II. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y)
|
|
- Alžběta Vávrová
- před 6 lety
- Počet zobrazení:
Transkript
1 . NTEGRÁL V R n Úvod Určitý integrál v intervlu, b Pro funki f :, b R jsme definovli určitý integrál jko číslo, jehož hodnot je obshem obrze znázorněného n obrázíh. Pro funki f : R n R budeme zvádět integrál obdobně, tk bhom zhovli jeho vlstnosti. b b + Obr. 9.1 Obr. 9.2 ntegrál v R 2 z z = f(, Obr ntervl jeho objem Definie. ntervl v R n. ntervlem v R n nzýváme množinu ( = 1, b 1 2, b 2... n, b n. Definie. Objem intervlu Je-li R n intervl tvru (, pk jeho n rozměrným objemem (objemem nzýváme číslo ( v n ( = v( = (b 1 1 (b (b n n. 1
2 Poznámk. Je zřejmé,že pro n = 1 : v( = b 1 1 je délk intevlu; n = 2 : v( = (b 1 1 (b 2 2 je obsh obdélník; n = 3 : v( = (b 1 1 (b 2 2 (b 3 3 je obsh kvádru. ntervl v R 2 b b 1 Obr. 9.4 Definie. Dělení intervlu Jestliže v intervlu tvru ( rozdělíme kždý z intervlů i, b i, 1 i n pomoí dělííh bodů i = 0 i < 1 i < 2 i <... < k i i = b i, 1 i n, pk tento proes nzýváme dělením intervlu. Budeme jej oznčovt D. Původní intervl je sjednoením konečného počtu intervlů tvru m 1 1, m mn n, mn+1 n, 0 m i k i 1, 1 i n. ntervlů z dělení je konečný počet, budeme v dlším tetu jejih sstém oznčovt {J 1, J 2,..., J m } budeme psát Je pk Dělení intervlu R 2 b 2 2 ( D = {J 1, J 2,..., J m }. = m J i. 1 b 1 2 Obr. 9.5
3 Vět. Je-li D = {J 1, J 2,..., J m } dělení intervlu, pk pro jeho objem pltí v( = v(j i. 10. Konstruke integrálu Definie. ntegrální součt Je-li R n intervl funke f : R je omezená D = {J 1, J 2,..., J m } dělení intervlu, pk oznčíme m i = inf{f(; J i } Potom nzýváme součt dolním integrálním součtem, horním integrálním součtem M i = sup{f(; J i }, 1 i n. S(f; D = m i v(j i S(f; D = M i v(j i S(f; D = f(z i v(j i, z i J i, integrálním součtem funke f v intervlu, které přísluší dělení D. Vět. Je-li m f( M pro, pk je mv( S(f; D S(f; D S(f; D Mv( pro libovolné dělení D intervlu. Definie. Zjemnění dělení Je-li D dělení intervlu, ve kterém dále rozdělíme některé z intervlů i, b i, 1 i n, pk získáme dělení D intervlu, které nzýváme zjemněním dělení D. Zjemnění dělení intervlu R 2 b b 1 Obr
4 Vět. Je-li D dělení intervlu, které je zjemněním dělení D, pk pro integrální součt pltí S(f; D S(f; D S(f; D S(f; D. m i M i J i Obr. 9.7 Obr. 9.8 Protože jsou dolní horní integrální součt zdol shor omezené, pk pltí Vět. Je sup{s(f; D; D} inf{s(f; D; D}. Obená situe J i S(f; D S(f; D mv( S(f; D M v( Obr. 9.9 ntegrovtelná funke S(f; D S(f; D mv( J M v( Obr Definie. ntegrál funke. Jestliže je J = sup{s(f; D; D} = inf{s(f; D; D}, pk funki f nzýváme integrovtelnou v intervlu číslo J nzýváme integrálem funke f v intervlu. Znčíme jej některým ze smbolů J = f = f dv = f( d. Vět. Je-li funke f spojitá v intervlu, pk je tké integrovtelná v intervlu. Vět. Podmínk integrovtelnosti Funke f je integrovtelná v intervlu J = f dv, jestliže ke kždému číslu ε > 0 kždému dělení D eistuje integrální součet S(f; D tkový, že S(f; D J < ε. Terminologie znčení. Pro n = 1 =, b píšeme f dv = b f( d jedná se o určitý integrál funke jedné reálné proměnné. 4
5 Pro n = 2 budeme obvkle psát f dv = integrál nzýváme dvojným integrálem. Pro n = 3 budeme obvkle psát f dv = f(, dd f(,, z dddz integrál nzýváme trojným integrálem. Vět. Vlstnosti integrálu. Jsou-li funke f g integrovtelné v intervlu, pk pltí: Je-li m f( M pro, pk mv( f dv Mv(. b Pro libovolná čísl α β je Je-li f( g( pro, pk (αf + βg dv = α f dv f dv + β g dv. g dv. Speiálně pro f( 0 je Je f dv 0. dv f dv. d Je-li D = {J 1, J 2,..., J m } dělení intervlu, pk f dv = J i f dv. Výpočet dvojného integrálu Funke f : =, b, d R je omezená integrovtelná v intervlu. Rozdělíme ob intervl pomoí dělííh bodů: oznčme dělení kde J i,j = i 1, i j 1, j. Potom je objem intervlů J i,j roven = 0 < 1 <... m = b, = 0 < 1 <... < k = d D = {J i,j : 1 i m, 1 j k}, v(j i,j = i j = ( i i 1 ( j j 1. 5
6 Oznčme Postupně dostneme pro (ξ i, J i,j : m i,j = inf{f(, ; (, J i,j }, M i,j = sup{f(, ; (, J i,j }. m i,j j m i,j f(ξ i, M i,j, j Sečteme-li nerovnie podle j dostneme: Jestliže oznčíme F ( = k k m i,j j j=1 j=1 d j 1 f(ξ i, d M i,j j. j j 1 f(ξ i, d = d k = f(ξ i, d M i,j j. j=1 f(, d potom můžeme nerovnii zpst ve tvru k k m i,j j F (ξ i M i,j j. j=1 j=1 Jestliže ji násobíme i sečteme podle i dostneme nerovnie: m i,j i j F (ξ i i i,j i,j M i,j i j, ted S(f; D F (ξ i i S(f; D. b Prostřední člen je integrální součet integrálu F ( d. Nerovnie pltí pro všehn integrální součt tohoto integrálu, ted i pro horní dolní integrální součet. Je ted Vzore zpisujeme obvkle ve tvru f(, dd = f(, dd = b ( b d F ( d. f(, d Pořdí proměnnýh v odvození můžeme ovšem vměnit dostneme vzore ( d b f(, dd = f(, d d. ntegrál n prvé strně vzorů se nzývjí dvojnásobné vzore uvádějí, že můžeme dvojný integrál vpočítt pomoí postupného integrovní podobně jko můžeme sčítt obdélníkovou tbulku čísel nejdříve po sloupíh pk po řádíh. 6 d.
7 Při odvození jsme nikde nepoužili skutečnosti, že jsou intervl jednorozměrné. Použili jsme pouze obené vlstnosti objemu. Tvrzení zůstává v pltnosti i pro víerozměrné intervl. Uvedeme jeho formuli. Vět. Fubini Nehť jsou 1 R n 2 R m intervl. Je-li funke f : 1 2 R omezená integrovtelná, pk fdv n+m = 1 2 fdv n + 1 fdv m. 2 Vzore čstěji zpisujeme ve tvru f(, dd = 1 2 = 2 ( 1 1 ( 2 f(, d d. f(, d d = ntegrál z omezené funke Je-li f : R omezená funke, která je definovná n omezené množině R, pk integrál této funke v množině sestrojíme tkto. Oznčme si intervl tkový, že. Definujme funki f v tkto: f(,, f ( = 0,. Potom definujeme integrál funke f přes množinu vzthem ( f( d = f ( d. Funke f je integrovtelná v množině, jestliže je funke f integrovtelná v intervlu. Je zřejmé, že hodnot integrálu z definie nezávisí n volbě intervlu. ntegrál v množině 2 1 f = 0 1 f = f Obr Obr Výpočet integrálu v množině Je-li f : R, kde množin R n je omezená množin, pk zvolíme intervl tk, že. Oznčme =, b, d. Podle vzthu ( z definie je f(, dd = f (, dd = ( b d f (, d d = 7 ( d b f (, d d.
8 Funke f (, je při pevné hodnotě, resp. někde rovn funki f(, někde je rovn 0. Znmená to, že ve vnitřním integrálu není integrčním oborem intervl, d, resp., b, le pouze jeho část, resp.. Podobně při výpočtu vnějšího integrálu neintegrujeme přes elý intervl, b, resp., d, le pouze přes intervl, ve kterém jsou hodnot vnitřního integrálu nenulové. Tím je projeke množin do první, resp. druhé os. V souldu s tím oznčme: = {; (, } řez množinou ve směru os ; π 1 ( = {; } projeki množin do první os; = {; (, } řez množinou ve směru os ; π 2 ( = {; } projeki množin do druhé os. π 1 ( π 2 ( Je ted Obr Obr π 1 ( f(, dd = ( f(, d d = π 2 ( f (, dd = ( f(, d Poznámk. Připomeňme, že se vlstnosti integrálu v intervlu přenáší i n integrál přes množinu. Zákldní oblst v R 2 Množin R 2 bývá zdán soustvou nerovni ve dvou proměnnýh. Pokud se nám podří tto nerovnie rozřešit vzhledem k některé z proměnnýh dostneme popis množin ve tvru zákldní oblsti. T má jedno ze dvou vjádření: d. ( = {(, ; φ( ψ(, b}, nebo Je pk ( ( Znázorníme situe n obrázku: Zákldní oblst v R 2 = {(, ; φ( ψ(, d}. = φ(, ψ(, π 1 ( =, b }; ( = φ(, ψ(, π 2 ( =, d }. 8
9 = ψ( d = φ( φ( π 1 ( b Obr Obr ntegrál přes neomezenou množinu Je-li R 2 neomezená množin, pk definujeme integrál přes množinu jko f(, dd = lim f(, dd, n (n π 2 ( ψ( kde (n = n, n n, n, pro n N, pokud limit eistuje. O integrálu mluvíme jko o nevlstním. Trojný integrál ntegrál přes množinu R 3 počítáme obdobně postupným integrováním. Rozdělíme množin řez rovinmi rovnoběžnými se souřdniovými rovinmi tk, bhom dostli zákldní obsti. To jsou množin tvru Potom je {(,, z; h(, z g((,, (, B}. ( g(, f(,, zdddz = f(,, zdz dd B h(, Substitue v integrálu Definie. Trnsforme souřdni Zobrzení Φ = (Φ 1, Φ 2,..., Φ n : G R n, kde G R n je otevřená množin nzýváme trnsformí souřdni, jestliže pltí: Priální derive Φ i u j (u, u G, 1 i, j n, jsou spojité v G. b Determint det Φ Φ i (u = det (u 0, u G. u j Zobrzení Φ je prosté v množině G. Vět. O substitui v integrálu Nehť Φ : G R n je trnsforme souřdni. Pk pro integrál pltí : f( d = f(φ(u det(φ (u du, Φ(G G pokud jeden z integrálů eistuje. Poznámk. Výrz det(φ je limit poměru objemů množin, které si při zobrzení Φ odpovídjí, pokud se jejih objem blíží k nule. Tuto skutečnost ukážeme pro trnsformi do polárníh souřdni. 9
10 Trnsforme do polárníh souřdni má tvr Φ : = ρ os ϕ, ρ > 0 = ρ sin ϕ, α < ϕ < α + 2π. Množin G = (0, (α, α + 2π ted det Φ = ρ 0. Potom Φ = (, ρ, ρ ϕ ϕ ( os ϕ, ρ sin ϕ = sin ϕ, ρ os ϕ, ϕ ϕ 2 ϕ P 1 ϕ 1 ρ ρ 1 ρ 2 Obr Obr P 1 = ρ. ϕ P 2 = 1 2 (ρ2 2 ρ 2 1 ϕ = ρ 2+ρ 1 2 ρ ϕ ρ ϕ 2 P 2 ϕ 1 ρ 2 ρ 1 lim ρ ϕ 0 P 2 P 1 = lim ρ ϕ 0 ρ 2 + ρ 1 2 = ρ. Podle tvrzení pltí pro trnsformi do polárníh souřdni vzore Φ(G f(, dd = G f(ρ os ϕ, ρ sin ϕρ dρdϕ Zákldní oblst v polárníh souřdniíh má jeden z popisů: = {(ρ, ϕ; h(ϕ ρ g(ϕ, α ϕ β}; B = {(ρ, ϕ; h(ρ ϕ g(ρ, ρ 1 ϕ ρ 2 }. 10
11 Zákldní oblst β g(ϕ α h(ϕ g(ρ ρ 1 h(ρ ρ 2 Obr Obr Vzore pro výpočet integrálu má tvr f(, dd = ( β g(ϕ = f(ρ os ϕ, ρ sin ϕρdρ dϕ; α h(ϕ f(, dd = B ( ρ2 g(ρ = f(ρ os ϕ, ρ sin ϕρdϕ dρ. h(ρ ρ 1 11
12 Válové (lindriké souřdnie Trnsforme souřdni (,, z (ρ, ϕ, z Φ : = ρ os ϕ, ρ (0,, = ρ sin ϕ, ϕ (α, α + 2π, z = z, z (,. det(φ = ρ z (,, z z ρ ϕ Obr
13 Sfériké (kulové souřdnie Trnsforme souřdni Φ : Φ : (,, z (r, θ, ϕ, (r, θ, ϕ = r sin θ os ϕ, = r sin θ sin ϕ, z = r os θ, = r os θ os ϕ, = r os θ sin ϕ, z = r sin θ, r (0,, θ (0, π, ϕ (α, α + 2π; r (0,, θ ( π/2, π/2, ϕ (α, α + 2π; det(φ = r 2 sin θ = r 2 os θ z θ ϕ r (,, z θ Obr
VIII. Primitivní funkce a Riemannův integrál
VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.
je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5.
10. Komplexní funkce reálné proměnné. Křivky. Je-li f : (, b) C, pk lze funkci f povžovt z dvojici (u, v), kde u = Re f v = Im f. Rozdíl proti vektorovému poli je v tom, že jsou pro komplexní čísl definovány
6. Určitý integrál a jeho výpočet, aplikace
Aplikovná mtemtik 1, NMAF071 6. Určitý integrál výpočet, plikce T. Slč, MÚ MFF UK ZS 2017/18 ZS 2017/18) Aplikovná mtemtik 1, NMAF071 6. Určitý integrál 1 / 13 6.1 Newtonův integrál Definice 6.1 Řekneme,
10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí
10 Určitý integrál 10.1 Riemnnův integrál Definice. Konečnou posloupnost {x j } n j=0 nzýváme dělením intervlu [,b], jestliže pltí = x 0 < x 1 < < x n = b. Body x 0,...,x n nzýváme dělícími body. Normou
integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu.
Přednášk 1 Určitý integrál V této přednášce se budeme zbývt určitým integrálem. Eistuje několik definic určitého integrálu funkce jedné reálné proměnné. Jednotlivé integrály se liší v tom, jké funkce lze
Integrální počet - III. část (určitý vlastní integrál)
Integrální počet - III. část (určitý vlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednášk z AMA1 Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 18 Obsh 1 Určitý vlstní (Riemnnův)
LDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26
Určitý integrál Zákldy vyšší mtemtiky LDF MENDELU Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu http://kdemie.ldf.mendelu.cz/cz
Integrální počet - II. část (určitý integrál a jeho aplikace)
Integrální počet - II. část (určitý integrál jeho plikce) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednášk z ESMAT Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 23 Obsh 1 Určitý vlstní (Riemnnův)
Kapitola 8: Dvojný integrál
Kpitol 8: vojný integrál Riemnov definie dvojného integrálu pøes obdelník Pøedpokládejme f : R 2 R je spojitá nezáporná funke. =, b, d. Cheme vypoèítt objem tìles T : T = {(x, y, z R 3 ; x, b, y, d, z
26. listopadu a 10.prosince 2016
Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální
7. Integrální počet Primitivní funkce, Neurčitý integrál
7. Integrální počet 7.. Primitivní funkce, Neurčitý integrál Definice 7. Říkáme, že F (x) je v intervlu (, b) (přitom může být tké =, b = + ) primitivní funkcí k finkci f(x), jestliže pro všechn x (, b)
Integrál a jeho aplikace Tomáš Matoušek
Integrál jeho plikce Tomáš Mtoušek Křivk Definice.(Vektorováfunkce) Funkci ϕ:r R n,kteráreálnémučíslupřiřzuje n-tici reálných čísel(vektor), nzýváme funkcí vektorovou. Lze ji tké popst po složkáchjko ϕ(t)=(ϕ
Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Určitý integrál Petr Hsil Přednášk z mtemtiky Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu (reg. č. CZ.1.07/2.2.00/28.0021)
R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na
Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.
VIII. Primitivní funkce a Riemannův integrál
VIII. Primitivní funkce Riemnnův integrál VIII.2. Primitivní funkce Definice. Nechť funkce f je definován n neprázdném otevřeném intervlu I. Řekneme, že funkce F : I R je primitivní funkce k f n intervlu
+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c
) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším
Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)
KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1
Integrály definované za těchto předpokladů nazýváme vlastní integrály.
Mtemtik II.5. Nevlstní integrály.5. Nevlstní integrály Cíle V této kpitole poněkud rozšíříme definii Riemnnov určitého integrálu i n přípdy, kdy je integrční oor neohrničený (tj. (, >,
Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci
Mtemtik 1A. PetrSlčJiříHozmn Fkult přírodovědně-humnitní pedgogická Technická univerzit v Liberci petr.slc@tul.cz jiri.hozmn@tul.cz 21.11.2016 Fkult přírodovědně-humnitní pedgogická TUL ZS 2016-2017 1/
f k nazýváme funkční řadou v M.
6. Funční řdy posloupnosti. Bodová stejnoměrná onvergence. Nechť pro N jsou f omplení či reálné funce omplení či reálné proměnné, teré mjí společný definiční obor M. Posloupnost {f ; N} nzýváme funční
Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.
7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1
Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:
.. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto
je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné
1. Prciální derivce funkce více proměnných. Prciální derivce funkce dvou proměnných. Je-li funkce f f(, ) definován v množině D f R 2 bod ( 1, 2 ) je vnitřním bodem množin D f, pk funkce g 1 (t) f(t, 2
Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál)
Integrální počet - IV. část (plikce n určitý vlstní integrál, nevlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednášk z AMA Michl Fusek (fusekmi@feec.vutbr.cz) / 4 Obsh
6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.
KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou
17 Křivky v rovině a prostoru
17 Křivky v rovině prostoru Definice 17.1 (rovinné křivky souvisejících pojmů). 1. Nechť F (t) [ϕ(t), ψ(t)] je 2-funkce spojitá n, b. Rovinnou křivkou nzveme množinu : {F (t) : t, b } R 2. 2-funkce F [ϕ,
Přehled základních vzorců pro Matematiku 2 1
Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,
A DIRACOVA DISTRIBUCE 1. δ(x) dx = 1, δ(x) = 0 pro x 0. (1) Graficky znázorňujeme Diracovu distribuci šipkou jednotkové velikosti (viz obr. 1).
A DIRACOVA DISTRIBUCE A Dircov distribuce A Definice Dircovy distribuce Dircovu distribuci δx) lze zvést třemi ekvivlentními způsoby ) Dirc [] ji zvedl vzthy δx) dx, δx) pro x ) Grficky znázorňujeme Dircovu
OBECNÝ URČITÝ INTEGRÁL
OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,
Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA
Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním
Kapitola 8: Dvojný integrál 1/26
Kapitola 8: vojný integrál 1/26 vojný integrál - osnova kapitoly 2/26 dvojný integrál přes obdélník definice výpočet (Fubiniova věta pro obdélník) dvojný integrál přes standardní množinu definice výpočet
x + F F x F (x, f(x)).
I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných
11. cvičení z Matematické analýzy 2
11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y
NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.
NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:
Diferenciální počet. Spojitost funkce
Dierenciální počet Spojitost unkce Co to znmená, že unkce je spojitá? Jký je mtemtický význm tvrzení, že gr unkce je spojitý? Jké jsou vlstnosti unkce v bodě? Jké jsou vlstnosti unkce v intervlu I? Vlstnosti
V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.
NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:
NMAF061, ZS Písemná část zkoušky 25. leden 2018
Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 3 4 5 6 Celkem bodů Bodů 6 6 4
URČITÝ INTEGRÁL FUNKCE
URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()
18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34.
I. Určete integrály proved te zkoušku. Určete intervl(y), kde integrál eistuje... 3. 4. 5. 6. 7. 8. 9. 0... 3. 4. 5. 6. 7. e d substituce t = ln ln(ln ) d substituce t = ln(ln ), dt = ln 3 e 4 d substituce
DERIVACE A INTEGRÁLY VE FYZICE
DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická
INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL
INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci
5.5 Elementární funkce
5.5 Elementární funkce Lemm 5.20. Necht x R. Potom existuje kldné C R (závisející n x) tkové, že pro kždé n N h ( 1, 1) pltí (x + h) n x n nhx n 1 h 2 C n. Definice. Exponenciální funkci exp definujme
10. cvičení z Matematické analýzy 2
. cvičení z Matematické analýzy 3. - 7. prosince 8. (dvojný integrál - Fubiniho věta Vhodným způsobem integrace spočítejte daný integrál a načrtněte oblast integrace (a (b (c y ds, kde : y & y 4. e ma{,y
Podobnosti trojúhelníků, goniometrické funkce
1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší
2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem
2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice
ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.
VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální
Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním
Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož
KŘIVKOVÉ INTEGRÁLY. Křivka v prostoru je popsána spojitými funkcemi ϕ, ψ, τ : [a, b] R jako množina bodů {(ϕ(t), ψ(t), τ(t)); t
KŘIVKOVÉ INTEGRÁLY Má-li se spočítt npř. spotřeb betonu n rovný plot s měnící se výškou, stčí spočítt integrál z této výšky podle zákldny plotu. o když je le zákldnou plotu nikoli rovná úsečk, le křivá
( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady:
4.4. Sinová vět II Předpokldy 44 Kde se stl hy? Námi nlezené řešení je správné, le nenšli jsme druhé hy ve hvíli, kdy jsme z hodnoty sin β určovli úhel β. β je úhel z intervlu ( ;π ). Jk je vidět z jednotkové
4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.
4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost
14. cvičení z Matematické analýzy 2
4. cvičení z temtické nlýzy 2 22. - 26. květn 27 4. Greenov vět) Použijte Greenovu větu k nlezení práce síly F x, y) 2xy, 4x 2 y 2 ) vykonné n částici podél křivky, která je hrnicí oblsti ohrničené křivkmi
8. Elementární funkce
Historie přírodních věd potvrzuje, že většinu reálně eistujících dějů lze reprezentovt mtemtickými model, které jsou popsán tzv. elementárními funkcemi. Elementární funkce je kždá funkce, která vznikne
Masarykova univerzita
Msrykov univerzit Přírodovědecká fkult Diplomová práce Web k témtu: Integrální počet Bc. Ev Schlesingerová Brno 9 Prohlášení Prohlšuji, že jsem tuto diplomovou práci npsl sm s použitím uvedené litertury.
13. Exponenciální a logaritmická funkce
@11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze
4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících.
4.4. Sinová vět Předpokldy Trigonometrie řešení úloh o trojúhelnííh. Prktiké využití změřování měření vzdáleností, tringulční síť Tringulční síť je prolém měřit vzdálenosti dvou odů v krjině změříme velmi
Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.
Vzdělávcí mteriál vytvořený v projektu OP VK Název školy: Gymnázium, Zářeh, náměstí Osvoození 20 Číslo projektu: Název projektu: Číslo název klíčové ktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek pro
I Diferenciální a integrální počet funkcí jedné proměnné 3
Obsh I Diferenciální integrální počet funkcí jedné proměnné 3 Preklkulus 5. Reálná čísl................................................ 5. Funkce jejich zákldní vlstnosti....................................3
9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie
9 Axonometrie Mongeov projekce má řdu předností: jednoduchost, sndná měřitelnost délek úhlů. Je všk poměrně nenázorná. Podsttnou část technických výkresů proto tvoří kromě půdorysu, nárysu event. bokorysu
Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A
Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty
Spojitost funkce v bodě, spojitost funkce v intervalu
10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí
F n = F 1 n 1 + F 2 n 2 + F 3 n 3.
Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,
Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková
Tento text není smosttným studijním mteriálem. Jde jen o prezentci promítnou n p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze n tbuli nejsou zde obsºeny. Text m ºe
Limity, derivace a integrály Tomáš Bárta, Radek Erban
Limity, derivce integrály Tomáš Bárt, Rdek Erbn Úvod Definice. Zobrzení(téžfunkce) f M Njemnožinuspořádnýchdvojic(x, y) tková,žekekždému xexistujeprávějedno y,žedvojice(x,y) f.tj.kždývzor xmáprávějedenobrz
7 Analytická geometrie
7 Anlytiká geometrie 7. Poznámk: Když geometriké prolémy převedeme pomoí modelu M systému souřdni n lgeriké ritmetiké prolémy pk mluvíme o nlytiké geometrii neo též o metodě souřdni užité v geometrii.
FUNKCE SINUS A KOSINUS
203 FUNKCE SINUS A KOSINUS opis způsou použití: teorie k smostudiu (i- lerning) pro 3. ročník střední škol tehnikého změření, teorie ke konzultím dálkového studi Vprovl: Ivn Klozová Dtum vprování: 2. prosine
4. Determinanty. Výpočet: a11. a22. a21. a12. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31. a 11 a 23 a 32 a 12 a 21 a 33
. Determinnty Determinnt, znčíme deta, je číslo přiřzené čtvercové mtici A. Je zveden tk, by pro invertibilní mtici byl nenulový pro neinvertibilní mtici byl roven nule. Výpočet: = + = + + - - - + + +
Přednáška 9: Limita a spojitost
4 / XI /, 5: Přednášk 9: Limit spojitost V minulých přednáškách jsme podrobněji prozkoumli důležitý pojem funkce. Při řešení konkrétních problémů se nše znlosti (npř. nměřená dt) zpisují jko funkční hodnoty
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y
PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.
PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
Křivkový integrál funkce
Kpitol 6 Křivkový integrál funkce efinice způsob výpočtu Hlvním motivem pro definici určitého integrálu funkce jedné proměnné byl úloh stnovit obsh oblsti omezené grfem dné funkce intervlem n ose x. Řd
1. Těleso komplexních čísel Definice. Množinou komplexních čísel rozumíme množinu R 2.
1. Těleso komplexních čísel Definice. Množinou komplexních čísel rozumíme množinu R 2. Množinu komplexních čísel znčíme C. N množině C definujeme operce sčítání + jko v R 2 násobení. předpisem (x, y).(u,
Matematika II: Pracovní listy Integrální počet funkce jedné reálné proměnné
Mtemtik II: Prcovní listy Integrální počet funkce jedné reálné proměnné Petr Schreiberová, Petr Volný Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Ostrv 8 Obsh Neurčitý integrál.
KVADRATICKÁ FUNKCE (vlastnosti, grafy)
KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,
Definice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1
9. Vriční počet. Definice. Nechť k 0 celé, < b R. Definujeme C k ([, b]) = { ỹ [,b] : ỹ C k (R) } ; C 0 ([, b]) = { y C ([, b]) : y() = y(b) = 0 }. Důležitá konstrukce. Shlzovcí funkce (molifiér, bump
NMAF061, ZS Písemná část zkoušky 16. leden 2018
Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 1 3 4 5 6 Celkem bodů Bodů 7 6
III.4. Fubiniova (Fubiniho) věta pro trojný integrál
E. Brožíková, M. Kittlerová, F. Mrá: Sbírk příkldů Mtemtik II ( III.. Fubiniov (Fubiniho vět pro trojný integrál Vpočítejte trojné integrál n dných množinách E : Příkld. I Řešení : I ( + d d d; {[,, E
7. Integrál přes n-rozměrný interval
7. Integrál přes n-rozměrný interval Studijní text 7. Integrál přes n-rozměrný interval Definice 7.1. Buď A = a 1, b 1 a n, b n R n n-rozměrný uzavřený interval a f : R n R funkce ohraničená na A Df. Definujme
je daná funkce. Množinu všech primitivních funkcí k f na I nazveme neurčitým f(x)dx nebo f.
MATEMATICKÁ ANALÝZA INTEGRÁLNÍ POČET PŘEDNÁŠEJÍCÍ ALEŠ NEKVINDA. Přednášk Oznčme R = R {, } jko v minulém semestru. V tomto semestru se budeme zbývt opčným úkonem k derivování. Primitivní funkce. Definice.
PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE
PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n,
ZÁKLADNÍ POZNATKY ČÍSELNÉ MNOŽINY (OBORY) N... množin všech přirozených čísel: 1, 2, 3,, n, N0... množin všech celých nezáporných čísel (přirozených čísel s nulou: 0,1, 2, 3,, n, Z... množin všech celých
ˇ EDNA SˇKA 9 DALS ˇ I METODY INTEGRACE
PŘEDNÁŠKA 9 DALŠÍ METODY INTEGRACE 1 9.1. Věta o substituci Věta 1 (O substituci) Necht je ϕ(x) prosté regulární zobrazení otevřené množiny X R n na množinu Y R n. Necht je M X, f(y) funkce definovaná
2.1 - ( ) ( ) (020201) [ ] [ ]
- FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé
2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice
59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní
2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice
59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní
Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.
.4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli
FAKULTA STAVEBNÍ MATEMATIKA I MODUL 8 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL 8 URČITÝ INTEGRÁL STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Dněček, Oldřich Dlouhý,
ANALYTICKÁ GEOMETRIE
Technická niverzit v Liberci Fklt přírodovědně-hmnitní pedgogická Ktedr mtemtiky didktiky mtemtiky NLYTICKÁ GEOMETRIE Pomocný čební text Petr Pirklová Liberec, listopd 2015 NLYTICKÁ GEOMETRIE LINEÁRNÍCH
II. 5. Aplikace integrálního počtu
494 II Integrální počet funkcí jedné proměnné II 5 Aplikce integrálního počtu Geometrické plikce Určitý integrál S b fx) dx lze geometricky interpretovt jko obsh plochy vymezené grfem funkce f v intervlu
. V trojúhelníku ABC platí 180. Součet libovolného vnitřního úhlu a jemu odpovídajícího vnějšího úhlu je úhel přímý. /
TROJÚHELNÍK Trojúhelník, vlstnosti trojúhelníků Trojúhelník ABC je průnik polorovin ABC, BCA, CAB; přitom ody A, B, C jsou různé neleží v jedné příme. Trojúhelník ABC zpisujeme symoliky ABC. Symoliky píšeme:
Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu
Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je
4.4.3 Kosinová věta. Předpoklady:
443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější
Trigonometrie - Sinová a kosinová věta
Trigonometrie - Sinová kosinová vět jejih užití v Tehniké mehnie Dn Říhová, Pvl Kotásková Mendelu rno Perspektiv krjinného mngementu - inove krjinářskýh disipĺın reg.č. Z.1.7/../15.8 Osh 1 Goniometriké
( a) Okolí bodu
0..5 Okolí bodu Předpokldy: 40 Pedgogická poznámk: Hodin zjevně překrčuje možnosti většiny studentů v 45 minutách. Myslím, že nemá cenu přethovt do dlší hodiny, příkldy s redukovnými okolími nejsou nutné,
Křivkový integrál prvního druhu verze 1.0
Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm
Ur itý integrál. Úvod. Denice ur itého integrálu
V tomto lánku se budeme v novt ur itému integrálu, který dné funkci p i zuje íslo. My²lenk integrování pochází z geometrických poºdvk - zji² ování povrch, objem délek geometrických útvr. To znmená, ºe
Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz
PES Petriho sítě p. 1/34 Petriho sítě PES 2007/2008 Prof. RNDr. Miln Češk, CS. esk@fit.vutr.z Do. Ing. Tomáš Vojnr, Ph.D. vojnr@fit.vutr.z Sz: Ing. Petr Novosd, Do. Ing. Tomáš Vojnr, Ph.D. (verze 06.04.2010)
4. cvičení z Matematiky 2
4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y
Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení.
4. Booleov lger Booleov lger yl nvržen v polovině 9. století mtemtikem Georgem Boolem, tehdy nikoliv k návrhu digitálníh ovodů, nýrž jko mtemtikou disiplínu k formuli logikého myšlení. Jko příkld použijeme
Definice limit I
08 Definice limit I Předpokld: 006 Pedgogická poznámk: N úvod je třeb upozornit, že tto hodin je ze strn studentů snd nejvíce sbotovnou látkou z celé studium (podle rekcí 4B009) Jejich ochot brát n vědomí