5.2.9 Vzdálenost bodu od roviny

Rozměr: px
Začít zobrazení ze stránky:

Download "5.2.9 Vzdálenost bodu od roviny"

Transkript

1 5..9 zdálenost bodu od roiny ředpokldy: 508 Opkoání z minulé hodiny (definice zdálenosti bodu od přímky): Je dán přímk p bod. zdáleností bodu od přímky p rozumíme zdálenost bodu od bodu, který je ptou kolmice edené roině p k přímce p z bodu. Máme bod roinu ρ, zdálenost bodu od roiny ρ opět potřebujeme přeést n zdálenost dou bodů. Jký bod máme roině ρ njít? odobně jko u zdálenosti bodu od přímky půjde o kolmý průmět bodu do roiny ρ. ř. 1: Zformuluj definici zdálenosti bodu od roiny nlogickou definici zdálenosti bodu od přímky. Je dán roin ρ bod. zdáleností bodu od roiny ρ rozumíme zdálenost bodu od bodu, který je ptou kolmice edené z bodu k roině ρ. Tkto definoná zdálenost bodu od roiny je nejkrtší zdáleností mezi bodem liboolným bodem roiny ρ. ř. : Je dán pridelný čtyřboký jehln, cm, 5cm. Urči: ) zdálenost bodu od roiny, b) zdálenost bodu od roiny, c) zdálenost bodu od roiny. ) zdálenost bodu od roiny Z obrázku je idět, že kolmým průmětem bodu do roiny je střed podsty zdálenost bodu od roiny je tedy ron 5cm. b) zdálenost bodu od roiny 1

2 římk je kolmá k roině, kolmým průmětem bodu do roiny je tedy bod zdálenost bodu od roiny je ron cm. c) zdálenost bodu od roiny Kolmý průmět bodu (oznčíme si ho ) do roiny bude určitě ležet roině (je kolmá n roinu prochází bodem ). Nkreslíme si trojúhelník. ypočteme délku strny z proúhlého trojúhelníku oplníme do obrázku trojúhelníku.

3 + osdíme: + Možností jk určit úsečku je íce, nejjednodušší ychází ze zorce pro obsh trojúhelník: bb cc. Jednu dojici strn-ýšk toří úsečky (obě známe), druhou úsečky (druhou chceme určit) cm, 71cm ř. : Je dán stndrdní krychle H cm. Urči zdálenost bodu od roiny H. H Hledáme kolmý průmět bodu do roiny H. íme z předchozích příkldů, že přímk je kolmá k roině H hledným průmětem bude její průsečík s roinou H. ředchozí informci pro yřešení příkldu nepotřebujeme, stčí si uědomit, že krychle je souměrná podle roiny kolmice n i kolmý průmět musí ležet této roině (jink by průměty byly d to není možné). Nkreslíme si obdélník. opočteme délku úsečky : oplníme obrázek:

4 yužijeme podobnost trojúhelníků. osdíme: cm,1cm ř. : Zformuluj kritérium pro ronoběžnost přímky s roinou pomocí zdálenosti bodu od roiny. římk p je ronoběžná s roinou ρ, jestliže lze n přímce p njít d různé body ležící témže poloprostoru ohrničeném roinou ρ, které mjí od roiny ρ stejnou zdálenost. ř. 5: Zformuluj kritérium pro ronoběžnost dou roin pomocí zdálenosti bodu od roiny. ě roiny ρ σ jsou ronoběžné, jestliže lze roině σ njít tři různé body, které neleží přímce, le leží e stejném poloprostoru s hrniční roinou ρ které mjí od roiny ρ stejnou zdálenost. ř. 6: Je dán pridelný šestiboký jehln, cm, 6cm. Urči zdálenost bodu od roiny. Nkreslíme si trojúhelník. otřebujeme njít kolmý průmět bodu do roiny problém pt kolmice z bodu leží mimo jehln hledáme jiný bod se stejnou zdáleností, jehož pt leží n hrnici jehlnu. římk je ronoběžná s přímkou je ronoběžná s roinou zdálenost šech bodu této přímky od roiny je stejná jko zdálenost bodu. Kolmice z bodu n roinu leží roině zdálenost bodu od roiny určíme pomocí trojúhelníku.

5 élku úsečky určíme z obrázku podsty: x zdálenost je tké ýškou ronostrnném trojúhelníku se strnou. x. zdálenost je přeponou proúhlého trojúhelníku : x +. oplníme obrázek: yužijeme podobnost trojúhelníků. + osdíme: d 6 cm cm ř. 7: etákoá: strn 9/cičení c) f) strn 9/cičení 5 b) strn 9/cičení 6 c) strn 9/cičení 7 c) hrnutí: zdálenost bodu od roiny určujeme opět pomocí kolmého průmětu. 5

5.2.8 Vzdálenost bodu od přímky

5.2.8 Vzdálenost bodu od přímky zdálenost bodu od přímky zdálenost bodu od roiny zdálenost roin zdálenost bodu od přímky zdálenost bodu od roiny zdálenost roin 5..8 zdálenost bodu od přímky ředpokldy: 507 edgogická poznámk: Tříd počítá

Více

5.2.7 Odchylka přímky a roviny

5.2.7 Odchylka přímky a roviny 57 Odchylk přímky roiny Předpokldy: 50, 506 Jk odchylk přímky roiny? o by měl definice splňot: podobně jko u osttních ěcí ji musíme přeést n něco co už umíme (si odchylku dou přímek), měl by být jednoznčná,

Více

Vzdálenost rovin

Vzdálenost rovin 510 zdálenost rovin ředpokldy: 509 Kdy má cenu uvžovt o vzdálenosti dvou rovin? ouze, když jsou rovnoběžné, jink se protínjí ř 1: Nvrhni definici vzdálenosti dvou rovnoběžných rovin Z vzdálenost dvou rovnoběžných

Více

5.2.8 Vzdálenost bodu od přímky

5.2.8 Vzdálenost bodu od přímky 5..8 Vzdálenost bodu od přímky ředpokldy: 507 edgogická poznámk: Tříd počítá smosttně. tnáct minut před koncem se sejdeme n příkld 4 ), který pk řešíme společně. Vzdálenost bodů, je rovn délce úsečky,

Více

Vzdálenosti přímek

Vzdálenosti přímek 5..11 Vzdálenosti přímek Předpokldy: 510 Př. 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti dvou přímek nvrhni definici této vzdálenosti. Vzdálenost přímek má smysl, když přímky nemjí společné body tedy

Více

Vzdálenosti přímek

Vzdálenosti přímek 5..1 Vzdálenosti přímek Předpokldy: 511 Př. 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti dvou přímek nvrhni definici této vzdálenosti. Vzdálenost přímek má smysl, když přímky nemjí společné body tedy

Více

Vzdálenost roviny a přímky

Vzdálenost roviny a přímky 511 Vzdálenost roviny přímky Předpokldy: 510 Př 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti přímky od roviny, nvrhni definici této vzdálenosti Uvžovt o vzdálenosti přímky roviny můžeme pouze v přípdě,

Více

5.2.4 Kolmost přímek a rovin II

5.2.4 Kolmost přímek a rovin II 5..4 Kolmost přímek rovin II Předpokldy: 503 Př. 1: Zformuluj stereometrické věty nlogické k plnimetrické větě: ným bodem lze v rovině k dné přímce vést jedinou kolmici. Vět: ným bodem lze v prostoru k

Více

3.2.7 Příklady řešené pomocí vět pro trojúhelníky

3.2.7 Příklady řešené pomocí vět pro trojúhelníky ..7 Příkldy řešené pomocí ět pro trojúhelníky Předpokldy:, 6 Pedgogická poznámk: U následujících příkldů ( u mnoh dlších příkldů z geometrie) pltí, že nedílnou součástí řešení je nápd (který se tké nemusí

Více

Smíšený součin

Smíšený součin 7..14 Smíšený součin Předpokldy: 713 Je dán ronoěžnostěn LMNOPR. R O P N M L Jeho ojem umíme spočítt stereometrikým zorem: V = S. p Ronoěžnostěn je tké určen třemi ektory, : R O P N M L jeho ojem musí

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

V = π f 2 (x) dx. f(x) 1 + f 2 (x) dx. x 2 + y 2 = r 2

V = π f 2 (x) dx. f(x) 1 + f 2 (x) dx. x 2 + y 2 = r 2 Odození zorců pro ýpočet objemů porchů některých těles užitím integrálního počtu Objem rotčního těles, které znikne rotcí funkce y f(x) n interlu, b kolem osy x, lze spočítt podle zorce b V f (x) dx Porch

Více

Obsahy - opakování

Obsahy - opakování .7.0 Obshy - opkoání Předpokldy: 00709 Př. : Vypiš edle sebe zorce pro obsh ronoběžníku, trojúhelníku lichoběžníku. Kždý e šech rintách. Ke kždému zorci nkresli obrázek s yznčenými rozměry, které e zorci

Více

POVRCH A OBJEM HRANOLU A JEHLANU

POVRCH A OBJEM HRANOLU A JEHLANU Projekt ŠABLONY NA GM Gymnázim elké Meziříčí registrční číslo rojekt: CZ..07/.5.00/.098 I- Inoce zklitnění ýky směřjící k rozoji mtemtické grmotnosti žáků středních škol PORCH A OBJEM HRANOLU A JEHLANU

Více

Stereometrie metrické vlastnosti

Stereometrie metrické vlastnosti Stereometrie metrické vlstnosti Odchylk dvou přímek Odchylk dvou různoběžek je velikost kždého z ostrých nebo prvých úhlů, které přímky spolu svírjí. Odchylk rovnoběžek je 0. Odchylk mimoběžných přímek

Více

9.6. Odchylky přímek a rovin

9.6. Odchylky přímek a rovin 9 Stereometrie 96 Odchylky přímek rovin Odchylku dvou přímek, dvou rovin přímky od roviny převádíme n určení velikosti úhlu dvou různoběžek Odchylk dvou přímek Odchylk dvou přímek splývjících nebo rovnoběžných

Více

Stereometrie metrické vlastnosti 01

Stereometrie metrické vlastnosti 01 Stereometrie metrické vlstnosti 01 Odchylk dvou přímek Odchylk dvou různoběžek je velikost kždého z ostrých nebo prvých úhlů, které přímky spolu svírjí. Odchylk rovnoběžek je 0. Odchylk mimoběžných přímek

Více

5.2.4 Kolmost přímek a rovin II

5.2.4 Kolmost přímek a rovin II 5.2.4 Kolmost přímek a rovin II Předpoklady: 5203 Př. 1: Zformuluj stereometrické věty analogické k planimetrické větě: aným bodem lze v rovině k dané přímce vést jedinou kolmici. Věta: aným bodem lze

Více

2.4.7 Shodnosti trojúhelníků II

2.4.7 Shodnosti trojúhelníků II 2.4.7 Shodnosti trojúhelníků II Předpokldy: 020406 Př. 1: oplň tbulku. Zdání sss α < 180 c Zdání Náčrtek Podmínky sss sus usu b + b > c b + c > c + c > b b α < 180 c α + β < 180 c Pedgogická poznámk: Původní

Více

Metrické vlastnosti v prostoru

Metrické vlastnosti v prostoru Metrické vlastnosti v prostoru Ž2 Metrické vlastnosti v prostoru Odchylka přímek p, q v prostoru V planimetrii jsme si definovali pojem odchylky dvou přímek p, q pro různoběžky a pro rovnoběžky. Ve stereometrii

Více

5.1.5 Základní vztahy mezi body, přímkami a rovinami

5.1.5 Základní vztahy mezi body, přímkami a rovinami 5.1.5 Zákldní vzthy mezi body, přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů přímk - jednorozměrná podmnožin prostoru (množin bodů), rovin - dvojrozměrná podmnožin prostoru (množin

Více

Pracovní listy MONGEOVO PROMÍTÁNÍ

Pracovní listy MONGEOVO PROMÍTÁNÍ Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich

Více

6. Jehlan, kužel, koule

6. Jehlan, kužel, koule 6. Jehlan, kužel, koule 9. ročník 6. Jehlan, kužel, koule 6. Jehlan ( síť, objem, porch ) Jehlan je těleso, které má jednu podstau taru n-úhelníku. Podle počtu rcholů n-úhelníku má jehlan náze. Stěny toří

Více

Smíšený součin

Smíšený součin 7..14 Smíšený součin Předpoklady: 713 Je dán ronoběžnostěn LMNOPR. R O P N M L Jeho objem umíme spočítat stereometrikým zorem: V = S. p Ronoběžnostěn je také určen třemi ektory a, b a R O P b N M a L jeho

Více

3) Vypočtěte souřadnice průsečíku dané přímky p : x = t, y = 9 + 3t, z = 1 + t, t R s rovinou ρ : 3x + 5y z 2 = 0.

3) Vypočtěte souřadnice průsečíku dané přímky p : x = t, y = 9 + 3t, z = 1 + t, t R s rovinou ρ : 3x + 5y z 2 = 0. M1 Prog4 D1 1) Určete vektor c kolmý na vektory a = 2 i 3 j + k, b = i + 2 j 4 k. 2) Napište obecnou a parametrické rovnice roviny, která prochází bodem A[ 1; 1; 2] a je kolmá ke dvěma rovinám ρ : x 2y

Více

S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A

S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N AČENÍ bod (A, B, C, ), přímka (a, b, p, q, AB, ), rovina (α, β, ρ,

Více

7.2.10 Skalární součin IV

7.2.10 Skalární součin IV 7.2.10 Sklární sočin IV Předpokld: 7209 Pedgogiká poznámk: Tto hodin je kontet čebnie zláštní. Obshje d důkz jeden příkld z klsiké čebnie. Všehn tři zdání jso znčně obtížná ždjí nápd, proto je řeším normálně

Více

29. OBJEMY A POVRCHY TĚLES

29. OBJEMY A POVRCHY TĚLES 9. OBJEMY A POVRCHY TĚLES 9.. Vypočítejte poch kádu ABCDEFGH, jestliže ) AB =, BC = b, BH = u b) AB =, BH = u, odchylk AG EH je ϕ H G Poch kádu učíme podle zoce: S = b + c + bc ( ) c E F D b C ) A B u

Více

7.3.7 Přímková smršť. Předpoklady: 7306

7.3.7 Přímková smršť. Předpoklady: 7306 737 Přímkoá smršť Předpokldy 7306 Pedgogiká poznámk Hodin znikl jko reke n prní průhod učenií Třeoni se třídou 42011 Ukázlo se, že studenti mjí prolémy s přiřzením spráného ektoru k různým druhům roni

Více

C. METRICKÉ VLASTNOSTI ÚTVARŮ V PROSTORU

C. METRICKÉ VLASTNOSTI ÚTVARŮ V PROSTORU 36. Je dán pravidelný čtyřboký jehlan V. Určete průsečíky přímky s hranicí jehlanu. Pro body, platí: = S, = S SV, bod S je střed podstavy.. TRIÉ VSTOSTI ÚTVRŮ V PROSTORU.1 Odchylky přímek a rovin V odchylka

Více

4.2.7 Zavedení funkcí sinus a cosinus pro orientovaný úhel I

4.2.7 Zavedení funkcí sinus a cosinus pro orientovaný úhel I 4..7 Zvedení funkcí sinus cosinus pro orientovný úhel I Předpokldy: 40, 40, 404, 406 Prolém s definicí funkcí sin ( ) cos( ) : Definice pomocí prvoúhlého trojúhelníku je π možné použít pouze pro ( 0 ;90

Více

3.1.3 Vzájemná poloha přímek

3.1.3 Vzájemná poloha přímek 3.1.3 Vzájemná poloh přímek Předpokldy: 3102 Dvě různé přímky v rovině mximálně jeden společný od Jeden společný od průsečík různoěžné přímky (různoěžky) P Píšeme: P neo = { P} Žádný společný od rovnoěžné

Více

Hledání hyperbol

Hledání hyperbol 759 Hledání hyperol Předpokldy: 756, 757, 758 Pedgogická poznámk: Některé příkldy jsou zdlouhvější, pokud mám dosttek čsu proírám tuto následující hodinu ěhem tří vyučovcích hodin Př : Npiš rovnici hyperoly,

Více

3.2.5 Pythagorova věta, Euklidovy věty I. α = = Předpoklady: 1107, 3204

3.2.5 Pythagorova věta, Euklidovy věty I. α = = Předpoklady: 1107, 3204 3..5 ythgoro ět, Euklidoy ěty I ředpokldy: 1107, 304 roúhlý trojúhelník = trojúhelník s nitřním úhlem 90 (s prým nitřním úhlem) prý úhel je z nitřníh úhlů nejětší (zýjíí d musí dát dohromdy tké 90 ) strn

Více

DUM č. 10 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla

DUM č. 10 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla projekt GML Brno Docens DUM č. 10 sadě Ma- Přípraa k matritě a PZ geometrie, analytická geometrie, analýza, komlexní čísla 14. Ator: Magda Krejčoá Datm: 1.08.01 Ročník: matritní ročníky Anotace DUM: Analytická

Více

Řezy těles rovinou II

Řezy těles rovinou II 5.1.10 Řezy těles rovinou II ředpoklady: 5109 e vždy nám vystačí spojování bodů a dělaní rovnoběžek. apříklad poslední příklad z minulé hodiny: Rovnoběžné jsou pouze podstavy nemůžeme pokračovat v řezu

Více

7.5.8 Středová rovnice elipsy

7.5.8 Středová rovnice elipsy 758 Středová rovnice elips Předpokld: 7501, 7507 Př 1: Vrchol elips leží v odech A[ 1;1], [ 3;1], [ 1;5], [ 1; 3] elips souřdnice jejích ohnisek Urči prmetr Zdné souřdnice už n první pohled vpdjí podezřele,

Více

9. Planimetrie 1 bod

9. Planimetrie 1 bod 9. Plnimetrie 1 bod 9.1. Do rovnostrnného trojúhelníku ABC o strně je vepsán rovnostrnný trojúhelník DEF tk, že D AB, E BC, F CA. Jestliže obsh trojúhelníku DEF je roven polovině obshu trojúhelníku ABC,

Více

Digitální učební materiál

Digitální učební materiál Digitální učení mteriál Projekt: Digitální učení mteriály e škole registrční číslo projektu CZ.1.07/1..00/4.07 Příjeme: Střední zdrotniká škol Vyšší odorná škol zdrotniká Huso 71 60 České Budějoie Náze

Více

Úlohy školní klauzurní části I. kola kategorie C

Úlohy školní klauzurní části I. kola kategorie C 52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.

Více

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308 731 Vzdálenost odu od římky I Předokldy: 7308 Pedgogiká oznámk: Pokud máte málo čsu, můžete odvodit vzore ez smosttné ráe studentů oužít některý z říkldů z dlší hodiny Tím jednu ze dvou hodin ro vzdálenost

Více

5.1.5 Základní vztahy mezi body přímkami a rovinami

5.1.5 Základní vztahy mezi body přímkami a rovinami 5.1.5 Zákldní vzthy mezi body přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů. Přímk - jednorozměrná podmnožin prostoru (množin bodů) Rovin - dvojrozměrná podmnožin prostoru (množin

Více

je pravoúhlý BNa ose y najděte bod, který je vzdálený od bodu A = [ 4;

je pravoúhlý BNa ose y najděte bod, který je vzdálený od bodu A = [ 4; 1 BUAnlytická geometrie - bod, souřdnice bodu, vzdálenost bodů 11 1BRozhodněte, zd trojúhelník s vrcholy A [ ; ], B [ 1; 1] C [ 11; 6] je prvoúhlý 1 1BN ose y njděte bod, který je vzdálený od bodu A [

Více

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306 7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu

Více

Jihočeská univerzita v Českých Budějovicích. Pedagogická fakulta

Jihočeská univerzita v Českých Budějovicích. Pedagogická fakulta Jihočeská unierzit Českýh Budějoiíh Pedgogiká fkult Geometriké konstruke řešené s yužitím lgebrikého ýpočtu Bklářská práe Jméno příjmení: Studijní progrm: Studijní obor: Vedouí bklářské práe: Jn ZOBALOVÁ

Více

MONGEOVO PROMÍTÁNÍ - 2. část

MONGEOVO PROMÍTÁNÍ - 2. část MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice

Více

11 Vzdálenost podprostorů

11 Vzdálenost podprostorů 11 Vzdálenost podprostorů 11.1 Vzdálenost bodů Eukleidovský bodový prostor E n = afinní bodový prostor, na jehož zaměření je definován skalární součin. (Pech:AGLÚ/str.126) Definováním skalárního součinu

Více

8 Mongeovo promítání

8 Mongeovo promítání 8 Mongeovo promítání Pomocí metod uvedených v kpitolách 3. 4., 3. 6. bychom mohli promítnout do roviny 3 libovolný útvr U E. V prxi všk většinou nestčí sestrojit jeden průmět. Z průmětu útvru U je většinou

Více

9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie

9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie 9 Axonometrie Mongeov projekce má řdu předností: jednoduchost, sndná měřitelnost délek úhlů. Je všk poměrně nenázorná. Podsttnou část technických výkresů proto tvoří kromě půdorysu, nárysu event. bokorysu

Více

Pravidelný čtyřboký jehlan (se čtvercovou podstavou)

Pravidelný čtyřboký jehlan (se čtvercovou podstavou) Prvidelný čtyřboký jehln (se čtvercovou odstvou) Jehln se čtvercovou odstvou je trojrozměrné těleso, jehož ovrch tvoří čtyři stejné trojúhelníky čtverec jko odstv. S = obsh odstvy vj v v = výšk trojúhelníku

Více

Deskriptivní geometrie 2

Deskriptivní geometrie 2 Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl II Světlana Tomiczková Plzeň 4. května 2011 verze 1.0 Obsah 1 Středové promítání

Více

Analytická geometrie v rovině

Analytická geometrie v rovině nltická geometrie roině Zč je toho loket (ořnice) ) [ ], [ 7], [ ], [ 5] ; b) = 7 j, = j, = 4 j, = 8 j, = j R M P 9 8 7 6 5 4 ) L[ 7], M[ ] ; b) Q[ ], R[ 5] 9 8 7 6 5 4 4 5 6 7 [ 5], [, 5], [ ] Q 9 5 c),

Více

= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty

= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty STROMTRI STROMTRI = prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty xióm je jednoduché názorné tvrzení, které se nedokazuje.

Více

ROTAČNÍ KVADRIKY V PŘÍKLADECH

ROTAČNÍ KVADRIKY V PŘÍKLADECH Univerzit Plckého v Olomouci Rozšíření kreditce učitelství mtemtiky učitelství deskriptivní geometrie n PřF UP v Olomouci o formu kombinovnou CZ..07/..00/8.003 ROTAČNÍ KVADRIKY V PŘÍKLADECH Mrie OŠLEJŠKOVÁ,

Více

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometie RND. Yett Btákoá Gymnázium, OŠ VOŠ Ledeč nd ázou Objemy pochy těles komolá těles VY INOVACE_05 9_M Gymnázium, OŠ VOŠ Ledeč nd ázou Objemy pochy těles A) Komolý jehln - je těleso, kteé znikne půnikem

Více

Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ:

Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ: Kapitola 1 Elementární plochy 1.1 Základní pojmy Elementární plochou budeme rozumět hranolovou, jehlanovou, válcovou, kuželovou a kulovou plochu. Pokud tyto plochy omezíme, popř. přidáme podstavy, můžeme

Více

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2] ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ

Více

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

( ) ( ) Pythagorova věta, Euklidovy věty II. γ = 90, je-li dáno: c = 10, c = 6. Předpoklady: 3205

( ) ( ) Pythagorova věta, Euklidovy věty II. γ = 90, je-li dáno: c = 10, c = 6. Předpoklady: 3205 3..6 Pythgoro ět, Euklidoy ěty II Předpokldy: 305 V kždém proúhlém trojúhelníku s oděsnmi, přeponou pltí: =, =, =, kde je ýšk n přeponu, jsou úseky přepony přilehlé ke strnám,. Kždou z předhozíh ět je

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

Řezy těles rovinou III

Řezy těles rovinou III 5.1.11 Řezy těles rovinou III Předpoklady: 050110 Ne vždy nám vystačí spojování bodů a dělaní rovnoběžek. Jako třeba bod b) posledního příkladu z minulé hodiny: Rovnoběžné jsou pouze podstavy nemůžeme

Více

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice

Více

3.2.1 Shodnost trojúhelníků I

3.2.1 Shodnost trojúhelníků I 3.2.1 hodnost trojúhelníků I Předpokldy: 3108 v útvry jsou shodné, pokud je možné je přemístěním ztotožnit. v prxi těžko proveditelné hledáme jinou možnost ověření shodnosti v útvry jsou shodné, pokud

Více

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje.

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje. 1/7 ANALYTICKÁ GEOMETRIE V PROSTORU Základní pojmy: Parametrické vyjádření přímky, roviny Obecná rovnice roviny Vzájemná poloha přímek a rovin Odchylka přímek a rovin Vzdálenosti www.karlin.mff.cuni.cz/katedry/kdm/diplomky/jan_koncel/

Více

KONSTRUKTIVNÍ GEOMETRIE

KONSTRUKTIVNÍ GEOMETRIE KONSTRUKTIVNÍ GEOMETRIE Přednáška Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Kuželosečky. ( a 0 i b 0 ) a Na obrázku 1 je zakreslena elipsa o poloosách 3 a 7. Pokud střed elipsy se posunul do bodu S x 0

Kuželosečky. ( a 0 i b 0 ) a Na obrázku 1 je zakreslena elipsa o poloosách 3 a 7. Pokud střed elipsy se posunul do bodu S x 0 Generted b Foit PDF Cretor Foit Softwre http://www.foitsoftwre.com For elution onl. Kuželosečk I. Kuželosečk zákldních polohách posunuté to prtie je opkoání látk obkle probírné n střední škole. Kružnice

Více

2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21

2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21 2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému

Více

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy 1 Metrické vlastnosti 9000153601 (level 1): Úhel vyznačený na obrázku znázorňuje: eometrie Odchylku boční hrany a podstavy Odchylku boční stěny a podstavy Odchylku dvou protilehlých hran Odchylku podstavné

Více

5.1.4 Obrazy těles ve volném rovnoběžném promítání II

5.1.4 Obrazy těles ve volném rovnoběžném promítání II 5.1.4 Obrazy těles ve volném rovnoběžném promítání II Předpoklady: 050103 tejně jako minule začneme opakováním pravidel. Pravidla uvádíme od nejvíce a nejsnáze používaných k méně a hůře použitelným. Útvary

Více

Dvěma různými body prochází právě jedna přímka.

Dvěma různými body prochází právě jedna přímka. Úvod Jestliže bod A leží na přímce p a přímka p leží v rovině, pak i bod A leží v rovině. Jestliže v rovině leží dva různé body A, B, pak také přímka p, která těmito body prochází, leží v rovině. Dvěma

Více

Elementární plochy-základní pojmy

Elementární plochy-základní pojmy -základní pojmy Kulová plocha je množina bodů v prostoru, které mají od pevného bodu S stejnou vzdálenost r. Hranolová plocha je určena lomenou čarou k (k σ) a směrem s, který nenáleží dané rovině (s σ),

Více

Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou

Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou Rozvinutelné plochy Rozvinutelná plocha je každá přímková plocha, pro kterou existuje izometrické zobrazení do rov iny, tj. lze ji rozvinout do roviny. Dá se ukázat, že každá rozvinutelná plocha patří

Více

Řezy těles rovinou III

Řezy těles rovinou III 5.1.11 Řezy těles rovinou III ředpoklady: 5110 ř. 1: Je dána standardní krychle. estroj řez této krychle rovinou. roblém: Nemáme odkud začít, žádné dva ze zadaných bodů neleží ve stejné stěně krychle žádné

Více

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302 7.. Vzájemná oloha aramericky yjádřených římek I Předoklady: 70 Pedagogická oznámka: Tao hodina neobsahje říliš mnoho říkladů. Pos elké čási sdenů je oměrně omalý a časo nesihno sočía ani obsah éo hodiny.

Více

5.1.4 Obrazy těles ve volném rovnoběžném promítání II

5.1.4 Obrazy těles ve volném rovnoběžném promítání II 5.1.4 Obrazy těles ve volném rovnoběžném promítání II Předpoklady: 5103 tejně jako minule začneme opakováním pravidel. Pravidla uvádíme od nejvíce a nejsnáze používaných k méně a hůře použitelným. Útvary

Více

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25 56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou

Více

5.1.7 Vzájemná poloha přímky a roviny

5.1.7 Vzájemná poloha přímky a roviny 5..7 Vzájemná oloha římky a roviny Předoklady: 506 Pedagogická oznámka: Tato a následující hodina je obtížně řiditelná. ni jedna z těchto hodin neobsahuje nic zásadního, v říadě časového skluzu je možné

Více

AXONOMETRIE - 2. část

AXONOMETRIE - 2. část AXONOMETRIE - 2. část Průmět přímky K určení přímky stačí její dva libovolné průměty, zpravidla používáme axonometrický průmět a půdorys. Bod ležící na přímce se zobrazí do bodu na přímce v každém průmětu.

Více

STEREOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

STEREOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky STEREOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia utoři projektu Student na prahu 21. století - využití IT ve vyučování matematiky na gymnáziu INVESTIE

Více

Další polohové úlohy

Další polohové úlohy 5.1.16 alší polohové úlohy Předpoklady: 5115 Průniky přímky s tělesem Př. 1: Je dána standardní krychle. Sestroj průnik přímky s krychlí pokud platí: leží na polopřímce, =, leží na polopřímce, =. Příklad

Více

Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1

Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1 Základní úlohy v Mongeově promítání Předpokladem ke zvládnutí zobrazení v Mongeově promítání je znalost základních úloh. Ale k porozumění následujícího textu je třeba umět zobrazit bod, přímku a rovinu

Více

BA008 Konstruktivní geometrie. Kolmá axonometrie. pro kombinované studium. učebna Z240 letní semestr

BA008 Konstruktivní geometrie. Kolmá axonometrie. pro kombinované studium. učebna Z240 letní semestr BA008 Konstruktivní geometrie pro kombinované studium Kolmá axonometrie Jan Šafařík Jana Slaběňáková přednášková skupina P-BK1VS1 učebna Z240 letní semestr 2016-2017 31. března 2017 Základní literatura

Více

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je

Více

2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky.

2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky. 2.cvičení 1. Polopřímk: od O dělí přímku n dvě nvzájem opčné polopřímky. Úsečk: průnik dvou polopřímek,. Polorovin: přímk dělí rovinu n dvě nvzájem opčné poloroviny. Úhel: průnik polorovin (pozor n speciální

Více

Zobrazení hranolu. Příklad 5: Sestrojte řez pravidelného šestibokého hranolu s podstavou v půdorysně rovinou ρ. Sestrojte síť seříznuté části.

Zobrazení hranolu. Příklad 5: Sestrojte řez pravidelného šestibokého hranolu s podstavou v půdorysně rovinou ρ. Sestrojte síť seříznuté části. Zobrazení hranolu Příklad 1: Zobrazte pravidelný pětiboký hranol s podstavou v půdorysně π. Podstava je dána středem S a vrcholem A. Výška hranolu je v. Určete zbývající průmět bodu M pláště hranolu. 1

Více

Komentáře k domácímu kolu kategorie Z9

Komentáře k domácímu kolu kategorie Z9 5. ročník Mtemtické olympiády Komentáře k domácímu kolu ktegorie Z9. Čtyřúhelník, který nemá žádné dvě strny stejně dlouhé, nzveme nerovnostrnným. Prvidelný dvnáctiúhelník má obsh 8 cm. Nrýsujte všechny

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

Rovnice přímky v prostoru

Rovnice přímky v prostoru Rovnice přímky v prostoru Každá přímka v prostoru je jednoznačně zadána dvěma body. K vyjádření všech bodů přímky lze použít parametrické rovnice. Parametrická rovnice přímky p Pokud A, B jsou dva různé

Více

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po

Více

Mongeovo zobrazení. Osová afinita

Mongeovo zobrazení. Osová afinita Mongeovo zobrazení Osová afinita nechť je v prostoru dána průmětna π, obecná rovina ρ a v této rovině libovolný trojúhelník ABC, promítneme-li trojúhelník kolmo do průmětny π, dostaneme trojúhelník A

Více

STEREOMETRIE. Tělesa. Značení: body A, B, C,... přímky p, q, r,... roviny ρ, σ, τ,...

STEREOMETRIE. Tělesa. Značení: body A, B, C,... přímky p, q, r,... roviny ρ, σ, τ,... STEREOMETRIE Stereometrie je část geometrie, která se zabývá studiem prostorových útvarů. Základními prostorovými útvary, se kterými budeme pracovat, jsou bod, přímka a rovina. Značení: body A, B, C,...

Více

1. MONGEOVO PROMÍTÁNÍ

1. MONGEOVO PROMÍTÁNÍ Mongeovo promítání 1 1. MONGEOVO PROMÍTÁNÍ 1.1 Základní pojmy V Mongeově promítání promítáme na dvě navzájem kolmé průmětny. Vodorovná průmětna se nazývá půdorysna a značí se, svislá průmětna se nazývá

Více

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometrie RNDr. Yetta Bartákoá Gymnázium, SOŠ a VOŠ Ledeč nad Sázaou Objemy a porchy těles koule, kuloá plocha a jejich části VY INOVACE_05 9_M Gymnázium, SOŠ a VOŠ Ledeč nad Sázaou Objemy a porchy těles

Více

II. kolo kategorie Z5

II. kolo kategorie Z5 II. kolo ktegorie Z5 Z5 II 1 Z prvé kpsy klhot jsem přendl 4 pětikoruny do levé kpsy z levé kpsy jsem přendl 16 dvoukorun do prvé kpsy. Teď mám v levé kpse o 13 korun méně než v prvé. Ve které kpse jsem

Více

Základní planimetrické pojmy a poznatky

Základní planimetrické pojmy a poznatky teorie řešené úlohy cvičení tiy k mturitě Zákldní lnimetrické ojmy ozntky íš, že očátek geometrie se dtuje do Egyt do třetího tisíciletí ř. n. l.? název geometrie znmenl ůvodně zeměměřičství? (geo = země,

Více

8. cvičení z Matematiky 2

8. cvičení z Matematiky 2 8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,

Více

3. VEKTOROVÝ POČET A ANALYTICKÁ GEOMETRIE

3. VEKTOROVÝ POČET A ANALYTICKÁ GEOMETRIE Euklidoský prostor. VEKTOROVÝ POČET A ANALYTICKÁ GEOMETRIE Průodce studiem Geometrii lze budoat metodou syntetickou nebo metodou analytickou. Při syntetické metodě pracujeme přímo s geometrickými objekty.

Více

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2] Příklad Do dané kruhové výseče s ostrým středovým úhlem vepište kružnici (obr. ). M k l V N [obr. ] Rozbor Oblouk l a hledaná kružnice k se dotýkají v bodě T, mají proto v tomto bodě společnou tečnu t.

Více

MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA. DIPLOMOVÁ PRÁCE Úlohy s prostorovými tělesy v Mongeově zobrazovací metodě

MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA. DIPLOMOVÁ PRÁCE Úlohy s prostorovými tělesy v Mongeově zobrazovací metodě MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA DIPLOMOVÁ PRÁCE Úlohy s prostorovými tělesy v Mongeově zobrazovací metodě BRNO 2006 BLANKA MORÁVKOVÁ Prohlášení: Prohlašuji, že jsem diplomovou práci vypracovala

Více

Užití stejnolehlosti v konstrukčních úlohách

Užití stejnolehlosti v konstrukčních úlohách Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz

Více