letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika

Podobné dokumenty
Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Základy teorie pravděpodobnosti

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová

PRAVDĚPODOBNOST A STATISTIKA

Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost

NÁHODNÁ VELIČINA. 3. cvičení

PRAVDĚPODOBNOST A STATISTIKA

JAK MODELOVAT VÝSLEDKY

Náhodné jevy. Teorie pravděpodobnosti. Náhodné jevy. Operace s náhodnými jevy

Pravděpodobnost a aplikovaná statistika

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X

a způsoby jejího popisu Ing. Michael Rost, Ph.D.

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

7. Rozdělení pravděpodobnosti ve statistice

Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

populace soubor jednotek, o jejichž vlastnostech bychom chtěli vypovídat letní semestr Definice subjektech.

Pravděpodobnost a statistika (BI-PST) Cvičení č. 4

Téma 22. Ondřej Nývlt

Náhodná veličina a rozdělení pravděpodobnosti

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X

Populace vs. data. popisná (deskriptivní) popis konkrétních dat. letní semestr

Pravděpodobnost a statistika

1 Pravděpodobnostní prostor

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika

Náhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek

8 Střední hodnota a rozptyl

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík

I. D i s k r é t n í r o z d ě l e n í

Diskrétní náhodná veličina. November 12, 2008

NÁHODNÁ VELIČINA. Podle typu výběrového prostoru rozlišujeme dva základní druhy NV Diskrétní (nespojitou) náhodnou veličinu Spojitou náhodnou veličinu

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která

p(x) = P (X = x), x R,

NMAI059 Pravděpodobnost a statistika

Náhodné (statistické) chyby přímých měření

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

Poznámky k předmětu Aplikovaná statistika, 4. téma

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Poznámky k předmětu Aplikovaná statistika, 4. téma

TEORIE PRAVDĚPODOBNOSTI. 2. cvičení

Cvičení ze statistiky - 5. Filip Děchtěrenko

Matematika III. 27. září Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

1. Statistická analýza dat Jak vznikají informace Rozložení dat

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)

Výběrové charakteristiky a jejich rozdělení

Tomáš Karel LS 2012/2013

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.

Vzorová písemka č. 1 (rok 2015/2016) - řešení

Chyby měření 210DPSM

Náhodný vektor a jeho charakteristiky

Definice spojité náhodné veličiny zjednodušená verze

Náhodné chyby přímých měření

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

, 1. skupina (16:15-17:45) Jméno: se. Postup je třeba odůvodnit (okomentovat) nebo uvést výpočet. Výsledek bez uvedení jakéhokoliv

Pravděpodobnost je. Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava

2. přednáška - PRAVDĚPODOBNOST

Úvodní informace. 17. února 2018

Diskrétní matematika. DiM /01, zimní semestr 2016/2017

Základy teorie pravděpodobnosti

Bayesovské metody. Mnohorozměrná analýza dat

5. Náhodná veličina. 2. Házíme hrací kostkou dokud nepadne šestka. Náhodná veličina nabývá hodnot z posloupnosti {1, 2, 3,...}.

Diskrétní matematika. DiM /01, zimní semestr 2018/2019

0.1 Funkce a její vlastnosti

0.1 Úvod do matematické analýzy

10. N á h o d n ý v e k t o r

Matematika (KMI/PMATE)

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

III. Úplná pravděpodobnost. Nezávislé pokusy se dvěma výsledky. Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.

Pravděpodobnost a její vlastnosti

Matematika I (KMI/PMATE)

Cvičení 5. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

AVDAT Náhodný vektor, mnohorozměrné rozdělení


Přijímací zkouška na navazující magisterské studium 2017

PŘEDNÁŠKA 2 POSLOUPNOSTI

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

Algoritmy komprese dat

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení

Intuitivní pojem pravděpodobnosti

Interpolace, ortogonální polynomy, Gaussova kvadratura

Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1

IB112 Základy matematiky

Metody výpočtu limit funkcí a posloupností

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

MATEMATICKÁ STATISTIKA - XP01MST

Transkript:

Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 1 1 Založeno na materiálech doc. Michala Kulicha

veličina Definice Funkci X, která zobrazuje elementární jevy ω Ω na reálná čísla, nazýváme náhodná veličina. veličina X číselně vyjádřený výsledek náhodného pokusu předem neznáme její hodnotu, ale víme jakých hodnot může nabývat a s jakou pravděpodobností každému elementárnímu jevu ω přiřadí reálné číslo převádí elementární jevy (abstraktními objekty) na čísla její hodnota X(ω) se liší podle toho, který elementární jev ω Ω nastal

veličina příklad Příklad (Urna) Z urny, v níž je 1 bílá a 9 černých kouĺı, náhodně vytahujeme koule (a hned zase vracíme) tak dlouho, dokud nevytáhneme bílou kouli. Máme Ω = {všechny posloupnosti tažených kouĺı končící bílou}

veličina příklad Příklad (Urna) Z urny, v níž je 1 bílá a 9 černých kouĺı, náhodně vytahujeme koule (a hned zase vracíme) tak dlouho, dokud nevytáhneme bílou kouli. Máme Ω = {všechny posloupnosti tažených kouĺı končící bílou} Můžeme zavést například náhodné veličiny: X(ω) = celkový počet tažených kouĺı Y(ω) = počet tažených černých kouĺı Dozvíme-li se, které ω nastalo, tj. jaká byla posloupnost tažených kouĺı, známe okamžitě i hodnoty X a Y.

veličina další příklady počet nehod na dálnici D1 ve vybraný den počet gólů v zápase počet správně zodpovězených otázek v testu výška náhodně vybraného člověka (podobně jeho věk, výška, IQ...) délka života náhodně vybraného člověka životnost výrobku rychlost náhodně vybrané molekuly množství srážek v daný den...

veličina Značení Mějme náhodnou veličinu X : Ω R. Pak můžeme uvažovat pravděpodobnost náhodného jevu, že náhodná veličina nabude určité hodnoty, padne do určitého rozmezí atd. Např. P[X = x] P({ω Ω : X(ω) = x}) pro x R, P[X x] P({ω Ω : X(ω) x}) pro x R, P[X B] P({ω Ω : X(ω) B}) pro B R a tak podobně.

veličina příklad děti Příklad (Děti) Uvažujme rodinu, která má tři děti. Zaved me náhodné veličiny X určuje počet dcer a Y je počet starších bratrů nejmladšího dítěte. Prozkoumejme náhodné veličiny X a Y.

veličina příklad děti Příklad (Děti) Uvažujme rodinu, která má tři děti. Zaved me náhodné veličiny X určuje počet dcer a Y je počet starších bratrů nejmladšího dítěte. Prozkoumejme náhodné veličiny X a Y. Prostor elementárních jevů Ω je dán výčtem pohlaví dětí od nejstaršího do nejmladšího (uspořádané trojice). Ω = {SSS,SSD,SDS,DSS,DDS,DSD,SDD,DDD} (S je syn, D je dcera).

veličina příklad děti pokrač. Máme: ω X(ω) Y(ω) SSS 0 2 SSD 1 2 SDS 1 1 DSS 1 1 DDS 2 0 DSD 2 1 SDD 2 1 DDD 3 0 Lze předpokládat, že všechny ω jsou stejně pravděpodobné.

veličina příklad děti pokrač. veličina X může nabývat hodnot 0,1,2,3, a to s následujícími pravděpodobnostmi x 0 1 2 3 P(X = x) 1 8 3 8 3 8 1 8 Výpočet: P[X = 0] = {SSS} 8 atd. = 1 {SSD,SDS,DSS}, P[X = 1] = = 3 8 8 8 veličina Y může nabývat hodnot 0,1,2, a s pstmi y 0 1 2 P(Y = y) 1 4 1 2 1 4

veličina příklad děti pokrač. Podobně by nás mohla zajímat pravděpodobnost, s jakou je v rodině nejvýše jedna dcera v rodině je více než tři dcery počet starších bratrů nejmladšího je menší než čtyři

veličina příklad děti pokrač. Podobně by nás mohla zajímat pravděpodobnost, s jakou je v rodině nejvýše jedna dcera v rodině je více než tři dcery počet starších bratrů nejmladšího je menší než čtyři P[X 1] = {SSS,SSD,SDS,DSS} 8 =P(X = 0)+P(X = 1) P[X > 3] = 8 = 0 P[Y < 4] = Ω 8 = 8 8 = 1 = 4 8 = 1 2

Příklad Příklad V šupĺıku jsou tři páry ponožek ze stejného materiálu: zelené, modré a bílé. Po tmě náhodně vyberete dvě ponožky a aniž byste ověřili jejich barvu, vyrazíte v nich do školy. Necht X značí počet obutých bílých ponožek. Určete, jakých hodnot X nabývá a s jakými pravděpodobnostmi.

Příklady náhodných veličin počet nehod na dálnici D1 ve vybraný den počet gólů v zápase počet správně zodpovězených otázek v testu výška náhodně vybraného člověka (podobně jeho věk, výška, IQ...) délka života náhodně vybraného člověka životnost výrobku rychlost náhodně vybrané molekuly množství srážek v daný den... různé druhy náhodných veličin

Diskrétní náhodná veličina Terminologie Diskrétní náhodná veličina je taková náhodná veličina, která může nabývat jen konečně nebo spočetně mnoha různých hodnot. Nejčastější příklady počty (četnosti) nějakých událostí (počet gólů v zápase, počet narozených dívek, počet dopravních nehod,...) indikátory nějakého jevu (ano/ne, nastal/nenastal, pravda/lež), nebo indikátory členství v jedné z předem daných skupin (muž/žena, vzdělání základní/středoškolské/vysokoškolské, bydliště Praha/Ústecko/Pardubicko/...)

veličina příklad výška Příklad (Výška) Uvažujme náhodnou veličinu X, která udává výšku náhodně vybraného člověka. Jak si ji můžeme představit jako zobrazení Ω R?

veličina příklad výška Příklad (Výška) Uvažujme náhodnou veličinu X, která udává výšku náhodně vybraného člověka. Jak si ji můžeme představit jako zobrazení Ω R? Prostor elementárních jevů Ω je dán všemi faktory, které mohly ovlivnit výšku všech lidí zděděné geny, prodělané nemoci, úrazy,... všechny faktory, které mohly ovlivnit měření výšky nepřesnosti měření, jak se kdo nahrbil,... všechny faktory, které mohly vést k tomu, že právě onen člověk byl náhodně vybrán. Elementární jevy stanoveny tak, abychom z nich mohli určit změřenou výšku nelze je rozumně popsat je jich nespočetně mnoho.

veličina příklad výška na Ω použijeme obecnou (axiomatickou) definici pravděpodobnosti pravděpodobnost P (nám neznámá) udává P(A) všech jevů A Ω. Náhodnou veličinu X jakožto zobrazení z Ω do R nedokážeme popsat (nebot nedokážeme popsat Ω) to ale nevadí, nebot dokážeme pozorovat změřenou výšku. Jakých hodnot může nabývat změřená výška? libovolné kladné reálné číslo (pravděpodobnosti hodnot nad 250 cm považujeme za zanedbatelné) nelze mluvit o pravděpodobnost jednotlivých hodnot (jsou to reálná čísla je jich nespočetně)

Spojitá náhodná veličina Náhodnou veličinu uvažovanou v předchozím příkladě nazýváme veličinou spojitou. Terminologie Spojitá náhodná veličina je taková náhodná veličina, která může nabývat nespočetně mnoha různých hodnot (většinou interval reálných čísel, nebo jakékoli reálné číslo), přičemž každá konkrétní hodnota má nulovou pravděpodobnost. Příklady výsledek nějakého měření, který může nabývat velkého počtu hodnot uvnitř nějakého konečného či nekonečného intervalu výška, váha, hladina cholesterolu v krvi, věk v okamžiku smrti, doba do vyhoření žárovky, rychlost molekuly plynu

Poznámky příklad s dětmi vs. příklad s výškou: u počtu dětí jsme mohli použít klasickou definici psti, u výšky nikoliv klasickou definici lze použít u diskrétních veličin, a to pouze někdy většinou musíme pracovat s obecnou axiomatickou definicí pravděpodobnosti teoreticky pracujeme s prostorem elementárních jevů Ω (těžko popsatelný) na němž je zavedena nějaká (neznámá) pravděpodobnost P v praxi prostor Ω ale nemusíme znát, protože nám ho náhodná veličina převádí na reálná čísla

Diskrétní vs. spojité veličiny Diskrétní náhodná veličina nabývá konečně nebo spočetně mnoha hodnot x 1,x 2,... pravděpodobnosti P(X = x 1 ), P(X = x 2 ),... příklady: počty případů, indikátory jevů apod. Spojitá náhodná veličina nabývá hodnot z nějakého intervalu v R (nespočetně) nelze mluvit o pravděpodobnostech jednotlivých hodnot lze uvažovat pst, že X leží v nějakém intervalu, např (a,b) popisujeme tzv. hustotou f

Diskrétní vs. spojité veličiny Diskrétní náhodná veličina nabývá konečně nebo spočetně mnoha hodnot x 1,x 2,... pravděpodobnosti P(X = x 1 ), P(X = x 2 ),... příklady: počty případů, indikátory jevů apod. Spojitá náhodná veličina nabývá hodnot z nějakého intervalu v R (nespočetně) nelze mluvit o pravděpodobnostech jednotlivých hodnot lze uvažovat pst, že X leží v nějakém intervalu, např (a,b) popisujeme tzv. hustotou f Poznámka Existuje i něco mezi diskrétní a spojitou veličinou.

Rozdělení náhodné veličiny pravděpodobnost P na neznámém prostoru Ω dokážeme převést na funkci P X na R P X přiřazuje podmnožinám reálných čísel B R pravděpodobnost, že náhodná veličina X do nich padne příklad: náhodně vybraný člověk bude mít výšku mezi 165 a 175 cm P X ((165,175)) Pro každou B R totiž máme P X (B) = P[X B] = P{ω Ω : X(ω) B}. Funkci P X nazýváme náhodné veličiny X. Například můžeme uvažovat P X (,180 cm = P[X (,180 cm ] = P[X 180 cm].

Rozdělení náhodné veličiny Definice Rozdělením náhodné veličiny X definované na prostoru Ω s pravděpodobností P rozumíme předpis, který jednoznačně určuje všechny pravděpodobnosti typu P X (B) = P[X B] = P{ω Ω : X(ω) B} pro kteroukoli podmnožinu B R.

Rozdělení náhodné veličiny Rozdělení náhodné veličiny X jednoznačně určuje jakých hodnot může X nabývat a s jakými pravděpodobnostmi (jak často) Lze jej popsat několika různými způsoby ( předpisy ): distribuční funkcí u diskrétní veličiny pravděpodobnostmi P(X = x i ) u spojité veličiny hustotou

Význam náhodných veličin Náhodné veličiny převádějí abstraktní a většinou neznámou Ω na čísla pracuje se s nimi lépe slouží jako model pro naše empirická pozorování (data) v teorii pravděpodobnosti s nimi pracujeme teoreticky jejich považujeme za dané a zkoumáme jejich vlastnosti ve statistice se snažíme cosi usoudit o jejich neznámém na základě konkrétních realizací

Význam náhodných veličin příklad Necht X je IQ studentů prvního ročníku PřF teorie pravděpodobnosti předpokládá konkrétní, např. normální N(120, 20) zkoumá vlastnosti jako očekávaná hodnota, variabilita, pravděpodobnost výskytu génia, atd. na základě konkrétních pozorování (měření IQ u konkrétní skupiny studentů) se snaží odhadnout vhodné odhady teoretických vlastností, testy hypotéz Ted ale pokračujeme výkladem teorie pravděpodobnosti.

funkce Definice funkce F X náhodné veličiny X je funkce R 0,1 definovaná předpisem F X (x) = P[X x] pro x (, ). hodnota F X (x) je pst, že X nepřekročí x distribuční funkce jednoznačně určuje X známe-li F X (x) pro každé x dokážeme spočítat P[X B] pro libovolnou B R. např. P(X (a,b]) = F(b) F(a)

Vlastnosti distribuční funkce Věta funkce F X náhodné veličiny X 1 je neklesající; tj. x 1 < x 2 F(x 1 ) F(x 2 ) 2 je zprava spojitá; 3 F X (x) se bĺıží k 0 pro x ; 4 F X (x) se bĺıží k 1 pro x ; 5 F X (x) je konstantní na intervalu (a,b) právě, když P[X (a,b)] = 0.

funkce diskrétní veličiny Necht X je diskrétní náhodná veličina nabývající hodnot x 1 < x 2 < < x k s pravděpodobnostmi po řadě p 1,p 2,...,p k (musí platit k j=1 p j = 1 a p i (0,1)). Pak její distribuční funkci F X lze vyjádřit ve tvaru F X (x) = k:x k x p k a platí pro ni: 1 má skoky o velikosti p j v bodech x j, j = 1,...,k; 2 je konstantní v intervalech (x j,x j+1 ), j = 1,...,k 1; 3 má hodnotu 0 pro x < x 1 ; 4 má hodnotu 1 pro x x k.

Příklad děti Příklad (Děti) Uvažujme znovu rodinu s třemi dětmi a náhodnou veličinu X (počet dcer). Zkonstruujme distribuční funkci pro X. X je diskrétní, nabývá hodnot 0,1,2,3 s pravděpodobnostmi po řadě 1 8, 3 8, 3 8, 1 8.

Příklad děti Příklad (Děti) Uvažujme znovu rodinu s třemi dětmi a náhodnou veličinu X (počet dcer). Zkonstruujme distribuční funkci pro X. X je diskrétní, nabývá hodnot 0,1,2,3 s pravděpodobnostmi po řadě 1 8, 3 8, 3 8, 1 8. funkce má skoky v bodech 0,1,2,3 o velikostech 1 8, 3 8, 3 8, 1 8, je nulová pro x < 0 a jednotková pro x 3.

Příklad děti Obrázek: funkce počtu dcer F(x) 0.0 0.2 0.4 0.6 0.8 1.0 2 1 0 1 2 3 4 5 x

Příklad Maxwellovo Příklad (Maxwellovo ) Maxwellovo udává rychlosti V částic ideálního plynu (rychlost = spojitá náhodná veličina) v trojrozměrném prostoru. Jeho distribuční funkce má tvar F V (v) P[V v] = 1 2π v 2 /a 2 0 z e z/2 dz, kt kde a =, k je Boltzmannova konstanta, T je teplota [K] m a m je hmotnost částice [kg].

Příklad Maxwellovo Obrázek: Maxwellovo : distribuční funkce rychlosti molekuly kysĺıku při 25 1.0 0.8 F(v) [s/m] 0.6 0.4 0.2 0.0 0 200 400 600 800 1000 v [m/s]

Použití distribuční funkce Tvrzení Necht F X je distribuční funkce náhodné veličiny X. Pak platí 1 je-li (a,b] interval, pak P[X (a,b]] = P[X b] P[X a] = F X (b) F X (a), neboli pravděpodobnost, že X padne do určitého intervalu, je rovna rozdílu hodnot distribuční funkce v krajních bodech tohoto intervalu. 2 P[X = b] je dána velikostí skoku funkce F X v bodě b, tj. P[X = b] = lim hց0 P[X (b h,b ] = F X (b) lim hց0 F X (b h) (Je-li F v bodě b spojitá, pak P[X = b] = 0].

Příklad Maxwellovo Obrázek: Určení pravděpodobnosti daného rozmezí rychlostí molekuly z distribuční funkce Maxwellova (O 2, 25 ) 1.0 0.8 F(v) [s/m] 0.6 0.4 P[400<V<600] = 0.36 0.2 0.0 0 200 400 600 800 1000 v [m/s]

Hustota Necht X je spojitá náhodná veličina. Pak její distribuční funkce je spojitá a také diferencovatelná. Definice Pro spojitou náhodnou veličinu X s distribuční funkcí F X existuje funkce f X taková, že F X (x) = x f X (t)dt. Funkci f X nazýváme hustota náhodné veličiny X.

Hustota Necht X je spojitá náhodná veličina. Pak její distribuční funkce je spojitá a také diferencovatelná. Definice Pro spojitou náhodnou veličinu X s distribuční funkcí F X existuje funkce f X taková, že F X (x) = x f X (t)dt. Funkci f X nazýváme hustota náhodné veličiny X. Platí f X (x) = d dx F X(x) = F X (x), tj. hustota je derivací distribuční funkce (a naopak, distribuční funkce je primitivní funkcí k hustotě).

Hustota f(x) 0 1 Plocha: F(x 0 ) x 0 Distr. funkce 1 F(x 0 ) 0 x 0

Vlastnosti hustoty Máme náhodnou veličinu X s hustotou f X. Pak platí Věta 1 f X (x) 0 pro každé x R; 2 pro interval (a,b) platí P[X (a,b)] = P[a < X < b] = b a 3 f X (x) = 0 pro všechna x (a,b) právě když P[X (a,b)] = 0; 4 f X (x)dx = 1. f X (x)dx;

Vlastnosti hustoty Poznámka Předchozí věta říká: 1 hustota je nezáporná; 2 pravděpodobnost, že X padne do určitého intervalu, je dána plochou pod hustotou mezi krajními body intervalu; 3 hustota je na daném intervalu nulová právě když X do tohoto intervalu nemůže padnout; 4 celková plocha pod hustotou je rovna jedné.

Interpretace hustoty Pravděpodobnost, že spojitá náhodná veličina X padne do úzkého intervalu o délce h kolem bodu x: P[x h/2 < X < x+h/2] = F X (x+h/2) F X (x h/2) hf X (x) Tato aproximace funguje, pokud je h natolik malé, že se hustota f X na intervalu [x h/2,x +h/2] příliš nemění. je-li h malé, pak hf X (x) aproximuje pravděpodobnost, že X padne do intervalu x ±h/2 hodnota f X (x) ukazuje, jak často X padá do úzkého okoĺı bodu x, tj. jak je pravděpodobné, že X nabyde hodnoty v malém okoĺı x

Příklad Maxwellovo Příklad (Hustota Maxwellova ) Hustota náhodné veličiny V s Maxwellovým m (rychlost molekuly ideálního plynu) je dána vzorcem f V (v) = 2 a 3 2π v2 e v 2 2a 2 kt pro v > 0 (f V (v) = 0 pro v < 0), kde a = m, k je Boltzmannova konstanta, T je teplota [K] a m je hmotnost molekuly [kg].

funkce a hustota Maxwellova Obrázek: funkce a hustota rychlosti molekuly O 2 (25 ). F(v) 1.00 0.86 0.50 Distr. funkce 0.25 0.00 0.0020 0 300 650 900 v [m/s] Hustota 0.0015 f(v) Plocha = 0.86 0.0005 0.0000 0 300 650 900

Příklad Maxwellovo Obrázek: Určení pravděpodobnosti daného rozmezí rychlostí molekuly z hustoty Maxwellova (O 2, 25 ) 0.0020 0.0015 f(v) Plocha 0.0005 = 0.46 0.0000 0 200 400 700 900 v [m/s]

Rozdělení diskrétní veličiny U diskrétní veličiny X nemůžeme definovat hustotu jakožto derivaci distribuční funkce, ale místo toho specifikujeme: 1 množinu navzájem různých hodnot {x j,j = 1,2,...} jichž X může nabývat (nejvýše spočetná, může být konečná); 2 pravděpodobnosti p 1,p 2,... s nimiž X tyto hodnoty nabývá, tj. Musí platit j=1 p j = 1. p j = P[X = t j ], j = 1,2,...

Příklad diskrétní veličiny Obrázek: Rozdělení diskrétní veličiny P[X=k] 0.00 0.05 0.10 0.15 0.20 0.25 0 2 4 6 8 10 k