4.3.3 Goniometrické nerovnice

Podobné dokumenty
4.3.2 Goniometrické nerovnice

4.3.3 Goniometrické nerovnice I

( x) ( ) ( ) { } Vzorce pro dvojnásobný úhel II. Předpoklady: Urči definiční obor výrazů a zjednoduš je. 2. x x x

( ) ( ) Vzorce pro dvojnásobný úhel. π z hodnot goniometrických funkcí. Předpoklady: Začneme příkladem.

Hledání úhlů se známou hodnotou goniometrické funkce

( ) ( ) Logaritmické nerovnice II. Předpoklady: 2924

4.3.1 Goniometrické rovnice I

4.3.1 Goniometrické rovnice

Použití substituce pro řešení nerovnic II

4.3.4 Základní goniometrické vzorce I

4.3.8 Vzorce pro součet goniometrických funkcí. π π. π π π π. π π. π π. Předpoklady: 4306

4.3.3 Základní goniometrické vzorce I

2.4.9 Rovnice s absolutní hodnotou I

Funkce tangens. cotgα = = Předpoklady: B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá

4.3. GONIOMETRICKÉ ROVNICE A NEROVNICE

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Grafy funkcí odvozených z funkcí sinus a cosinus II

Funkce kotangens

Grafy funkcí odvozených z funkcí sinus a cosinus I

7.5.3 Hledání kružnic II

2.4.9 Rovnice s absolutní hodnotou I

( ) ( ) ( ) ( ) Základní goniometrické vzorce III. Předpoklady: 4301, 4305

2.3.9 Lineární nerovnice se dvěma neznámými

GONIOMETRIE. 1) Doplň tabulky hodnot: 2) Doplň, zda je daná funkce v daném kvadrantu kladná, či záporná: PRACOVNÍ LISTY Matematický seminář.

4.3.2 Goniometrické rovnice II

2.7.3 Použití grafů základních mocninných funkcí

Funkce tangens. cotgα = = B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá.

Grafické řešení soustav lineárních rovnic a nerovnic

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE

Funkce Arcsin. Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: 4 je číslo, jehož druhá mocnina se rovná 4.

Kvadratické nerovnice Předpoklady: Př. 1: Úvaha: Pedagogická poznámka:

x 0; x = x (s kladným číslem nic nedělá)

[ 0,2 ] b = 2 y = ax + 2, [ 1;0 ] dosadíme do předpisu Soustavy lineárních nerovnic. Předpoklady: 2206

Vzorce pro poloviční úhel

III Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208

4. Určete definiční obor elementární funkce g, jestliže g je definována předpisem

Matematika pro všechny

Funkce kotangens. cotgα = = Zopakuj všechny části předchozí kapitoly pro funkci kotangens. B a

Řešené příklady ze starých zápočtových písemek

4.2.9 Vlastnosti funkcí sinus a cosinus

Logaritmická rovnice

sin 0 = sin 90 = sin 180 = sin 270 = sin 360 = sin 0 = cos 0 = cos 90 = cos 180 = cos 270 = cos 360 = cos 0 =

Nerovnice v součinovém tvaru, kvadratické nerovnice

Goniometrické rovnice

Určete a graficky znázorněte definiční obor funkce

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU

M - Příprava na 3. čtvrtletní písemnou práci

( ) ( ) ( ) Logaritmické nerovnice I. Předpoklady: 2908, 2917, 2919

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou

16. Goniometrické rovnice

Grafy funkcí s druhou odmocninou

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +,

III Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Součtové vzorce. π π π π. π π π. Předpoklady: není možné jen tak roznásobit ani rozdělit:

= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

4.3.7 Součtové vzorce. π π π π. π π π. Předpoklady: 4306

( ) ( )( ) ( x )( ) ( )( ) Nerovnice v součinovém tvaru II. Předpoklady: Př.

M - Kvadratické rovnice a kvadratické nerovnice

Cyklometrické funkce

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

Funkce arcsin. Některé dosud probírané funkce můžeme spojit do dvojic: 4 - je číslo, které když dám na druhou tak vyjde 4.

Nerovnice. Vypracovala: Ing. Stanislava Kaděrková

III Určování hodnot funkcí sinus a cosinus

Grafy relací s absolutními hodnotami

Nejprve si uděláme malé opakování z kurzu Množiny obecně.

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na pololetní písemku č. 1

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

Nerovnice a nerovnice v součinovém nebo v podílovém tvaru

Obsah. Metodický list Metodický list Metodický list Metodický list

Lineární funkce IV

Rovnice a nerovnice v podílovém tvaru

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost:

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou

ROVNICE A NEROVNICE. Lineární rovnice s absolutní hodnotou II. Mgr. Jakub Němec. VY_32_INOVACE_M1r0107

37. PARABOLA V ANALYTICKÉ GEOMETRII

GONIOMETRIE A TRIGONOMETRIE

Modelové úlohy přijímacího testu z matematiky

Goniometrické a hyperbolické funkce

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Absolutní hodnota I. π = π. Předpoklady: = 0 S nezápornými čísly absolutní hodnota nic nedělá.

2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I

Zadání. Goniometrie a trigonometrie

Funkce pro studijní obory

Požadavky k opravným zkouškám z matematiky školní rok

Analytická geometrie kvadratických útvarů v rovině

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

Požadavky k opravným zkouškám z matematiky školní rok

Parametrické systémy lineárních funkcí II

Lineární funkce, rovnice a nerovnice

Transkript:

4 Goniometrické nerovnice Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné Po vyřešení prvních čtyř příkladů nechávám studentům svobodu volby Při řešení nerovnic, které obsahují tg nebo cotg používáme grafy funkcí V této hodině se projeví, jak jsou na tom studenti opravdu s představami o zachycení goniometrických funkcí v jednotkové kružnici Pokud se objeví tyto problémy, je třeba nejdříve odstranit je a pak se teprve zabývat nerovnicemi Pedagogická poznámka: Připravená látka zaplňuje dvě vyučovací hodiny, v té první se řeší prvních šest příkladů, v té druhé zbytek Goniometrické funkce (zejména sinus a cosinu) mají něco společného s kvadratickou funkcí nejsou prosté řešení goniometrický nerovnic probíhá podobně jako řešení kvadratických nerovnic ve dvou krocích: vyřešíme rovnici kořeny získané v předchozím kroku využijeme k nakreslení obrázku nebo vynesení do grafu, podle kterého rozhodneme o řešení nerovnice Př : sin x Umíme vyřešit rovnici s pomocí obrázku sin x = Nakreslíme jednotkovou kružnici a vyřešíme nerovnost - S x π 5 x R Řešení rovnice x =, x = π - Na jednotkové kružnici hledáme čísla, pro která sin x mají y-ovou souřadnici větší (nebo rovnou) jsou výše (nebo stejně vysoko) než čísla vyhovující rovnici sin x =

- S x x R Řešením nerovnice jsou všechna čísla π 5 v intervalu ; π - Hodnoty se opakují s periodou π řešením je každý interval π 5 K = + k π; π + k π k Z π 5 + k π; π + k π Př : y = cos x cos x Kromě jednotkové kružnice využij i graf funkce Umíme vyřešit rovnici cos x = x x - S R 5 7 Řešení rovnice x = π, x = π - Na jednotkové kružnici hledáme čísla, pro která cos x mají x-ovou souřadnici menší (nebo rovnou) jsou více vlevo (nebo stejně vlevo) jako čísla vyhovující rovnici cos x =

x x - S R Řešením nerovnice jsou všechna čísla 5 7 v intervalu π ; π - Kontrola pomocí grafu funkce Do grafu vyznačíme hodnotu y = cos x y = : x x - Na ose x hledáme čísla, pro která rovny) cos x hodnoty funkce jsou menší (nebo jsou jsou níže (nebo stejně nízko) jako body přímky 5 7 Řešením nerovnice jsou všechna čísla v intervalu π π ; Hodnoty se opakují s periodou π řešením je každý interval 5 7 K = π + k π; π + k π k Z y = 5 7 π + k π; π + k π Pedagogická poznámka: U slabších studentů povoluji, aby ve všech následujících příkladech používali metodu, která je pro ně jednodušší

Př : sin x > Při řešení využij obrázek jednotkové kružnice - S x x R Základní řešení rovnice 4 5 x = π, x = π sin x = - Hledáme čísla, pro která sin x > mají y-ovou souřadnici větší než jednotkové kružnici výše než čísla vyhovující rovnici sin x = leží na - S x x R - Vybarvená čísla nemůžeme zapsat intervaly: 5 4 π ; π (v intervalu píšeme vždy nejdříve menší číslo) 4 5 π ; π (ten obsahuje mimo krajní body čísla, která nejsou řešením nerovnice) použijeme pro jeden z krajních bodů číslo, které není v intervalu 0;π ) dvě možnosti: 5 π π = π získáme interval 4 π ; π, 4

4 0 5 0 π + π = π získáme interval π ; π Oba předchozí intervaly jsou navzájem posunuté o π Hodnoty se opakují s periodou π řešením je každý interval 4 K = π + k π; π + k π k Z 4 π + k π; π + k π Př 4: cos x Při řešení využij graf funkce y = cos x π 7 Rovnice cos x = má v intervalu 0;π dvě řešení: x =, x = π 4 4 Nakreslíme graf funkce a zobrazíme do něj hodnotu 0,5-0,5 - Řešení v intervalu 0;π ) bychom museli zapsat pomocí dvou intervalů Zápis se značně zjednoduší, když vybereme čísla mimo interval 0;π ) : π 7 0; π;π 4 4 π π řešení pomocí intervalu kolem 0 ;, 4 4 7 9 řešení pomocí intervalu kolem π π ; π 4 4 Oba předchozí intervaly jsou navzájem posunuté o π π π Hodnoty se opakují s periodou π řešením je každý interval + k π; + k π 4 4 π π K = + k π ; + k π 4 4 k Z 5

Př 5: tg x > π π Rovnice tg x = má v intervalu ; jediné řešení: π x = Nakreslíme graf funkce y = tg x a zobrazíme do něj hodnotu - π π π π Řešení v intervalu ; můžeme zapsat jako ;, hodnoty funkce tg y = x se π π opakují s periodou π K = + k π; + k π k Z Př 6: cotg x Rovnice cotg x = má v intervalu ( 0;π ) jediné řešení: Nakreslíme graf funkce a zobrazíme do něj hodnotu x = π 4 6

4 - - - -4 Řešení v intervalu ( 0;π ) můžeme zapsat jako opakují s periodou π 0; π, hodnoty funkce y = cotg x se 4 K = 0 + k π; π + k π k Z 4 Pedagogická poznámka: Před řešením následujících příkladů je dobré zdůraznit dvě věci: jde o těžší příklady, které nemusí zvládnout každý (on je také zdaleka každý nestihne), k jejich řešení není třeba nic nového mimo využití postupů, které jsme používali už dříve u jiných typů rovnic Př 7: < sin x Problém: Nerovnice obsahuje dvě nerovnosti dvě možnosti řešení: vyřešíme každou nerovnost samostatně a výsledek určíme jako průnik obou řešení (musí platit obě nerovnosti současně) nevýhoda dvojí práce s kreslením grafu (nebo kružnice), 7

samostatně řešíme pouze rovnice sin x = a sin x =, získané úhly nakreslíme do jednoho obrázku, kde rovnou určíme řešení (rychlejší postup s menší pravděpodobností chyby) Základní řešení rovnic: 7 sin x = x = π, x = π (šestinové úhly v záporné polorovině), π sin x = x =, x4 = π (čtvrtinové úhly v kladné polorovině) 4 4 Do grafu vyznačíme přímky y =, y = a všechny čtyři určené hodnoty úhlů: x x4 x x - Na ose x hledáme čísla, pro která: sin x hodnoty funkce leží pod (nebo stejně nízko) přímkou sin x > hodnoty funkce leží nad přímkou y = y =, - x x x x4 x5 7 Řešením nerovnice jsou všechna čísla v intervalech π ; π 9 a ; 4 6 π π + π = π 6 4 4 Hodnoty se opakují s periodou π 7 9 K = π + k π; π + k π π + k π ; π + k π k Z 4 6 6 4 8

Př 8: π sin x > Problém: uvnitř sinu je složitější výraz substituce π Substituce: z = x nerovnice sin z > π Základní řešení rovnice: sin z = z =, z = π (třetinové úhly v kladné polorovině) Do grafu vyznačíme přímku y = a určené hodnoty úhlů z, z Na ose x hledáme čísla, pro která sin z > hodnoty funkce leží nad přímkou y = x x - π Řešením nerovnice jsou všechna čísla v intervalu ; π π Hodnoty se opakují s periodou π K = + k π; π + k π k Z Návrat k původní proměnné: (přepočítáme meze a periodu intervalů) π π π z = x = + k π z = x = π + k π π π π π π x = + k π / + x = π + k π / + x = π + k π / : x = π + k π / : π x = + k π x = π + k π 9 π K = π + k π ; + k π k Z 9 Pedagogická poznámka: Při substituci nepoužíváme standardní označení proměnné y, kvůli možnosti záměny s označením osy y v grafu Studenti samozřejmě budou y při substituci často používat, pokud se jim nezačne plést s označením osy, není to na závadu 9

Př 9: cos x > Problém: cos x je uvnitř absolutní hodnoty substituce Substituce: a = cos x nerovnice a = a 0 > Hledáme čísla vzdálená od nuly více než o platí y ; ; Přepíšeme interval hodnot a = cos x pomocí nerovnic: a = cos x ; ; a = cos x < nebo a = cos x > Získali jsme dvě nerovnice, každou vyřešíme zvlášť Protože stačí, aby nalezená hodnota x splňovala jednu z podmínek, získáme celkové řešení jako sjednocení a) cos x < Základní řešení rovnice: polorovině osy x) 5 7 cos x = x = π, x = π (šestinové úhly v záporné Do grafu vyznačíme přímku y = a určené hodnoty úhlů x, x Na ose x hledáme čísla, pro která cos x < hodnoty funkce leží pod přímkou y = x x - Řešením nerovnice jsou všechna čísla v intervalu 5 7 π K = π + k π ; π + k π k Z b) y = cos x > 5 7 π ; π, hodnoty se opakují s periodou 0

Základní řešení rovnice: polorovině osy x) π cos x = x =, x = π (šestinové úhly v kladné Do grafu vyznačíme přímku y = a určené hodnoty úhlů x, x Na ose x hledáme čísla, pro která cos x > hodnoty funkce leží nad přímkou y = x x - π π Řešením nerovnice jsou všechna čísla v intervalu ;, hodnoty se opakují s periodou π π π K = + k π ; + k π k Z 5 7 π π K = π + k π; π + k π + k π; + k π k Z Př 0: sin x Problém: sin x je uvnitř absolutní hodnoty substituce Substituce: y = sin x nerovnice a Nerovnici nemůže ihned interpretovat pomocí vzdálenosti obrazů bodů na číselné ose upravíme: a = a a / : a Hledáme čísla vzdálená od více než o (nebo přesně o) platí a ( ;0 ; ) Přepíšeme interval hodnot a = sin x pomocí nerovnic: a = sin x ;0 ; a = sin x 0 nebo a = sin x ( ) Získali jsme dvě nerovnice, každou vyřešíme zvlášť Protože stačí, aby nalezená hodnota x splňovala jednu z podmínek, získáme celkové řešení jako sjednocení

a) a = sin x 0 Základní řešení rovnice: sin x = 0 x = 0, x = π Do grafu vyznačíme přímku y = 0 a určené hodnoty úhlů x, x Na ose x hledáme čísla, pro která sin x 0 hodnoty funkce leží pod nebo na přímce y = 0 - x x Řešením nerovnice jsou všechna čísla v intervalu π;π, hodnoty se opakují s periodou π K = π + k π;π + k π k Z b) a = sin x π Základní řešení rovnice: sin x = x = Do grafu vyznačíme přímku y = a určenou hodnotu úhlu x Na ose x hledáme čísla, pro která sin x hodnoty funkce leží nad nebo na přímce y = - x π π Řešením nerovnice je číslo, hodnoty se opakují s periodou π K = + k π k Z π K = π + k π;π + k π + k π k Z Př : Petáková: strana 55/cvičení 6 a) b) e) f) strana 55/cvičení 7 a) b)

Shrnutí: Při řešení goniometrických nerovnic využíváme grafy goniometrických funkcí (nebo znázornění pomocí jednotkové kružnice) a řešení odpovídajících goniometrických rovnic