériový RLC obvod střídavého proudu 4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu

Více

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)

Více

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, ) Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic 1 Soustavy lineárních rovnic Příklad: Uvažujme jednoduchý příklad soustavy dvou lineárních rovnic o dvou neznámých x, y: x + 2y = 5 4x + y = 6 Ze střední školy známe několik metod, jak takové soustavy

Více

Důkazové metody. Teoretická informatika Tomáš Foltýnek

Důkazové metody. Teoretická informatika Tomáš Foltýnek Důkazové metody Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Matematický důkaz Jsou dány axiomy a věta (tvrzení, teorém), o níž chceme ukázat, zda platí. Matematický důkaz je nezpochybnitelné

Více

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy

Více

Tvorba trendové funkce a extrapolace pro roční časové řady

Tvorba trendové funkce a extrapolace pro roční časové řady Tvorba trendové funkce a extrapolace pro roční časové řady Příklad: Základem pro analýzu je časová řada živě narozených mezi lety 1970 a 2005. Prvním úkolem je vybrat vhodnou trendovou funkci pro vystižení

Více

{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce.

{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. 9.1.9 Kombinace II Předpoklady: 9108 Př. 1: Je dána pěti prvková množina: M { a; b; c; d; e} =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. Vypisujeme

Více

Matematika 1 pro PEF PaE

Matematika 1 pro PEF PaE Vázané extrémy funkcí více proměnných 1 / 13 Matematika 1 pro PEF PaE 11. Vázané extrémy funkcí více proměnných Přemysl Jedlička Katedra matematiky, TF ČZU Vázané extrémy funkcí více proměnných Vázané

Více

Řešení: a) Označme f hustotu a F distribuční funkci náhodné veličiny X. Obdobně označme g hustotu a G distribuční funkci náhodné veličiny Y.

Řešení: a) Označme f hustotu a F distribuční funkci náhodné veličiny X. Obdobně označme g hustotu a G distribuční funkci náhodné veličiny Y. VII. Transformace náhodné veličiny. Náhodná veličina X má exponenciální rozdělení Ex(; ) a náhodná veličina Y = X. a) Určete hustotu a distribuční funkci náhodné veličiny Y. b) Vypočtěte E(Y ) a D(Y ).

Více

Definice a vlastnosti funkcí

Definice a vlastnosti funkcí Definice a vlastnosti funkcí Učební text pro druhý ročník (sextu) gymnázia V tomto textu jsou definovány základní, obecné pojmy týkající se funkcí. Součástí textu nejsou (velmi důležité!) obrázky; ty si

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1.

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1. . Funkce dvou a více proměnných. Úvod. Určete definiční obor funkce a proveďte klasifikaci bodů z R vzhledem k a rozhodněte zda je množina uzavřená či otevřená. Určete a načrtněte vrstevnice grafu funkce

Více

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Dierenciální počet unkcí jedné reálné proměnné - 5 - PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Cílem vyšetřování průběhu unkce je umět nakreslit její gra Obvykle postupujeme tak že nalezneme její maimální deiniční

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208 .. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla

Více

Zlín, 23. října 2011

Zlín, 23. října 2011 (. -. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 3. října 0 Postup při vyšetřování průběhu funkce. Definiční obor funkce,

Více

Označování dle 11/2002 označování dle ADR, označování dle CLP

Označování dle 11/2002 označování dle ADR, označování dle CLP Označování dle 11/2002 označování dle ADR, označování dle CLP Nařízení 11/2002 Sb., Bezpečnostní značky a signály 4 odst. 1 nařízení 11/2002 Sb. Nádoby pro skladování nebezpečných chemických látek, přípravků

Více

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost .7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =

Více

Aplikace derivace a průběh funkce

Aplikace derivace a průběh funkce Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE

EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol EXPONENCIÁLNÍ

Více

http://user.mendelu.cz/marik, kde je dostupný ve formě vhodné pro tisk i ve formě vhodné pro prohlížení na obrazovce a z adresy http://is.mendelu.

http://user.mendelu.cz/marik, kde je dostupný ve formě vhodné pro tisk i ve formě vhodné pro prohlížení na obrazovce a z adresy http://is.mendelu. Inženýrská matematika Robert Mařík Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg.

Více

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018 Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf

Více

= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen)

= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen) .8.7 Kvadratické rovnice s parametrem Předpoklady: 507, 803 Pedagogická poznámka: Na první pohled asi každého zarazí, že takřka celá hodina je psána jako příklady a studenti by ji měli vypracovat samostatně.

Více

INTEGRÁLNÍ POČET NEURČITÝ INTEGRÁL,

INTEGRÁLNÍ POČET NEURČITÝ INTEGRÁL, INTEGRÁLNÍ POČET NEURČITÝ INTEGRÁL, URČITÝ INTEGRÁL Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve

Více

ELEKTROTECHNICKÁ MĚŘENÍ PRACOVNÍ SEŠIT 2-3

ELEKTROTECHNICKÁ MĚŘENÍ PRACOVNÍ SEŠIT 2-3 ELEKTROTECHNICKÁ MĚŘENÍ PRACOVNÍ SEŠIT - Název úlohy: Měření vlastností regulačních prvků Listů: List: Zadání: Pro daný regulační prvek zapojený jako dělič napětí změřte a stanovte: a, Minimálně regulační

Více

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff Derivace funkce Derivace je základním pojmem v diferenciálním počtu. Má uplatnění tam, kde se zkoumá povaha funkčních závislostí určitých proměnných (veličin). V matematice, ekonomii, fyzice ale i v jiných

Více

Průběh funkce 1. Průběh funkce. Při vyšetření grafu funkce budeme postupovat podle následujícího algoritmu:

Průběh funkce 1. Průběh funkce. Při vyšetření grafu funkce budeme postupovat podle následujícího algoritmu: Průběh funkce Průběh funkce Při vyšetření grafu funkce budeme postupovat podle následujícího algoritmu:. Určení definičního oboru. 2. Rozhodnutí, jestli je funkce sudá, lichá, periodická nebo nemá ani

Více

2.6.4 Lineární lomené funkce s absolutní hodnotou

2.6.4 Lineární lomené funkce s absolutní hodnotou .6. Lineární lomené funkce s absolutní hodnotou Předpoklady: 60, 603 Pedagogická poznámka: Hlavním cílem hodiny je nácvik volby odpovídajícího postupu. Proto je dobré nechat studentům chvíli, aby si metody

Více

10. Polynomy a racionálně lomenné funkce

10. Polynomy a racionálně lomenné funkce 10 Polynomy a racionálně lomenné funkce A Polynomy Definice 101 Reálný polynom stupně n (neboli mnohočlen) je funkce tvaru p(x) = a n x n + a n 1 x n 1 + + a 0, kde a 1,, a n R, a n 0, která každému komplexnímu

Více

Funkce Vypracovala: Mgr. Zuzana Kopečková

Funkce Vypracovala: Mgr. Zuzana Kopečková Funkce Vypracovala: Mgr. Zuzana Kopečková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů OP

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ VĚRA JÜTTNEROVÁ 15. 12. 2013 Název zpracovaného celku:

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ VĚRA JÜTTNEROVÁ 15. 12. 2013 Název zpracovaného celku: Předmět: Roční: Vytvořil: Datum: MATEMATIKA DRUHÝ VĚRA JÜTTNEROVÁ 5.. 0 Název zpracovaného celu: NEPŘÍMÁ ÚMĚRNOST, MOCNINNÁ FUNKCE, INVERZNÍ FUNKCE NEPŘÍMÁ ÚMĚRNOST Nepřímá úměrnost je aždá funce daná

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 8. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 14 Derivace funkce U lineárních funkcí ve tvaru

Více

Rostislav Horčík. 13. října 2006

Rostislav Horčík. 13. října 2006 3. přednáška Rostislav Horčík 13. října 2006 1 Lineární prostory Definice 1 Lineárním prostorem nazýváme každou neprázdnou množinu L, na které je definováno sčítání + : L L L a násobení reálným číslem

Více

Funkce. Liché a sudé funkce, periodické funkce. Mgr. Tomáš Pavlica, Ph.D. Digitální učební materiály, 2012-14. Gymnázium Uherské Hradiště

Funkce. Liché a sudé funkce, periodické funkce. Mgr. Tomáš Pavlica, Ph.D. Digitální učební materiály, 2012-14. Gymnázium Uherské Hradiště Funkce Liché a, periodické funkce Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště Digitální učební materiály, 01-14 Obsah Sudé a 1 Sudé a 3 Sudé a Sudá funkce f má vzhledem k ose o y symetrický definiční

Více

Přednáška 11, 12. prosince Část 5: derivace funkce

Přednáška 11, 12. prosince Část 5: derivace funkce Přednáška 11, 12. prosince 2014 Závěrem pasáže o spojitých funkcích zmíníme jejich podtřídu, lipschitzovské funkce, nazvané podle německého matematika Rudolfa Lipschitze (1832 1903). Fukce f : M R je lipschitzovská,

Více

Pavlína Matysová. 5. listopadu 2018

Pavlína Matysová. 5. listopadu 2018 Soubor řešených úloh Vyšetřování průběhu funkce Pavlína Matysová 5. listopadu 018 1 Soubor řešených úloh Tento text obsahuje 7 úloh na téma vyšetřování průběhu funkce. Každé úloha je řešena dvěma způsoby

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B

65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B 65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B 1. Nejprve zjistíme, jak lze zapsat číslo 14 jako součet čtyř z daných čísel. Protože 4 + 3 3 < 14 < 4 4, musí takový

Více

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Numerické metody jednorozměrné minimalizace Vedoucí bakalářské práce: RNDr. Horymír

Více

KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ

KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KONSTRUKČNÍ

Více

1.3.1 Kruhový pohyb. Předpoklady: 1105

1.3.1 Kruhový pohyb. Předpoklady: 1105 .. Kruhový pohyb Předpoklady: 05 Předměty kolem nás se pohybují různými způsoby. Nejde pouze o přímočaré nebo křivočaré posuvné pohyby. Velmi často se předměty otáčí (a některé se přitom pohybují zároveň

Více

7) Intervaly konvexnosti a konkávnosti. 8) Inflexe, inflexní body grafu funkce. 9) Asymptoty grafu funkce. 10) Sestrojení grafu funkce.

7) Intervaly konvexnosti a konkávnosti. 8) Inflexe, inflexní body grafu funkce. 9) Asymptoty grafu funkce. 10) Sestrojení grafu funkce. Přednáška č. 12 Vyšetřování průběhu funkce a užití extrémů funkcí Jiří Fišer 11. prosince 2009 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 12 11. prosince 2009 1 / 18 Průběh funkce O vyšetřování

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

Vrtání závitů bez vyrovnávací hlavičky (G331, G332)

Vrtání závitů bez vyrovnávací hlavičky (G331, G332) Předpoklady Funkce Technickým předpokladem pro vrtání závitů bez vyrovnávací hlavičky je vřeteno s regulací polohy a systémem pro měření dráhy. Vrtání závitů bez vyrovnávací hlavičky se programuje pomocí

Více

ax + b = 0, kde a, b R, přímky y = ax + b s osou x (jeden, nekonečně mnoho, žádný viz obr. 1.1 a, b, c). Obr. 1.1 a Obr. 1.1 b Obr. 1.

ax + b = 0, kde a, b R, přímky y = ax + b s osou x (jeden, nekonečně mnoho, žádný viz obr. 1.1 a, b, c). Obr. 1.1 a Obr. 1.1 b Obr. 1. 1 Rovnice, nerovnice a soustavy 11 Lineární rovnice Rovnice f(x) = g(x) o jedné neznámé x R, kde f, g jsou reálné funkce, se nazývá lineární rovnice, jestliže ekvivalentními úpravami dostaneme tvar ax

Více

1.1.1 Kvadratické rovnice (dosazení do vzorce) I

1.1.1 Kvadratické rovnice (dosazení do vzorce) I .. Kvadratické rovnice (dosazení do vzorce) I Předpoklady: základní početní operace Rovnicí se nazývá vztah rovnosti mezi dvěma výrazy obsahujícími jednu nebo více neznámých. V této kapitole se budeme

Více

Derivace a monotónnost funkce

Derivace a monotónnost funkce Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je

Více

M - Příprava na 2. zápočtový test pro třídu 2D

M - Příprava na 2. zápočtový test pro třídu 2D M - Příprava na 2. zápočtový test pro třídu 2D Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická akulta DRUHÁ SEMINÁRNÍ PRÁCE Z DIFERENCIÁLNÍHO POČTU PRŮBĚH FUNKCE 000/001 Cirik, M-ZT Zadání: Vyšetřete průběh unkce ( ) : y Vypracování: ( ) : y Předně určíme deiniční

Více

Hra a hry. Václav Vopravil. Teorie kombinatorických her se zabývá abstraktními hrami dvou hráčů. Hra je definována R },

Hra a hry. Václav Vopravil. Teorie kombinatorických her se zabývá abstraktními hrami dvou hráčů. Hra je definována R }, Hra a hry Václav Vopravil Úvod 1 Kombinatorické hry Teorie kombinatorických her se zabývá abstraktními hrami dvou hráčů. Hra je definována pomocí jednodušších her, tj. jako uspořádaná dvojice množin her.

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více