44 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější úhel Jednu z nih musíme znát druhou dopočítáváme V přípdě že známe dv úhly můžeme dopočítt i třetí do sinové věty ez jedné dvojie strn-protější úhel počítt pomoí sinové věty nemůžeme všehny prvky trojúhelníku ztím nedokážeme dopočítt když známe všehny tři strny žádný úhel dvě strny úhel proti třetí strně Pro řešení úloh neřešitelnýh pomoí sinové věty existuje vět kosinová Př Njdi v tulkáh znění kosinové věty s její pomoí vyřeš následujíí příkld V trojúhelníku urči zývjíí strny úhly je-li dáno = 43 ; = 3 ; γ = 57 3' Kosinová vět je uveden v tulkáh v části se vzori v kpitole o plnimetrii goniometrii n strně 35 v tomto znění = + osα Ve vzori z tulek se vyskytuje úhel α který neznáme určuje se strn kterou známe musíme vzore přepst pro nše zdání Dvě možnosti Pomoí význmu strn úhlů = + osα - strnu určíme pomoí zývjííh strn protějšího úhlu (oě zývjíí strny můžeme ve vzori liovolně změňovt) strnu určíme tké pomoí zývjííh strn ( ) protějšího úhlu γ = + osγ - do tohoto vzore již můžeme dosdit Pomoí shémt pro yklikou záměnu Od strny se ke strně dostneme dvojitým posunutím ve směru šipek Ze vzore = + osα získáme = + osγ Určíme strnu = + osγ osγ = + = + = 37 43 3 43 3os 57 3' Dlší úhly yhom mohli určit pomoí kosinové věty le jednodušší ude použití věty sinové (snzší doszení) kterou můžeme použít protože už známe jednu dvojii strn-protější úhel Určíme úhel α Určíme úhel β
= = sin γ sin γ 43 = sin 57 3' 37 α = 77 53' α + β + γ = 8 β = 8 α + γ β = 8 ( 77 53' + 57 3' ) β = 44 36' V trojúhelníku pltí = 43 = 3 = 37 α = 77 53' β = 44 36' γ = 57 3' Př 3 Zpiš kosinovou větu ve všeh třeh vrintáh (pro strny ) Kosinová vět umožňuje určit strnu čtvere pomoí zývjííh strn protějšího úhlu pro strnu (zývjíí strny protější úhel α ) = + osα pro strnu (zývjíí strny protější úhel β ) = + os β pro strnu (zývjíí strny protější úhel γ ) osγ = + Poznámk Stejný výsledek získáme i pomoí shémt pro yklikou záměnu Pro kždý trojúhelník pltí = + osα = + os β = + osγ Př 4 Z vět pro prvoúhlý trojúhelník njdi tkovou která má vzth ke kosinové větě Urči tento vzth Kosinová vět připomíná větu Pythgorovu = + osγ x = + Rozdíl je v posledním členu který u Pythgorovy věty hyí Zjistíme si hodnotu tohoto členu pro prvoúhlý trojúhelník = + strn je přepon γ = 9 Dosdíme do kosinové věty = + osγ = + os 9 = + = + Kosinová vět přešl do věty Pythgorovy Pythgorov vět je speiální přípd věty kosinové pro prvoúhlý trojúhelník Kosinová vět je zoeněním věty Pythgorovy pro oený trojúhelník Dodtek Předhozí příkld můžeme ještě rozvinout následujíí úvhou Pro prvoúhlý trojúhelní pltí = + γ = 9
Zvětšíme úhel γ tk y pltilo 9 < γ < 8 Pro výpočet musíme použít kosinovou větu = + Ve vzori přiyl výrz osγ osγ protože pro γ ( 9 ;8 ) pltí os γ < výrz osγ je kldný vyjde větší než u prvoúhlého trojúhelníku To smé npoví orázek ve kterém poneháme strny zvětšíme úhel γ Zmenšíme úhel γ tk y pltilo < γ < 9 Pro výpočet musíme použít kosinovou větu = + Ve vzori přiyl výrz osγ osγ protože pro γ ( ;9 ) pltí os γ > výrz osγ je záporný vyjde menší než u prvoúhlého trojúhelníku To smé npoví orázek ve kterém poneháme strny zmenšíme úhel γ Př 5 Trojúhelník má délky strn 4 5 6 Urči velikosti jeho vnitřníh úhlů Oznčíme si strny liovolným způsoem npříkld = 4 = 5 = 6 Pomoí kosinové věty můžeme určit liovolný úhelnpříkld úhel α = + osα osα = + + 5 + 6 4 osα = = = 75 α = 4 5' 5 6 Dlší úhly yhom mohli určit pomoí kosinové věty le jednodušší ude použití věty sinové (snzší doszení) kterou můžeme použít protože už známe jednu dvojii strn-protější úhel Určíme úhel γ 6 = sin γ = = sin 4 5' = 99 sinγ 4 γ = 8 49' γ = 8 γ = 8 8 49' = 97 ' 3
Dopočítáme úhel β α + β + γ = 8 β = 8 α + γ β = 8 ( 4 5' + 8 49' ) = 55 46' V trojúhelníku pltí = 4 = 5 6 Dopočítáme úhel β α + β + γ = 8 β = 8 α + γ β = 8 4 5' + 97 ' = 4 4' Strn je větší než strn proto i úhel β musí ýt větší než úhel α toto není řešení zdného příkldu = α = 4 5' β = 55 46' γ = 8 49' Důkz kosinové věty ude mít opět tři části pro různé druhy trojúhelníků udeme dokzovt tvr = + osα ostroúhlý trojúhelník v Z prvoúhlého trojúhelníku víme = + Výrz n prvé strně musíme npst pomoí α Určíme pltí = z prvoúhlého trojúhelníku osα = = osα tedy os = α Určíme z prvoúhlého trojúhelníku tedy = Dosdíme = = sin = + = + osα = sin α + osα + os α = = sin α + os α + osα = sin α + os α + osα = + osα = + osα prvoúhlý trojúhelník Už máme dokázáno v úvze o porovnání Pythgorovy věty kosinové věty 3 tupoúhlý trojúhelník α 4
v Z prvoúhlého trojúhelníku víme = + Výrz n prvé strně musíme npst pomoí α Určíme pltí = + z prvoúhlého trojúhelníku os ( π α ) = = os( π α ) Pomoí součtovýh vzorů os π α = osπ osα + sinπ sin = osα + sin = osα = tedy ( α ) osα = + = + os = osα Určíme z prvoúhlého trojúhelníku sin ( π α ) = = sin ( π α ) Pomoí součtovýh vzorů sin π α = sinπ osα osπ sin = osα sin = tedy = Dosdíme = + = + osα = sin α + osα + os α = = sin α + os α + osα = sin α + os α + osα = + osα = + osα Př 6 Petáková strn 49/vičení 76 ) ) ) strn 49/vičení 8 strn 49/vičení 86 ) Shrnutí Kosinová vět je zoeněním věty Pythgorovy 5