PŘÍKLADY PRŮBĚHŮ VNITŘNÍCH SIL N,T,M NA NOSNÍCÍCH 1. Prostý nosník zatížený osamělými silami (břemeny) Vykreslete průběhy vnitřních sil N, T a M.

Rozměr: px
Začít zobrazení ze stránky:

Download "PŘÍKLADY PRŮBĚHŮ VNITŘNÍCH SIL N,T,M NA NOSNÍCÍCH 1. Prostý nosník zatížený osamělými silami (břemeny) Vykreslete průběhy vnitřních sil N, T a M."

Transkript

1 PŘÍKLDY PRŮBĚHŮ VNIŘNÍCH SIL N,, N NOSNÍCÍCH. Prostý nosník ztížený osměými simi (řemeny) Vykresete průěhy vnitřních si N,.,) N v ceém úseku, ) N v ceém úseku F F,) N v ceém úseku F F F F

2 ,) použit výpočet zprv (postupuje se od prvé podpory doev) N v ceém úseku pode tuky 6.4. (viz skript) pro ztížení nuovým spojitým ztížením střednice: průěh je konstntní, průěh ineární (prvního stupně). Pooh neezpečného průřezu: unkce posouvjící síy mění znménko v odu, v tomto místě ude mimání ohyový moment m V místech, kde půsoí osměá sí má posouvjící sí skok (nespojitost), který se rovná veikosti půsoící síy. Ohyový moment má v těchto odech zom.

3 . Prostý nosník ztížený jedním osměým řemenem Vypočítejte průěhy vnitřních si jko unkci déky střednice vykresete je. Rekce B Vnitřní síy:, c) (úsek končí těsně před půsoištěm síy F) N ( ) ( ) F F c c ( ) F c pro F F c / 4 pro

4 c, N ) ( ) ( ) F F F F F F c F c F F F c 4 F F ( ) pro / c pro Pode tuky 6.4. (viz skript) pro ztížení nuovým spojitým ztížením střednice: průěh je konstntní, průěh je ineární (prvního stupně) Pooh neezpečného průřezu: unkce posouvjící síy mění znménko v odu c, v tomto místě ude mimání ohyový moment c m c

5 . Prostý nosník s rovnoměrným spojitým ztížením Vypočítejte průěhy vnitřních si jko unkci déky střednice vykresete je. Rekce: B q Vnitřní síy:, ) (úsek končí těsně před půsoištěm rekce B při výpočtu zev ) N ( ) q q q q pro q ( ) ( ) q q q ( ) q ( ) pro

6 Pro ztížení konstntním spojitým ztížením střednice: průěh je ineární (prvního stupně), průěh je kvdrtický (druhého stupně) Pooh neezpečného průřezu: nuová posouvjící sí q ( ) q je pooh neezpečného průřezu mimání ohyový moment v neezpečném průřezu q ( ) q m q 8

7 4. Konzo s rovnoměrným spojitým ztížením Vypočítejte průěhy vnitřních si jko unkci déky střednice vykresete je. Výpočet vnitřních n konzoe je nejvhodnější provádět ze strny voného konce. V tom přípdě není tře počítt rekce ve vetknutí konzoy. ) ( ) ( ) q, N ( ) q Pro ztížení konstntním spojitým ztížením střednice: průěh je ineární (prvního stupně), průěh je kvdrtický (druhého stupně) pro q pro q pro q pro

8 5. Konzo ztížená osměým řemenem n konci vyožení Vypočítejte průěhy vnitřních si jko unkci déky střednice vykresete je. Budeme postupovt výpočtem zprv, v souřdné soustvě s osou orientovnou zprv doev. ) ( ) ( ) F ( ) F, N po ceé déce pro F pro Pro ztížení nuovým spojitým ztížením střednice: průěh je konstntní, průěh ineární (prvního stupně)

9 6. Prostý nosník s trojúheníkovým spojitým ztížením Vypočítejte průěhy vnitřních si jko unkci déky střednice vykresete je. Náhrdní řemeno F rekce z momentové podmínky rovnováhy k odu : F 6 Rekce B ze součtové podmínky rovnováhy: + F B F B 6

10 Výpočet vnitřních si: Náhrdní řemeno (osh ztěžovcího trojúheník o strnách ( ) ) ( ) ( ) F Posouvjící sí ( ) ( ) F 6 ( ) 6 pro () B 6 pro Ohyový moment ( ) ( ) ( ) F

11 Z podmínky nuové posouvjící síy se určí pooh neezpečného průřezu: ( ) &, imání ohyový moment v neezpečném průřezu (,557) m (,577),577,

12 7. Nosník s převisým koncem q 4 kn/m 45 o 6 o y F8 kn q 5 kn/m,5,5 B [m] knm Postup řešení: ) Šikmé spojité ztížení rozožíme n sožky spojitého ztížení ve směru střednice (s indeem ) ve směru komém n střednici (s indeem y). q o q cos45 4,,77,8 kn/m q y o q sin 45 4,,77,8 kn/m

13 q 4 kn/m 45 o 6 o y F8 kn q 5 kn/m,5,5 B [m] knm ) Sestvením podmínek rovnováhy vypočteme rekce nosníku v podporách.,8 8 cos6, 66 kn y 6,8 7 8sin 6 4,5 5,5 + y 6 9,6,8,5 + y 5, kn B 6 5 4,5 8sin 6,5 +,8 B 6 67,5,9 + 5,66 B, 7 kn

14 q 4 kn/m 45 o 6 o y F8 kn q 5 kn/m,5,5 B [m] knm Kontro (nepoužitou součtovou podmínkou rovnováhy ve směru y): o y + B q y F sin 6 q? 5, +,7,8 8,866 5?

15 q 4 kn/m 45 o 6 o y F8 kn q 5 kn/m,5,5 B [m] knm ) Výpočet vnitřních si n mezích intervů: ), N N,8 5,66 kn,8 5,66 kn,8 5,66 kn ), N 5,66 +,66 4 kn N 5,66 + 5, 9,56 kn 5,66 knm,8,5 + 5,,5 4,5 +,8 8,68 knm

16 q 4 kn/m 45 o 6 o y F8 kn q 5 kn/m,5,5 B [m] knm, N cos6 kn N 9,56 8 sin 6,6 kn 8,68 knm, , 8 sin 6,5, ,66,9,6 knm, ) N N,6 kn,7 kn knm +,7 5,5 + 7,,5,6 knm V úseku, ) mění posouvjící sí znménko, proto vyhedáme poohu neezpečného průřezu z podmínky nuové posouvjící síy.

17 q 4 kn/m 45 o 6 o y F8 kn q 5 kn/m,5,5 B [m] knm ( ) + 5,7 + 5,7,474 m 5 8,474 5,56 m Veikost mimáního ohyového momentu: m + B q +,7,474 +,6 5,, knm 5,474

18 F8 kn q 5 kn/m q 4 kn/m 45 o 6 o y,5,5 knm B [m] N [kn] -5,66-4, -9,56 [kn],6-5,66 5,56,474-5,66 -,7 [knm] -, 8,68,6 m,

19 8. Nosník s převisým koncem q4 N/cm Ncm y c o F4 N B [cm] Postup řešení: ) Výpočet rekcí z podmínek rovnováhy + 4 cos 46, 4 N y 6 4sin y 96, 67 N y B ,5 + B B, N Kontro nevyužitou součtovou podmínkou rovnováhy: y + B F q y? 96,67+,4,5 4?

20 ) Výpočet vnitřních si n mezích intervů y q4 N/cm Ncm c o F4 N B [cm], ) N N 46,4 N 96,67 N 96,67 9,4 Ncm, N N 96,67 4,5, N, N 96,67 9,4 Ncm 96,67 4,5 9 Ncm, N N 96,67 4,5, N, N 96,67 9,4 Ncm 96,67 4,5 9 Ncm

21 q4 N/cm Ncm y c o F4 N B [cm] ), N v ceém intervu, N, 4, N c, výpočet zprv ) 9 Ncm 96,67 6 4, , 8 8 N v ceém intervu v ceém intervu Ncm v ceém intervu Ncm ) Posouvjící sí mění znménko v odu. Ohyový moment v tomto odu y vyčísen již v intervu, ). Potom 9,4 Ncm m

22 q4 N/cm Ncm y c o F4 N B [cm] N [N] 46,4 [N] 96,67 -, -, [Ncm], m 9,4 9,

Výpočet vnitřních sil přímého nosníku II

Výpočet vnitřních sil přímého nosníku II Stveí sttik, 1.ročík komiového studi ýpočet vitřích si přímého osíku II ýpočet vitřích si osíků ztížeých spojitým ztížeím ýpočet osíku v prostorové úoze ýpočet osíku v krutové úoze Ktedr stveí mechiky

Více

Posouvající síla V. R a. R b. osa nosníku. Kladné směry kolmé složky vnitřních sil. Výpočet nosníku v příčné úloze (ve svislé hlavní rovině xz)

Posouvající síla V. R a. R b. osa nosníku. Kladné směry kolmé složky vnitřních sil. Výpočet nosníku v příčné úloze (ve svislé hlavní rovině xz) Posouvjící sí Posouvjící síu v zdném průřezu c ze vypočítt jko gerický součet všech svisých si po jedné strně průřezu. Postupujei se z evé strny, do součtu se zhrnou kdně síy půsoící zdo nhoru, záporně

Více

Rovinné nosníkové soustavy. Pohyblivé zatížení. Trojkloubový nosník s táhlem Rovinně zakřivený nosník (oblouk) Příčinkové čáry

Rovinné nosníkové soustavy. Pohyblivé zatížení. Trojkloubový nosník s táhlem Rovinně zakřivený nosník (oblouk) Příčinkové čáry Stvení sttik,.ročník kářského studi Rovinné nosníkové soustvy Pohyivé ztížení Trojkouový nosník s táhem Rovinně zkřivený nosník (oouk) Příčinkové čáry Ktedr stvení mehniky Fkut stvení, VŠB - Tehniká univerzit

Více

-R x,a. Příklad 2. na nejbližší vyšší celý mm) 4) Výpočet skutečné plochy A skut 5) Výpočet maximálního napětíσ max 6) Porovnání napětí. Výsl.

-R x,a. Příklad 2. na nejbližší vyšší celý mm) 4) Výpočet skutečné plochy A skut 5) Výpočet maximálního napětíσ max 6) Porovnání napětí. Výsl. Zákdy dimenzování prutu nmáhného prostým tkem them Th prostý tk-zákdy dimenzování Už známe:, 3 -, i i 3 3 ormáové npětí [P] konst. po výšce průřezu Deformce [m] ii E ově zákdní vzthy: Průřezová chrkteristik

Více

Stavební mechanika 2 (K132SM02)

Stavební mechanika 2 (K132SM02) Stvení mecnik 2 (K132SM02) Přednáší: Jn Sýkor Ktedr mecniky K132 místnost D2016 e-mil: jn.sykor.1@fsv.cvut.cz konzultční odiny: Po 12-14 Kldné směry vnitřníc sil: Kldný průřez vnitřní síly jsou kldné ve

Více

Výpočet vnitřních sil přímého nosníku II

Výpočet vnitřních sil přímého nosníku II Stveí sttik, 1.ročík kářského studi ýpočet vitřích si přímého osíku II ýpočet vitřích si osíků ztížeých spojitým ztížeím: příčé kosttí trojúheíkové spojité ztížeí, spojité ztížeí v osové úoze, mometové

Více

Předmět: SM02 PRŮBĚH VNITŘNÍCH SIL M(x), V(x), N(x) NA ROVINNÉM ŠIKMÉM PRUTU. prof. Ing. Michal POLÁK, CSc.

Předmět: SM02 PRŮBĚH VNITŘNÍCH SIL M(x), V(x), N(x) NA ROVINNÉM ŠIKMÉM PRUTU. prof. Ing. Michal POLÁK, CSc. Předmět: SM0 PRŮBĚH VNITŘNÍCH SIL M(), V(), N() NA ROVINNÉM ŠIKMÉM PRUTU pro. Ing. Michl POLÁK, CSc. Fkult stvení, ČVUT v Pre 004-014 PRŮBĚHY VNITŘNÍCH SIL M(), N(), V() NA ROVINNÉM ŠIKMÉM PRUTU: ZATÍŽENÍ

Více

Sada 2 - MS Office, Excel

Sada 2 - MS Office, Excel S třední škol stvební Jihlv Sd 2 - MS Office, Excel 11. Excel 2007. Mtice, determinnty, soustvy lineárních rovnic Digitální učební mteriál projektu: SŠS Jihlv šblony registrční číslo projektu:cz.1.09/1.5.00/34.0284

Více

SMR 2. Pavel Padevět

SMR 2. Pavel Padevět SR Pve Pevět PRINCIP VIRTUÁLNÍCH PRACÍ Deformční meto jenošená eformční meto, Přetvárně nerčité konstrke POROVNÁNÍ OBECNÉ A JEDNODUŠENÉ DEF. ETODY V zjenošené eformční metoě (D) se zneává viv normáovýh

Více

Gerberovy nosníky. Vhodným vložením kloubů vznikne složená, staticky určitá soustava, tvořená nesoucími a nesenými nosníky, tzv.

Gerberovy nosníky. Vhodným vložením kloubů vznikne složená, staticky určitá soustava, tvořená nesoucími a nesenými nosníky, tzv. Gererovy nosníky Spojitý nosník je stticky neurčitý o stupni sttické určitosti sn = r, r je celkový počet vnějších vze sn = 2, 2x stticky neurčitý spojitý nosník Vhodným vložením klouů vznikne složená,

Více

4.4.2 Kosinová věta. Předpoklady: 4401

4.4.2 Kosinová věta. Předpoklady: 4401 44 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

4.2.7 Zavedení funkcí sinus a cosinus pro orientovaný úhel I

4.2.7 Zavedení funkcí sinus a cosinus pro orientovaný úhel I 4..7 Zvedení funkcí sinus cosinus pro orientovný úhel I Předpokldy: 40, 40, 404, 406 Prolém s definicí funkcí sin ( ) cos( ) : Definice pomocí prvoúhlého trojúhelníku je π možné použít pouze pro ( 0 ;90

Více

2.8.5 Lineární nerovnice s parametrem

2.8.5 Lineární nerovnice s parametrem 2.8.5 Lineární nerovnice s prmetrem Předpokldy: 2208, 2802 Pedgogická poznámk: Pokud v tom necháte studenty vykoupt (což je, zdá se, jediné rozumné řešení) zere tto látk tk jednu půl vyučovcí hodiny (první

Více

OHYB(Deformace) Autoři: F. Plánička, M. Zajíček, V. Adámek

OHYB(Deformace) Autoři: F. Plánička, M. Zajíček, V. Adámek Autoři: F. Páničk, M. Zjíček, V. Aámek 4. Řešené příky Přík : Určete s využitím iferenciání rovnice průhybové čáry úhe ntočení průhyb v obecném místě 0, nosníkunobrázku,je-iáno:, b, q, E=konst.J z =konst.přiřešení

Více

Řešte daný nosník: a = 2m, b = 2m, c = 1m, F 1 = 10kN, F 2 = 20kN

Řešte daný nosník: a = 2m, b = 2m, c = 1m, F 1 = 10kN, F 2 = 20kN Řešte dný nosník: m, m, m, F kn, F kn yhom nl kompletně slové účnky půsoíí n nosník, nejprve vyšetříme reke v uloženíh. ek určíme npříkld momentové podmínky rovnováhy k odu. F F F ( ) ( ) F( ) 8 ( ) 5

Více

Stavební mechanika 2 (K132SM02)

Stavební mechanika 2 (K132SM02) Stavení mechanika (K13SM0) ednáší: doc. Ing. Matj Lepš, Ph.D. Katedra mechaniky K13 místnost D034 e-mail: matej.leps@sv.cvut.cz konzultaní hodiny Pá 10:00-11:30 íklad: vykreslete prhy M(), N(), V() na

Více

Pohybové možnosti volných hmotných objektů v rovině

Pohybové možnosti volných hmotných objektů v rovině REAKCE ohyové možnosti volných hmotných ojektů v rovině Stupeň volnosti n v : možnost vykont jednu složku posunu v ose souřdného systému neo pootočení. m [00] +x volný hmotný od v rovině: n v =2 (posun

Více

Výpočet vnitřních sil I

Výpočet vnitřních sil I Stvení sttik, 1.ročník klářského studi ýpočet vnitřních sil I přímý nosník, ztížení odové nitřní síly - zákldní pojmy ýpočet vnitřních sil přímého vodorovného nosníku Ktedr stvení mechniky Fkult stvení,

Více

M - Logaritmy a věty pro počítání s nimi

M - Logaritmy a věty pro počítání s nimi M - Logritmy věty pro počítání s nimi Určeno jko učení text pro studenty dálkového studi shrnující text pro studenty denního studi. VARIACE 1 Tento dokument yl kompletně vytvořen, sestven vytištěn v progrmu

Více

Téma 6 Staticky neurčitý rovinný oblouk

Téma 6 Staticky neurčitý rovinný oblouk ttik stveních konstrukcí I.,.ročník kářského studi Tém 6 tticky neurčitý rovinný oouk Zákdní vstnosti stticky neurčitého rovinného oouku Dvojkouový oouk Dvojkouový oouk s táhem Vetknuté oouky Přiižný výpočet

Více

Výpočet vnitřních sil přímého nosníku

Výpočet vnitřních sil přímého nosníku Stvení sttik, 1.ročník klářského studi ýpočet vnitřních sil přímého nosníku nitřní síly přímého vodorovného nosníku prostý nosník konzol nosník s převislým koncem Ktedr stvení mechniky Fkult stvení, ŠB

Více

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f. I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n

Více

Řešený příklad: Prostý nosník s příčným podepřením v působišti zatížení

Řešený příklad: Prostý nosník s příčným podepřením v působišti zatížení Dokument SX007a-CZ-EU Strana 0 Eurokód Vpracovali Valérie LEMAIRE Datum duben 005 Kontroloval Alain BUREAU Datum duben 005 Řešený příklad: Prostý nosník s příčným podepřením v V tomto příkladu je řešen

Více

Téma 2 Úvod ke staticky neurčitým prutovým konstrukcím

Téma 2 Úvod ke staticky neurčitým prutovým konstrukcím Stvební mechnik,.ročník bkářského studi AST Tém Úvod ke stticky neurčitým prutovým konstrukcím Ktedr stvební mechniky Fkut stvební, VŠB - Technická univerzit Ostrv Osnov přednášky Stticky neurčité konstrukce,

Více

Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím

Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím Sttik stvebních konstrukcí I.,.ročník bkářského studi Tém 3 Úvod ke stticky neurčitým prutovým konstrukcím Ktedr stvební mechniky Fkut stvební, VŠB - Technická univerzit Ostrv Osnov přednášky Stticky neurčité

Více

3. kapitola. Průběhy vnitřních sil na lomeném nosníku. Janek Faltýnek SI J (43) Teoretická část: Příkladová část: Stavební mechanika 2

3. kapitola. Průběhy vnitřních sil na lomeném nosníku. Janek Faltýnek SI J (43) Teoretická část: Příkladová část: Stavební mechanika 2 3. kapitola Stavební mechanika Janek Faltýnek SI J (43) Průběhy vnitřních sil na lomeném nosníku Teoretická část: Naším úkolem je v tomto příkladu vyšetřit průběh vnitřních sil na lomeném rovinném nosníku

Více

2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ.

2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ. .8 Zobecnění vtahů mei atížením a vnitřními silami prutu (rovinný prut atížený v rovině) µ x N V M dm µ df df x =R. MdM x NdN VdV Náhradní břemena: df x = x. df =. dm µ =µ. Obecný rovinný prut: spojité

Více

Technická mechanika - Statika

Technická mechanika - Statika Technická mechanika - Statika Elektronická učebnice Ing. Jaromír Petr Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/03.0027 Tvorba elektronických učebnic O B S A H 1 Statika tuhých těles...

Více

Výpočet vnitřních sil přímého nosníku II

Výpočet vnitřních sil přímého nosníku II Stveí sttik, 1.ročík kářského studi ýpočet vitřích si přímého osíku II ýpočet vitřích si osíků ztížeých spojitým ztížeím: příčé kosttí trojúheíkové spojité ztížeí, spojité ztížeí v osové úoze, mometové

Více

a + 1 a = φ 1 + φ 2 ; a je konvenční zraková vzdálenost. Po dosazení zobrazovací rovnice bez brýlí do zobrazovací rovnice s brýlemi platí:

a + 1 a = φ 1 + φ 2 ; a je konvenční zraková vzdálenost. Po dosazení zobrazovací rovnice bez brýlí do zobrazovací rovnice s brýlemi platí: OKO ) Člověk vidí nejlépe, když předměty pozoruje ze vzdálenosti 2,5 cm. Jkého druhu je vd jeho ok jké čočky do brýlí mu doporučíte? Odpověď zdůvodněte výpočtem. = 2,5 cm = 0,25 m φ =? (D) Normální oko

Více

- Ohybový moment zleva:

- Ohybový moment zleva: příkl 1 q = 10k/m =0 1) Ohněte směry rekí z pomínek rovnováhy určete jejih velikost, proveďte kontrolu ) ykreslete průěhy vnitřníh sil jejih honoty určete ve všeh vyznčenýh oeh,,. R z R Reke z pomínek

Více

Výpočet vnitřních sil přímého nosníku I

Výpočet vnitřních sil přímého nosníku I Stvení sttik, 1.ročník kominovného studi ýpočet vnitřních sil přímého nosníku I ýpočet vnitřních sil přímého vodorovného nosníku Ktedr stvení mechniky Fkult stvení, ŠB - Technická univerzit Ostrv nitřní

Více

Téma 9 Těžiště Těžiště rovinných čar Těžiště jednoduchých rovinných obrazců Těžiště složených rovinných obrazců

Téma 9 Těžiště Těžiště rovinných čar Těžiště jednoduchých rovinných obrazců Těžiště složených rovinných obrazců Stvení sttik, 1.ročník klářského studi Tém 9 Těžiště Těžiště rovinných čr Těžiště jednoduchých rovinných orců Těžiště složených rovinných orců Ktedr stvení mechniky Fkult stvení, VŠB - Technická univerit

Více

Nosné stavební konstrukce, výpočet reakcí

Nosné stavební konstrukce, výpočet reakcí Stvení sttik.ročník kářského studi Nosná stvení konstrukce Nosné stvení konstrukce výpočet rekcí Nosná stvení konstrukce souží k přenosu ztížení ojektu do horninového msívu n němž je ojekt zožen. Musí

Více

PRUŽNOST A PLASTICITA

PRUŽNOST A PLASTICITA PRUŽOST A PLASTICITA Ing. Lenk Lusová LPH 407/1 Povinná litertur tel. 59 732 1326 lenk.lusov@vs.cz http://fst10.vs.cz/lusov http://mi21.vs.cz/modul/pruznost-plsticit Doporučená litertur Zákldní typy nmáhání

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

NK 1 Konstrukce. Základní prvky konstrukce

NK 1 Konstrukce. Základní prvky konstrukce NK 1 Konstrukce Přednášky: Doc. Ing. Karel Lorenz, CSc., Prof. Ing. Milan Holický, DrSc., Ing. Jana Marková, Ph.D. FA, Ústav nosných konstrukcí, Kloknerův ústav Cvičení: Ing. Naďa Holická, CSc., Fakulta

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti, sttických mometů, souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme, že

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvlity výuky technických oorů Klíčová ktivit IV. Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol Tém IV.. Algerické výrzy, výrzy s mocninmi odmocninmi Kpitol

Více

Styčníkovou metodou vyřešte síly v prutech u soustavy na obrázku.

Styčníkovou metodou vyřešte síly v prutech u soustavy na obrázku. Styčníkovou metodou vyřešte síly v prutech u soustvy n obrázku. Př. 1,, = 3 m, b = 4 m, c = 5, d = m 1) výpočet úhlů b cos = /( + b ) 1/ sin = b/( + b ) 1/ = 0,6 = 0,8 (e) d b c (h) cos = /[e + ] 1/ e

Více

Nosné stavební konstrukce Výpočet reakcí

Nosné stavební konstrukce Výpočet reakcí Stvení sttik 1.ročník klářského studi Nosné stvení konstrukce Výpočet rekcí Reálné ztížení nosných stveních konstrukcí Prut geometrický popis vnější vzy nehynost silové ztížení složky rekcí Ktedr stvení

Více

Téma 6 Rovinné nosníkové soustavy

Téma 6 Rovinné nosníkové soustavy Stavební statika, 1.ročník bakalářského studia Téma 6 Rovinné nosníkové soustavy Spojitý nosník s vloženými klouby Trojkloubový rám a oblouk Trojkloubový rám a oblouk s táhlem Katedra stavební mechaniky

Více

Šikmý nosník rovnoměrné spojité zatížení. L průmětu. zatížení kolmé ke střednici prutu (vítr)

Šikmý nosník rovnoměrné spojité zatížení. L průmětu. zatížení kolmé ke střednici prutu (vítr) Šikmý nosník Šikmý nosník rovnoměrné spojité ztížení ztížení kolmé ke střednii prutu (vítr) q h - ztížení kolmé ke střednii prutu (vítr) - ztížení svislé zdáno n délku prutu (vlstní tíh) - ztížení svislé

Více

Téma 6 Spojitý nosník

Téma 6 Spojitý nosník Stvení mechnik.očník kářského studi AST Tém Sojitý nosník Zákdní vstnosti sojitého nosníku Řešení sojitého nosníku siovou metodou yužití symetie sojitého nosníku Kted stvení mechniky Fkut stvení ŠB - Technická

Více

Pohybové možnosti volných hmotných objektů v rovině

Pohybové možnosti volných hmotných objektů v rovině REAKCE Pohyové možnosti volných hmotných ojektů v rovině Stupeň volnosti n v : možnost vykont jednu složku posunu v ose souřdného systému neo pootočení. +x volný hmotný od v rovině: n v =2 (posun v oecném

Více

Téma 5 Spojitý nosník

Téma 5 Spojitý nosník Stvení mechnik.očník kářského studi AST Tém 5 Spojitý nosník Zákdní vstnosti spojitého nosníku Řešení spojitého nosníku siovou metodou yužití symetie spojitého nosníku Kted stvení mechniky Fkut stvení

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti sttických mometů souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme že jste

Více

13. Soustava lineárních rovnic a matice

13. Soustava lineárních rovnic a matice @9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky

Více

NEKONEČNÉ GEOMETRICKÉ ŘADY

NEKONEČNÉ GEOMETRICKÉ ŘADY Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrční číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol NEKONEČNÉ GEOMETRICKÉ

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

Goniometrické funkce obecného úhlu

Goniometrické funkce obecného úhlu 0 Goniometrické funkce oecného úhlu V prvoúhlém trojúhelníku ABC jsou definovány funkce,, tg, cotg liovolného úhlu tkto: α α tg α cotg α Význmné hodnoty gon. funkcí 0 0 60 90 α 0 α 0 tg α 0 nedef. cotg

Více

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306 7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu

Více

ČVUT SBÍRKA PŘÍKLADŮ STAVEBNÍ MECHANIKY

ČVUT SBÍRKA PŘÍKLADŮ STAVEBNÍ MECHANIKY SBÍRKA PŘÍKLADŮ STAVEBNÍ MECHANIKY Ing. ALEŠ JÍRA, Ph.D. Ing. DAGMAR JANDEKOVÁ, Ph.D. Ing. ADÉLA HLOBILOVÁ Ing. ELIŠKA JANOUCHOVÁ Ing. LUKÁŠ ZRŮBEK ČVUT FAKULTA STAVEBNÍ ČVUT V PRAZE ČESKÉ VYSOKÉ UČENÍ

Více

Stanovení přetvoření ohýbaných nosníků. Clebschova a Mohrova metoda

Stanovení přetvoření ohýbaných nosníků. Clebschova a Mohrova metoda Stnovení přetvoření ohýnýh nosníků Ceshov Mohrov metod (pokrčování) (Mohrov nogie) Příkd Určete rovnii ohyové čáry pootočení nosníku stáého průřezu Ceshovou metodou. Stnovte veikost průhyu w pootočení

Více

Výpočet obsahu rovinného obrazce

Výpočet obsahu rovinného obrazce Výpočet oshu rovinného orzce Pro výpočet oshu čtverce, odélník, trojúhelník, kružnice, dlších útvrů, se kterými se můžeme setkt v elementární geometrii, máme k dispozici vzorce Kdchom chtěli vpočítt osh

Více

Téma 4 Výpočet přímého nosníku

Téma 4 Výpočet přímého nosníku Stavební statika, 1.ročník bakaářského studia Téma 4 Výpočet přímého nosníku Výpočet nosníku v osové úoze Výpočet nosníku v příčné úoze ve svisé a vodorovné havní rovině Výpočet nosníku v krutové úoze

Více

ROVNICE A NEROVNICE S ABSOLUTNÍ HODNOTOU

ROVNICE A NEROVNICE S ABSOLUTNÍ HODNOTOU Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrční číslo projektu: CZ..07/..00/.098 IV- Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol ROVNICE A NEROVNICE

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

Kmitání struny. Jelikožpředpokládáme,ževýchylkystrunyjsoumalé,budeplatitcosϕ 1,2 1,takže můžeme psát. F 2 F 1 = F 2 u x 2 x.

Kmitání struny. Jelikožpředpokládáme,ževýchylkystrunyjsoumalé,budeplatitcosϕ 1,2 1,takže můžeme psát. F 2 F 1 = F 2 u x 2 x. Kmitání struny 1 Odvození vnové rovnice Vnovou rovnici pro(příčné) vny šířící se na struně odvodíme za předpokadu, že výchykastruny u(x, t)vrovině,vnížstrunakmitá,jemaá,cožnámumožníprovésthned někoik zjednodušení.

Více

Technická data Transportní technika

Technická data Transportní technika Tecnická t Trnportní tecnik O Možnoti montáže, průřezy, nonoti Možnoti montáže pouvnýc vrt... 3 Průřezy voícíc koejnic... Tuk nonotí... Montážní vrinty pro upevnění n těnu n trop... 7 Montážní vrinty pro

Více

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém Vysoká škola báňskb ská Technická univeita Ostava Stavební statika Cvičení 1 římková a ovinná soustava sil římková soustava sil ovinný svaek sil Statický moment síly k bodu a dvojice sil v ovině Obecná

Více

2.4.11 Nerovnice s absolutní hodnotou

2.4.11 Nerovnice s absolutní hodnotou .. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na

Více

STAVEBNÍ STATIKA. Ing. Petr Konečný, Ph.D. LPH 407/3. tel

STAVEBNÍ STATIKA. Ing. Petr Konečný, Ph.D. LPH 407/3. tel STAVEBNÍ STATIKA Ing. Petr Konečný, Ph.D. LPH 47/3 tel. 59 732 1394 petr.konecny@vsb.c http://fast1.vsb.c/konecny roklad síly v rovině síla pod úhlem γ - (k ose ) až -18 až +18 x A γ P P P x γ + x P x

Více

Rovinné nosníkové soustavy Gerberův nosník

Rovinné nosníkové soustavy Gerberův nosník Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Gererův nosník Spojitý nosník s vloženými klouy - Gererův nosník Kter stvení mehniky Fkult stvení, VŠB - Tehniká univerzit Ostrv Sttiky neurčité

Více

2 i i. = m r, (1) J = r m = r V. m V

2 i i. = m r, (1) J = r m = r V. m V Měření momentu setrvčnosti 1 Měření momentu setrvčnosti Úko č. 1: Změřte moment setrvčnosti obdéníkové desky přímou metodou. Pomůcky Fyzické kyvdo (kovová obdéníková desk s třemi otvory), kovové těísko

Více

SMR 2. Pavel Padevět

SMR 2. Pavel Padevět SR 2 Pvel Pevět PRINCIP VIRTUÁLNÍCH PRACÍ Silová meto Rámová konstruke, symetriké konstruke Prinipy pro symetriké konstruke ztížené oeným ztížením. Symetriká konstruke ntimetriké ztížení. Os symetrie

Více

Průběh funkce I (monotónnost)

Průběh funkce I (monotónnost) 0..0 Průěh funkce I (monotónnost) Předpoklad: 00, 009 Pedagogická poznámka: Tato hodina je značně osáhlá, tak je nutné uď přenechat poslední příklad na příští hodinu, neo se příliš nezdržovat úvodní částí.

Více

PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ

PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ Zdání PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ Příkd č. Uvžujte příhrdovou konstruki z Or., vypočítejte svisý posun v odě (znčený ). odře vyznčené pruty (pruty 3, 4, 5, 6 7) jsou ztíženy rovnoměrným otepením

Více

Srovnání konstrukce krovu rodinného domu při použití krytiny GERARD a betonové krytiny

Srovnání konstrukce krovu rodinného domu při použití krytiny GERARD a betonové krytiny Srovnání konstrukce krovu rodinného domu při použití krytiny GERARD a betonové krytiny 1. Úvod Podklady použité pro srovnání: ČSN 730035 Zatížení stavebních konstrukcí, ČSN 731701 Dřevěné konstrukce -

Více

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled řijímcí řízení k. r. / Kompletní znění testových otázek - mtemtický přehled Koš Znění otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo otzníku? 8?. Které číslo

Více

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D.

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D. Příklad 1: 3;4 3;4 = =4 9 2;1,78 = = 4 9 4=16 9 =1,78 =2 =2 2 4 9 =16 9 1 = 1+ =0,49 = 1+ =0,872 =0 =10 6+ 2,22=0 =3,7 6+ 2,22=0 =3,7 + =0 3,7+3,7=0 0=0 =60,64 =0 =0 + =0 =3,7 á čá 5+ 2,22=0 =3,7 5+ 2,22+

Více

Projektování automatizovaných systémů

Projektování automatizovaných systémů Projektování automatizovaných systémů Osvald Modrlák, Petr Školník, Jaroslav Semerád, Albín Dobeš, Frank Worlitz TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

Více

5 kn/m. E = 10GPa. 50 kn/m. a b c 0,1 0,1. 30 kn. b c. Statika stavebních konstrukcí I. Příklad č. 1 Posun na nosníku

5 kn/m. E = 10GPa. 50 kn/m. a b c 0,1 0,1. 30 kn. b c. Statika stavebních konstrukcí I. Příklad č. 1 Posun na nosníku Sttik stveníh konstrukí I Příkl č. 1 Posun n nosníku Metoou jenotkovýh ztížení určete voorovný posun ou nosníku pole orázku. Nosník je vyroen z měkkého řev o moulu pružnosti 10 GP. 50 kn/m E = 10GP 0,1

Více

Podepření - 3 vazby, odebrány 3 volnosti, staticky určitá úloha

Podepření - 3 vazby, odebrány 3 volnosti, staticky určitá úloha nitřní síly Prut v rovině 3 volnosti Podepření - 3 vzy, oderány 3 volnosti, sttiky určitá úloh nější ztížení reke musí ýt v rovnováze, 3 podmínky rovnováhy, z nih 3 neznámé reke nější ztížení reke se nzývjí

Více

Požární odolnost betonových konstrukcí

Požární odolnost betonových konstrukcí Požární odolnost betonových konstrukcí K.B.K. fire, s.r.o. Heydukova 1093/26 70200 Ostrava - Přívoz Ing. Petr Bebčák, Ph.D. Tel.777881892 bebcakp@kbkfire.cz Základním ukazatelem, který vyplývá z kodexu

Více

Geometrické a fyzikální aplikace určitého integrálu. = b a. je v intervalu a, b záporná, je integrál rovněž záporný.

Geometrické a fyzikální aplikace určitého integrálu. = b a. je v intervalu a, b záporná, je integrál rovněž záporný. 4. přednášk Geometické zikální plikce učitého integálu Geometické plikce. Osh ovinného útvu A. Pokud se jedná o ovinný útv omezený osou přímkmi gem spojité nezáponé unkce pk je jeho osh dán učitým integálem

Více

Příklad 33 : Energie elektrického pole deskového kondenzátoru. Ověření vztahu mezi energií, kapacitou a veličinami pole.

Příklad 33 : Energie elektrického pole deskového kondenzátoru. Ověření vztahu mezi energií, kapacitou a veličinami pole. Přík 33 : Energie eektrického poe eskového konenzátoru. Ověření vzthu mezi energií, kpcitou veičinmi poe. Přepokáné znosti: Eektrické poe kpcit eskového konenzátoru Přík V eskovém konenzátoru je eektrické

Více

Výukový materiál zpracovaný v rámci projektu EU peníze školám

Výukový materiál zpracovaný v rámci projektu EU peníze školám Výukový materiál zpracovaný v rámci projektu EU peníze školám Registrační číslo projektu: Šablona: Název materiálu: Autor: CZ..07/.4.00/.356 III/ Inovace a zkvalitnění výuky prostřednictvím ICT VY_3_INOVACE_0/07_Délka

Více

Stabilita a vzpěrná pevnost tlačených prutů

Stabilita a vzpěrná pevnost tlačených prutů Pružnost psticit,.ročník kářského studi Stiit vzpěrná pevnost tčených prutů Euerovo řešení stiity přímého pružného prutu Ztrát stiity prutů v pružno-pstickém ooru Posouzení oceových konstrukcí n vzpěr

Více

Pohyblivé zatížení. Pohyblivé zatížení. Příčinkové čáry na prostém nosníku, konzole a spojitém nosníku s vloženými klouby

Pohyblivé zatížení. Pohyblivé zatížení. Příčinkové čáry na prostém nosníku, konzole a spojitém nosníku s vloženými klouby Stvní sttik,.ročník kářského stui Pohyivé ztížní zniká pojížěním vozi (vky, utomoiy, jřáy po stvní konstruki (mosty, jřáové ráhy, nájzové rmpy, pohy gráží. Pohyivé ztížní n prostém nosníku, konzo spojitém

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Petr Schreierová, Ph.D. Ostrv Ing. Petr Schreierová, Ph.D. Vsoká škol áňská Technická univerzit

Více

Obsah rovinného obrazce

Obsah rovinného obrazce Aplikce určitého integrálu V celé této kpitole uvžujme pouze spojité funkce, které mjí přípdně spojité derivce. Užití určitého integrálu v geometrii bsh rovinného obrzce Z definice Riemnnov určitého integrálu

Více

Obsah rovinného obrazce

Obsah rovinného obrazce Osh rovinného orzce Nejjednodušší plikcí určitého integrálu je výpočet oshu rovinného orzce. Zčneme větou. Vět : Je-li funkce f spojitá nezáporná n n orázku níže roven f ( ) d. ;, je osh rovinného orzce

Více

Téma 6 Staticky neurčitý rovinný oblouk. kloubový příhradový nosník

Téma 6 Staticky neurčitý rovinný oblouk. kloubový příhradový nosník Stvení mechnik,.ročník klářského studi AST Tém 6 Stticky neurčitý rovinný olouk Stticky neurčitý rovinný klouový příhrdový nosník Zákldní vlstnosti stticky neurčitého rovinného olouku Dvoklouový olouk,

Více

VI. BUBNOVÉ MOTORY VÁLEČKY SE ZABUDOVANÝM MOTOREM. Stránka. Bubnový motor TM 114 1. Válečky se zabudovaným motorem Typ 840 50 2 4

VI. BUBNOVÉ MOTORY VÁLEČKY SE ZABUDOVANÝM MOTOREM. Stránka. Bubnový motor TM 114 1. Válečky se zabudovaným motorem Typ 840 50 2 4 VI. BUBNOVÉ MOTORY VÁLEČKY SE ZABUDOVANÝM MOTOREM Stránka Bubnový motor TM 114 1 Válečky se zabudovaným motorem Typ 840 50 2 4 Bubnový motor Typ 850 89 5-6 Typová řada TM 114 Bubnové motory typové řady

Více

Průběh (jednorozměrné) funkce

Průběh (jednorozměrné) funkce Průběh (jednorozměrné) unkce Úlohy na vyšetřování průběhu unkcí (jedno i vícerozměrných) patří k poměrně častým úlohám dierenciálního počtu. V tomto krátkém tetu se omezím pouze na jednorozměrné unkce,

Více

4 Spojovací a kloubové hřídele

4 Spojovací a kloubové hřídele 4 Spojovací a kloubové hřídele Spojovací a kloubové hřídele jsou určeny ke stálému přenosu točivého momentu mezi jednotlivými částmi převodného ústrojí. 4.1 Spojovací hřídele Spojovací hřídele zajišťují

Více

Měření napjatosti na povrchu tělesa Tenkostěnná trubka zatížená krutem a vnitřním přetlakem

Měření napjatosti na povrchu tělesa Tenkostěnná trubka zatížená krutem a vnitřním přetlakem 4. lekce Měření npjosi n povrcu ěles Tenkosěnná rubk zížená kruem vniřním přelkem Obs: 4.1 Úvod 4. Kru enkosěnné válcové rubk 4.3 Tenkosěnná lková válcová nádob 3 4.4 Dvouosá npjos Morov kružnice 4 4.5

Více

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208 .. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla

Více

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY FUNKCÍ DVOU PROMĚNNÝCH Robert Mařík 2. října 2009 Obsah z = x 4 +y 4 4xy + 30..................... 3 z = x 2 y 2 x 2 y 2........................ 18 z = y ln(x 2 +y)..........................

Více

METODICKÝ NÁVOD MODULU

METODICKÝ NÁVOD MODULU Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název modulu: Zákldy mtemtiky Zkrtk: ZM Počet kreditů: Semestr: Z/L Mentor: Petr Dolnský Tutor: Petr Dolnský I OBSAH BALÍČKU STUDIJNÍCH OPOR: ) Skriptum:

Více

Podmínky k získání zápočtu

Podmínky k získání zápočtu Podmínky k získání zápočtu 18 až 35 bodů 7 % aktivní účast, omluvená neúčast Odevzdání programů Testy: 8 nepovinných testů (-2 body nebo -3 body) 3 povinné testy s ohodnocením 5 bodů (povoleny 2 opravné

Více

1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5.

1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5. Kapitola 5 Vnitřní síly přímého šikmého nosníku Pojem šikmý nosník je používán dle publikace [1] pro nosník ležící v souřadnicové rovině xz, který je vůči vodorovné ose x pootočen o úhel α. Pro šikmou

Více

Stavební statika. Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava. Stavební statika, 1.ročník kombinovaného studia

Stavební statika. Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava. Stavební statika, 1.ročník kombinovaného studia Stvební sttik, 1.ročník kombinovného studi Stvební sttik Úvod do studi předmětu n Stvební fkultě VŠB-TU Ostrv Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit Ostrv Stvební sttik přednášející

Více

Ohyb - smyková napětí

Ohyb - smyková napětí Oh - smková napětí p + + - - l x ohýaný nosník - M σ x - x Průřeové charakteristik pro smková napětí a ohu jsou statický moment ploch S a moment setrvačnosti. S A části průr T [ m ] max Mení stav únosnosti

Více

Trojkloubový nosník. Rovinné nosníkové soustavy

Trojkloubový nosník. Rovinné nosníkové soustavy Stvení sttik, 1.ročník klářského studi Rovinné nosníkové soustvy Trojklouový nosník Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový nosník Trojklouový nosník Ktedr

Více

PROCESNÍ INŽENÝRSTVÍ cvičení 4

PROCESNÍ INŽENÝRSTVÍ cvičení 4 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESNÍ INŽENÝRSTVÍ cvičení 4 Hana Charvátová, Dagmar Janáčová Zlín 01 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

Hledání hyperbol

Hledání hyperbol 759 Hledání hyperol Předpokldy: 756, 757, 758 Pedgogická poznámk: Některé příkldy jsou zdlouhvější, pokud mám dosttek čsu proírám tuto následující hodinu ěhem tří vyučovcích hodin Př : Npiš rovnici hyperoly,

Více

2.8.10 Rovnice s neznámou pod odmocninou a parametrem

2.8.10 Rovnice s neznámou pod odmocninou a parametrem .8.10 Rovnie s neznámou pod odmoninou a parametrem Předpoklady: 806, 808 Budeme postupovat stejně jako v předhozíh hodináh. Nejdříve si zopakujeme obený postup při řešení rovni s neznámou pod odmoninou

Více

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou .8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 0,, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli jednotlivé kroky postupu při řešení rovnic (nerovnic)

Více