Střední průmyslová škola, Hronov, Hostovského 910, Hronov



Podobné dokumenty
Střední průmyslová škola, Hronov, Hostovského 910, Hronov

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Digitální učební materiál

Digitální učební materiál

Limita ve vlastním bodě

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.

Digitální učební materiál

CZ.1.07/1.5.00/

Zvyšování kvality výuky technických oborů

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

GONIOMETRICKÉ FUNKCE

Diferenciální počet funkcí jedné proměnné

Posloupnosti a řady. a n+1 = a n + 4, a 1 = 5 a n+1 = a n + 5, a 1 = 5. a n+1 = a n+1 = n + 1 n a n, a 1 = 1 2

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Diferenciální počet funkcí jedné proměnné

Digitální učební materiál

a se nazývá aritmetická právě tehdy, když existuje takové číslo d R

Sbírka příkladů. Posloupnosti. Mgr. Anna Dravecká. Gymnázium Jihlava

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

Diferenciální počet funkcí jedné proměnné

Význam a výpočet derivace funkce a její užití

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

Zvyšování kvality výuky technických oborů

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.

Gymnázium Jiřího Ortena, Kutná Hora

CVIČNÝ TEST 12. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

UŽITÍ GONIOMETRICKÝCH VZORCŮ

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE

Gymnázium Jiřího Ortena, Kutná Hora

Otázky z kapitoly Posloupnosti

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora

Obsah. Metodický list Metodický list Metodický list Metodický list

Vzorcem pro n-tý člen posloupnosti, např.:, Rekurentně zadáním prvního členu a rekurentního vzorce, který vyjadřuje, např.: výčtem prvků graficky

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.

Limita a spojitost funkce

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů

Ukázka závěrečného testu

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.

ANALYTICKÁ GEOMETRIE HYPERBOLY

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Digitální učební materiál

Funkce a lineární funkce pro studijní obory

Diferenciální počet funkcí jedné proměnné

CVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ A JEJICH UŽITÍ

Matematika I A ukázkový test 1 pro 2014/2015

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

Maturitní otázky z předmětu MATEMATIKA

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Zvyšování kvality výuky technických oborů

PYTHAGOROVA VĚTA, EUKLIDOVY VĚTY

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/ Mgr. Jakub Novák. Datum: Ročník: 9.

Zvyšování kvality výuky technických oborů

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.

Limita a spojitost funkce

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Zvyšování kvality výuky technických oborů

Digitální učební materiál

Sada 1 Matematika. 04. Nekonečné řady

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Rovnice a nerovnice v podílovém tvaru

Úloha určit průběh funkce znamená nakreslit graf funkce na zadaném intervalu, nejčastěji na celé množině reálných čísel R.

Zvyšování kvality výuky technických oborů

Zobrazení, funkce, vlastnosti funkcí

Funkce pro studijní obory

CVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Funkce. Obsah. Stránka 799

KFC/SEM, KFC/SEMA Elementární funkce

Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel.

Posloupnosti a řady. 28. listopadu 2015

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23

CVIČNÝ TEST 14. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21

CVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

Logaritmus. Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým. umocníme základ a, abychom dostali číslo.

MATEMATIKA 1B ÚSTAV MATEMATIKY

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Požadavky k opravným zkouškám z matematiky školní rok

Maturitní témata z matematiky

Požadavky k opravným zkouškám z matematiky školní rok

Univerzita Karlova v Praze Pedagogická fakulta

Zvyšování kvality výuky technických oborů

KRUŽNICE, KRUH, KULOVÁ PLOCHA, KOULE

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

EXPONENCIÁLNÍ ROVNICE

Transkript:

Protokol SADA DUM Číslo sady DUM: Název sady DUM: Název a adresa školy: Registrační číslo projektu: Číslo a název šablony: Obor vzdělávání: Tématická oblast ŠVP: Předmět a ročník: Autor: Použitá literatura: VY INOVACE_MA_ Funkce a rovnice II. Střední průmyslová škola, Hronov, Hostovského 9, 59 Hronov CZ../.5./.59 IV/ Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků SŠ --M/ Elektrotechnika, --M/ Strojírenství Počítačové řídicí systémy Funkce, Posloupnosti a řady, Přehled elementárních funkcí, ita funkce, Derivace funkce, Neurčitý a určitý integrál Výrobní a informační systémy - Funkce, Posloupnosti a řady, Přehled elementárních funkcí, ita funkce, Derivace funkce, Neurčitý a určitý integrál Matematika,.-. ročník Mgr. Lucie Pošvářová, Mgr. Vladimír Klikar Doc. RNDr. BOČEK, CSc., Leo; RNDr. BOČKOVÁ, Jana; RNDr. CHARVÁT, CSc., Jura. Matematika pro gymnázia Rovnice a nerovnice. Praha: Prometheus, 995, ISBN 8-9--, Doc. RNDr. ODVÁRKO, DrSc., Oldřich. Matematika pro gymnázia Funkce. Praha: Prometheus,, ISBN 8-9--, RNDr. HRUBÝ, Dag; RNDr. KUBÁT, Josef. Matematika pro gymnázia Diferenciální a integrální počet. Praha: Prometheus, 5, ISBN 8-9-- Doc. RNDr. ODVÁRKO, DrSc., Oldřich. Matematika pro gymnázia Posloupnosti a řady. Praha: Prometheus,, ISBN 8-9- 95- Datum vytvoření: leden říjen Anotace Sada obsahuje prezentace, pracovní listy, testy a hru šibenice. Využití ve výuce Vysvětlení nového učiva i možné samostudium, které je podpořeno názornými ukázkami na obrázcích a příkladech. Seznámení s novými pojmy i jejich upevnění, procvičení vysvětlené látky na příkladech. Vytvořeno v rámci projektu OP VK zavedení nové oblasti podpory.5 s názvem Zlepšení podmínek pro vzdělávání na středních školách. Stránka z

VY INOVACE_MA Střední průmyslová škola, Hronov, Hostovského 9 VY INOVACE_MA Vytvořila: Mgr. Lucie Pošvářová Leden V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo GP: CZ../.5./.59 AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

VY INOVACE_MA Integrální počet primitivní funkce Primitivní funkce Funkce F se nazývá primitivní funkce k funkci f na otevřeném intervalu J, jestliže pro všechna J platí: F f. Příklad a. Zderivujte funkce F až F, R : F : y F : y F : y F : y F : y 5 F : y F : y ( ) ( ) Řešení: F F F F F F F ( ) ( ) ( ) ( ) ( ) ( ) ( ) 5 b. Najděte primitivní funkci k funkci f : y, R : Řěšení: Z předchozího příkladu plyne, že pokud budeme hledat primitivní funkci k funkci f : y, byly by výsledkem všechny výše uvedené funkce F až F, ale také jakákoliv další funkce daná předpisem F : y c, kde c R.

VY INOVACE_MA Příklad a. Zderivujte funkce G až G, G : y G : y G : y G : y G : y 5 G : y G : y R : Řešení: G G G G G G G ( ) ( ) ( ) ( ) ( ) ( ) ( ) 5 b. Najděte primitivní funkci k funkci g : y, R. Řěšení: Z předchozího příkladu plyne, že pokud budeme hledat primitivní funkci k funkci g : y, byly by výsledkem všechny výše uvedené funkce G až G, ale také jakákoliv další funkce daná předpisem G : y c, kde c R. Budeme tedy psát že, každá primitivní funkce k funkci f má tvar F ( ) c, kde c R. Pokud určujeme k dané funkci f primitivní funkci, říkáme, že funkci f integrujeme. Psát to budeme takto: f ( ) d F( ) c, J. Symbol ( ) f d se nazývá neurčitý integrál.

VY INOVACE_MA Prameny a literatura RNDr. Hrubý, Dag, RNDr. Kubát, Josef. Matematika pro gymnázia Diferenciální a integrální počet. Praha: Prometheus, 5, ISBN 8-9-- Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware).

VY INOVACE_MA Vytvořila: Mgr. Lucie Pošvářová Únor V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz../.5./.59 Z../.5./.59 Nepřímá úměrnost VY INOVACE_MA AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Únor Nejprve si zopakujeme, co je přímá úměrnost: Grafem přímé úměrnosti je PŘÍMKA Funkce, která má předpis: y k kde k je nenulové reálné číslo f : y g : y h : y 5 Funkce, která má předpis: k y f : y Nepřímá úměrnost kde k je nenulové reálné číslo Definiční obor nepřímé úměrnosti je D ( f ) ( ;) ( ; ) Grafem nepřímé úměrnosti je ROVNOOSÁ HYPERBOLA

se nesmí rovnat nule, graf nikdy neprotne osu y y nikdy nevyjde nula (dělíme různými nenulové číslo k) graf nikdy neprotne osu y k Jak se změní graf pro záporná k? Každou funkční hodnotu vynásobíme -. Co bylo kladné, bude záporné. Co bylo záporné, bude kladné. Graf překlopíme kolem osy. k > k < přímky, ke kterým se graf blíží, ale neprotne je, se nazývají Asymptoty Nepřímá úměrnost - vlastnosti Nepřímá úměrnost - vlastnosti f : y k k > ROVNOOSÁ HYPERBOLA f : y k k < ROVNOOSÁ HYPERBOLA D ( f ) ( ;) ( ; ) D ( f ) ( ;) ( ; ) H ( f ) ( ;) ( ; ) H ( f ) ( ;) ( ; ) Klesající na celém definičním oboru Lichá Nemá maimum ani minimum Není omezená ani zdola ani shora Rostoucí na celém definičním oboru Lichá Nemá maimum ani minimum Není omezená ani zdola ani shora Asymptoty: souřadnicové osy Asymptoty: souřadnicové osy

Jak se změní graf s měnícím se k? f ( ) f : y g : y Každou funkční hodnotu vynásobíme. f : y g : y h : y g ( ) f ( ) f : y g : h : y y 5 Prameny a literatura Doc. RNDr. Odvárko, DrSc., Oldřich. Matematika pro gymnázia Funkce. Praha: Prometheus,, ISBN 8-9-- Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware).

VY INOVACE_MA Střední průmyslová škola, Hronov, Hostovského 9 VY INOVACE_MA Vytvořila: Mgr. Lucie Pošvářová Únor V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo GP: CZ../.5./.59 AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

VY INOVACE_MA Nepřímá úměrnost - Pracovní list zadání, záznamový arch. Do připravených soustav souřadnic zakreslete grafy následujících funkcí a rozhodněte, zda je funkce sudá nebo lichá: f f : y : y f f : y : y

VY INOVACE_MA. Je dán obdélník ABCD. Jeho obsah je cm. Napište předpis funkce, která vyjadřuje závislost strany a na straně b. Doplňte tabulku funkčních hodnot a zakreslete graf této funkce. b 8 a

VY INOVACE_MA Nepřímá úměrnost - Pracovní list řešení. lichá lichá sudá sudá

VY INOVACE_MA. Vzorec pro výpočet obsahu obdélníku je: S a b. S Odtud vyjádříme a jako: a tedy a. b b b 8 a 8 5

VY INOVACE_MA Prameny a literatura Doc. RNDr. Odvárko, DrSc., Oldřich. Matematika pro gymnázia Funkce. Praha: Prometheus,, ISBN 8-9-- Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware).

VY INOVACE_MA Střední průmyslová škola, Hronov, Hostovského 9 VY INOVACE_MA Vytvořila: Mgr. Lucie Pošvářová Únor V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo GP: CZ../.5./.59 AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

VY INOVACE_MA Lineární lomená funkce - Pracovní list zadání, záznamový arch. Do připravených soustav souřadnic zakreslete grafy následujících funkcí a napište jejich definiční obor a obor hodnot: f f : y : y f : y f : y

VY INOVACE_MA. Do připravené soustavy souřadnic zakreslete graf následující funkce a napište její definiční obor a obor hodnot: g : y

VY INOVACE_MA. Upravte si předpisy následujících funkcí, napište jejich definiční obory a obory hodnot a popište, jak by se načrtl graf (kam posunete graf jaké nepřímé úměry). a. b. c. f : y g : y h : y d. e. k : y l : y

VY INOVACE_MA Lineární lomená funkce - Pracovní list řešení. D ( f ) ( ;) ( ; ) D( f ) ( ;) ( ; ) H ( f ) ( ;) ( ; ) H ( f ) ( ; ) ( ; ) D ( f ) ( ; ) ( ; ) D( f ) ( ;) ( ; ) H ( f ) ( ;) ( ; ) H ( f ) ( ;) ( ; ) 5

VY INOVACE_MA. D ( g ) ( ; ) ( ; ) H ( g) ( ;) ( ; ). a. f : y y y y D H ( f ) ( ;) ( ; ) ( f ) ( ;) ( ; ) Posuneme y o nahoru a o doprava.

VY INOVACE_MA b. : y g ( ) y ( ) y ( ) y y y ( ) ( ) ( ) ; ; g D ( ) ( ) ( ) ; ; g H Posuneme y o dolu a o doleva. c. : y h y y y ( ) y y

VY INOVACE_MA 8 ( ) ( ) ( ) ; ; h D ( ) ( ) ( ) ; ; h H Posuneme y o nahoru a o doprava. d. : y k y y 5 y 5 y 5 y ( ) ; ; k D ( ) ; ; k H Posuneme y 5 o nahoru a o doleva.

VY INOVACE_MA 9 e. : y l ( ) y ( ) y ( ) 5 y ( ) ( ) 5 y ( ) ( ) ( ) 5 y 5 y ( ) ( ) ( ) ; ; l D ( ) ; ; l H Posuneme y 5 o nahoru a o doprava.

VY INOVACE_MA Prameny a literatura Doc. RNDr. Odvárko, DrSc., Oldřich. Matematika pro gymnázia Funkce. Praha: Prometheus,, ISBN 8-9-- Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware).

VY INOVACE_MA 5 Vytvořila: Mgr. Lucie Pošvářová Únor V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz../.5./.59 Z../.5./.59 VY INOVACE_MA 5 Lineární lomená funkce AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Únor je funkce daná předpisem c d c d D d c Lineární lomená funkce d c y a c c ( f ) ; ; d c b d a, b, c, d R ad bc jinak by se jednalo jinak by o lineární se jednalo funkci o část konstantní funkce c f : y f : y a b y c d ad bc g : y ; ; D ( f ) ( ; ) D( g) ( ) ( ) ( ) g : y g : y

y a c b d Grafem lineární lomené funkce je ROVNOOSÁ HYPERBOLA Načrtněte graf funkce Úprava předpisu funkce: rozložíme na dva zlomky zkrátíme 5 y f 5 y můžeme přehodit činitele v rozdílu : y 5 D H ( f ) ( ;) ( ; ) ( f ) ( ;) ( ; ) k sestrojení grafu využijeme graf funkce nepřímá úměrnost 5 y nejprve však budeme muset upravit předpis dané lineární lomené funkce posuneme graf nepřímé úměry o nahoru nezapomene posunout také asymptotu do grafu dokreslíme graf nepřímé úměry 5 y využijeme k tomu body [ 5;] [ ;5] [ ; 5] [ 5; ] posuneme graf o nahoru pomocné body se posunou do bodů: [ 5;] [ ; ] [ ; ] [ 5;] načrtneme graf 5 f : y Načrtněte graf funkce Úprava předpisu funkce:. v čitateli potřebujeme stejný výraz jako ve jmenovateli, abychom mohli krátit. rozložíme na dva zlomky ( ) y ( ) y ( ) y f : y H D. zkrátíme ( f ) ( ; ) ( ; ) y. můžeme přehodit činitele v rozdílu y 5. posuneme graf nepřímé úměry o dolu a o doleva ( f ) ( ; ) ( ; )

do grafu dokreslíme graf nepřímé úměry y využijeme k tomu body [ ; ] [ ; ] [ ; ] [ ;] posuneme graf o dolu a o doleva pomocné body se posunou do bodů: [ 5; 5] [ ; ] [ ;8] [ 9; ] načrtneme graf f : y Prameny a literatura Doc. RNDr. Odvárko, DrSc., Oldřich. Matematika pro gymnázia Funkce. Praha: Prometheus,, ISBN 8-9-- Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware).

VY INOVACE_MA Střední průmyslová škola, Hronov, Hostovského 9 VY INOVACE_MA Vytvořila: Mgr. Lucie Pošvářová Únor V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo GP: CZ../.5./.59 AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

VY INOVACE_MA Lineární lomená funkce Test Skupina A. Přiřaďte k sobě předpisy funkcí a grafy: 5 f : y 5 f : y

VY INOVACE_MA. Napište předpis pro funkci znázorněné níže a do téže soustavy souřadnic zakreslete 9 graf funkce g : y, napište jejich definiční obory a obory hodnot.

VY INOVACE_MA Lineární lomená funkce Test Skupina B. Přiřaďte k sobě předpisy funkcí a grafy: 5 f : y 5 f : y

VY INOVACE_MA. Napište předpis pro funkci znázorněné níže a do téže soustavy souřadnic zakreslete 8 graf funkce g : y, napište jejich definiční obory a obory hodnot. 5

VY INOVACE_MA Prameny a literatura Doc. RNDr. Odvárko, DrSc., Oldřich. Matematika pro gymnázia Funkce. Praha: Prometheus,, ISBN 8-9-- Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware).

5.. VY INOVACE_MA Vytvořila: Mgr. Lucie Pošvářová Únor V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz../.5./.59 Z../.5./.59 VY INOVACE_MA Lineární lomená funkce s absolutní hodnotou AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Únor Načrtněte graf funkce budeme vycházet z grafu funkce upravíme předpis funkce f y y y všechny záporné funkční hodnoty se díky absolutní hodnotě stanou kladnými část grafu, která byla pod osou nakreslíme souměrně nad osu H ( ) ; ) f f : y D f : y ( ) ( ; ) ( ; ) f Načrtněte graf funkce budeme vycházet z grafu funkce úpravu předpisu funkce f i její graf známe z předchozího příkladu y díky absolutní hodnotě budeme pro záporná dostávat stejné funkční hodnoty jako pro kladná např. pro - dostaneme stejnou funkční hodnotu jako pro část grafu, která byla vlevo od osy y smažeme a nakreslíme sem souměrně s osou y část grafu, která je vpravo od osy y H ( f ) ;) f : y f D : y ( ) ( ; ) f

5.. Načrtněte graf funkce odstraníme ze jmenovatele absolutní hodnotu najdeme nulový bod ( ; ) y y ( ) y ( ) ( ) y D f : y ( ) ( ; ) ( ; ) f ( ) ; y y y Načrtněte graf funkce z předchozích výpočtů víme, že budeme kreslit dvě funkce, každou na jiném intervalu ( ; ) y ( ) ; y tato funkce má ale platit pouze pro ( ; ) D f : y ( ) ( ; ) ( ; ) f y ( ) y Načrtněte graf funkce nyní nakreslíme druhou funkci f : y Načrtněte graf funkce výsledný graf má tedy následující podobu f : y ( ) ; y D ( ) ( ; ) ( ; ) f D ( ) ( ; ) ( ; ) f tato funkce má ale platit pouze pro ( ) ; H ( f ) ( ) ;

5.. Načrtněte graf funkce zkuste samostatně výsledek: D f : y ( ) ( ; ) ( ; ) f Prameny a literatura Doc. RNDr. Odvárko, DrSc., Oldřich. Matematika pro gymnázia Funkce. Praha: Prometheus,, ISBN 8-9-- H ( ) ( ; ) ; ) f Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware).

VY INOVACE_MA 8 Vytvořila: Mgr. Lucie Pošvářová Únor V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz../.5./.59 Z../.5./.59 VY INOVACE_MA 8 Užití integrálního počtu - obsah rovinného útvaru AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Únor Vypočítejte obsah plochy ohraničené přímkami: y y plochu můžeme rozdělit na dvě části pravoúhlý trojúhelník a obdélník obsah obdélníku je pro nás tedy S a b S j obsah pravoúhlého trojúhelníku vypočítáme jako pro nás tedy S obsah celé plochy je a b S S S j S j musíme určit průsečíky přímek y y P [ ;] y y P [ ;]

S S b a f ( ) d ( ) d [ ] Jiný způsob řešení obsah plochy pod křivkou vypočítáme jako určitý integrál ( ) 8 Vypočítejte obsah plochy ohraničené křivkami: y cos π y j plochu můžeme rozdělit na čtyři části všechny čtyři části mají stejný obsah S cos d π π [ sin ] π sin sin ( ) j y y Vypočítejte obsah plochy ohraničené křivkami:

funkce nabývá v daném intervalu nekladných hodnot pro příslušný integrál platí ( ) d S 8 8 8 8 8 8 8 8 ( ) d obsah plochy tedy spočítáme jako ( ) ( ) d d S j Vypočítejte obsah plochy ohraničené křivkami: y y plochu rozdělíme na dvě části ( ) ( ) d d S 8 8 8 8 9 j použijeme výsledek předchozího příkladu Prameny a literatura Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware). RNDr. Hrubý, Dag, RNDr. Kubát, Josef. Matematika pro gymnázia Diferenciální a integrální počet. Praha: Prometheus, 5, ISBN 8-9--

VY INOVACE_MA 9 Střední průmyslová škola, Hronov, Hostovského 9 VY INOVACE_MA 9 Vytvořila: Mgr. Lucie Pošvářová Únor V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo GP: CZ../.5./.59 AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

VY INOVACE_MA 9 Užití integrálního počtu obsah rovinného útvaru Pracovní list zadání, záznamový arch Vypočítejte obsah plochy ohraničené křivkami:. y 5, y. y sin, y,, π

VY INOVACE_MA 9. y, y, y,. y, y

VY INOVACE_MA 9 Užití integrálního počtu obsah rovinného útvaru Pracovní list nápověda. y 5, y. y sin, y,, π. y, y, y,. y, y

VY INOVACE_MA 9 Užití integrálního počtu obsah rovinného útvaru Pracovní list řešení. y 5, y. y sin, y,, π S ( 5) 5 π d S ( sin ) 5 5 5 5 5 j π ( sin ) [ cos ] d π π π j d 5

VY INOVACE_MA 9. y, y, y,. y, y [ ] 8 8 j d d S ( ) ( ) 9 9 j d d d S

VY INOVACE_MA 9 Prameny a literatura RNDr. Hrubý, Dag, RNDr.Kubát, Josef. Matematika pro gymnázia Diferenciální a integrální počet. Praha: Prometheus, 5, ISBN 8-9-- Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware).

.. VY INOVACE_MA Vytvořila: Mgr. Lucie Pošvářová Březen V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz../.5./.59 Z../.5./.59 VY INOVACE_MA Užití integrálního počtu - objem rotačního tělesa AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Březen Vypočítejte objem tělesa, které vznikne rotací útvaru ohraničeného danými přímkami kolem osy : y 9 y Vypočítejte objem tělesa, které vznikne rotací útvaru ohraničeného danými přímkami kolem osy : y 9 y

.. přímky ohraničují rovnoramenný pravoúhlý trojúhelník jeho rotací kolem jedné odvěsny vznikne kužel výška kuželu je poloměr podstavy je objem kuželu vypočítáme jako pro nás tedy V což je přibližně 9 j 9 j V π r v π 9 9 π j v r V π V π 9 d π 9 b a f Jiný způsob řešení objem tělesa vypočítáme pomocí určitého integrálu ( ) d j π 9 π j Vzorce pro zapamatování: objem tělesa, které vznikne rotací Prameny a literatura kolem osy V π b a f ( ) d RNDr. Hrubý, Dag, RNDr. Kubát, Josef. Matematika pro gymnázia Diferenciální a integrální počet. Praha: Prometheus, 5, ISBN 8-9-- Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. kolem osy y Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware). V π b a f ( y) dy

VY INOVACE_MA Střední průmyslová škola, Hronov, Hostovského 9 VY INOVACE_MA Vytvořila: Mgr. Lucie Pošvářová Březen V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo GP: CZ../.5./.59 AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

VY INOVACE_MA Užití integrálního počtu objem rotačního tělesa Pracovní list zadání, záznamový arch Vypočítejte objem tělesa, které vznikne rotací útvaru ohraničeného danými křivkami kolem osy :. y 5, y. y, y, y,

VY INOVACE_MA Užití integrálního počtu objem rotačního tělesa Pracovní list nápověda. y 5, y. y, y, y,

VY INOVACE_MA Užití integrálního počtu objem rotačního tělesa Pracovní list řešení. y 5, y. y, y, y, ( ) ( ) 5 5 5 5 5 5 5 5 5 5 5 5 5 j d d V π π π π π ( ) ( ) 5 5 8 5 5 5 5 5 j d d V π π π π π π

VY INOVACE_MA Prameny a literatura RNDr. Hrubý, Dag, RNDr.Kubát, Josef. Matematika pro gymnázia Diferenciální a integrální počet. Praha: Prometheus, 5, ISBN 8-9-- Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware). 5

VY INOVACE_MA VY INOVACE_MA Vytvořila: Mgr. Lucie Pošvářová Duben V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz../.5./.59 Z../.5./.59 Posloupnosti AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Duben Nekonečná posloupnost - FUNKCE, jejímž definičním oborem je n ( ) n VZOREC PRO n-tý ČLEN funkce: f : y nekonečná posloupnost: n ( ) n f : y R n n N množina N a a a a a n n 8 atd.

n Konečná posloupnost - FUNKCE, jejímž definičním oborem je n ( ) n VZOREC PRO n-tý ČLEN a n n { ;} množina { ;;; ;n} Příklad: Vypište z grafu všechny členy konečné posloupnosti a zapište danou posloupnost pomocí vzorce pro n-tý člen. a a a a a5 5 a a a n n ( n) n Příklad: Vypište z grafu všechny členy konečné posloupnosti a zapište danou posloupnost pomocí vzorce pro n-tý člen. Podívejme se, jak vypadá příslušná funkce: f : y a a a 9 a n n ( n ) n

Podívejme se, jak vypadá příslušná funkce: f : y Příklad: Vypište z grafu všechny členy konečné posloupnosti a zapište danou posloupnost pomocí vzorce pro n-tý člen. a a a a a 5 a n ( ) 5 n Příklad: Vypište z grafu všechny členy konečné posloupnosti a zapište danou posloupnost pomocí vzorce pro n-tý člen. Podívejme se, jak vypadá příslušná funkce: f : y a a a a a5 a a n n ( ) n ( ) ) n

Podívejme se, jak vypadá příslušná funkce: Taková funkce neeistuje nemůžeme mít základ mocniny u eponenciální funkce menší než nula!!! Prameny a literatura Doc. RNDr. Odvárko, DrSc., Oldřich. Matematika pro gymnázia Posloupnosti a řady. Praha: Prometheus,, ISBN 8-9-95- Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware).

VY INOVACE_MA Vytvořila: Mgr. Lucie Pošvářová Duben V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz../.5./.59 Z../.5./.59 Posloupnosti - rekurentní určení VY INOVACE_MA AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Duben ( a ) n n recurrere - z latiny- vraceti se, jíti zpět -každý další člen posloupnosti dostaneme pomocí předchozího členu nebo předchozích členů a a n a n -každý další člen dostaneme tak, že ten stávající vynásobíme - ( a ) n n a a n a n a a a -.a a - -.a a -.a a 8 - a n -.a n a n -.a n a n ( ) 8 a a a a 8 -. -.(-) -.8 ( ) a5 a

Určete k dané posloupnosti vyjádřené rekurentně vzorec pro n-týčlen. ( a ) n n a a n a n Danou posloupnost již známe rekurentně i vzorcem pro n-tý člen. Ještě nakreslíme graf. ( a ) n n a a n a n n n n ( ) a Vypíšeme si několik členů posloupnosti: a ( ) a a 8 a 5 8 5 a Snažíme se najít souvislost mezi n-týmčlenem a n. n a n n n n ( ) a? Střídá se nám a -. Ve vzorci musí být mocnina čísla -. Čtvercová čísla představují počet kamínků, které potřebujeme k vytvoření čtverce. napište rekurentní určení a vzorec pro n-tý člen Zvláštní posloupnosti - čtvercová čísla c c c n cn n c c n n ( ) c 9 c

Trojúhelníková čísla představují počet kamínků, které potřebujeme k vytvoření rovnostranného trojúhelníku. napište rekurentní určení a vzorec pro n-tý člen Zvláštní posloupnosti - trojúhelníková čísla t t t n tn n t t n n ( n ) t t Záclonová čísla představují počet žabek, které potřebujeme k pověšení záclony tak, že první dvě dáme na konce záclony a další vždy doprostřed. napište rekurentní určení a vzorec pro n-tý člen Zvláštní posloupnosti - záclonová čísla KVAK, TAK, KVAK! TAK! z z n z n z n n

Prameny a literatura Doc. RNDr. Odvárko, DrSc., Oldřich. Matematika pro gymnázia Posloupnosti a řady. Praha: Prometheus,, ISBN 8-9-95- Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware).

VY INOVACE_MA Vytvořila: Mgr. Lucie Pošvářová Duben V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz../.5./.59 Z../.5./.59 VY INOVACE_MA Vlastnosti posloupností AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Duben Posloupnost r, s N je - li platí : Klesající posloupnost ( a ) n n se nazývá klesající, právě když pro všechna r < s, pak a > r a s. Posloupnost platí : Klesající posloupnost ( a ) klesající, právě když pro všechna n N a n < a n n n S rostoucím n, klesá a. se nazývá n a n an <

a n n a n ( n ) ( n ) ( ) an an n n n < a n an < Posloupnost r, s N platí : Rostoucí posloupnost ( a ) n n se nazývá rosotucí, právě když pro všechna je - li r < s, pak a < r a s. posloupnost je klesající Posloupnost platí : Rostoucí posloupnost ( a ) rostoucí, právě když pro všechna n N a n > a n n n S rostoucím n, roste a. se nazývá n a n n 8 a n n 8 ( ) an an n 8 n 8 n n 8 > a n an > posloupnost je rostoucí a n an >

Prameny a literatura Doc. RNDr. Odvárko, DrSc., Oldřich. Matematika pro gymnázia Posloupnosti a řady. Praha: Prometheus,, ISBN 8-9-95- Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware).

VY INOVACE_MA 5 Vytvořila: Mgr. Lucie Pošvářová Duben V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz../.5./.59 Z../.5./.59 Aritmetmetická posloupnost VY INOVACE_MA 5 AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Duben Posloupnost Aritmetická posloupnost ( a ) aritmetická, právě když eistuje takové d R, že pro každé n N platí : a a d. n n n n se nazývá - každý další člen dostaneme tak, že ke stávajícímu členu přičteme d - d se nazývá diference aritmetické posloupnosti Aritmetická posloupnost - jak dostaneme libovolný člen pomocí diference a prvního členu? V aritmetické posloupnosti ( n ) d. ( a ) s diferencí d R pro každé n N platí : a n a n n a a d a a a a d 5 a d a d d d d d d d d d d d a a a a a n a n a n a a a a a 5 a n a n d d d (n-).d n.d

Aritmetická posloupnost - jak dostaneme libovolný člen pomocí diference a jiného členu? V aritmetické posloupnosti ( s r) d. ( a ) s diferencí d R pro každé r,s N a s a r n n platí : a5 a d a a d a a a d a d Součet prvních n členů aritmetické posloupnosti - pozorně se posaďte, utište se a poslouchejte a možná je to pravda povíme si pohádku d d d d d d a a a a a 5 a a d d d d Obrázek byl stažen z: http://www.rare-earth-magnets.com/t-johann-carl-friedrich-gauss.asp O malém Gaussovi Kdysi dávno (přesněji mezi lety a 855) žil Karl Friedrich Gauss. Podívejme se do doby, kdy mimochodem byl tento velikán jeden ještě z největších malý, asi tak fyziků v první a matematiků třídě. Gaussův učitel Büttner chtěl mít od dětí chvíli pokoj a tak zadal malým počtářům následující úkol: to už se tak učitelům někdy stává Sečíst všechna čísla od do. A všichni žáčci počítali a počítali a počítali a počítali a počítali Všichni, kromě Gausse. Když se ho učitel zeptal, proč nepočítá, odvětil, že Výsledek je 55. Jak na to mohl tak rychle přijít? Napsal všechna čísla od do vedle sebe. Pod ně napsal čísla od do. A sečetl čísla ve sloupečcích. 9 98 99 99 98 9 Místo sčítání čísel od do jednoho po druhém, tedy stačilo, aby sečetl číslo a výsledek vydělil. s ( ) čerpáno z knihy: ŠTOLL, Ivan. Historky o slavných fyzicích a matematicích.. vyd. Praha: Prometheus, 5, s. ISBN 8-9-9-. čerpáno z knihy: ŠTOLL, Ivan. Historky o slavných fyzicích a matematicích.. vyd. Praha: Prometheus, 5, s. ISBN 8-9-9-.

Součet prvních n členů aritmetické posloupnosti - z předchozího odvodíme obecný vzorec n s ( a ) n a n Prameny a literatura Doc. RNDr. Odvárko, DrSc., Oldřich. Matematika pro gymnázia Posloupnosti a řady. Praha: Prometheus,, ISBN 8-9-95- ŠTOLL, Ivan. Historky o slavných fyzicích a matematicích.. vyd. Praha: Prometheus, 5, s. ISBN 8-9-9-. kolik členů sčítáme první člen součtu (posloupnosti) poslední člen součtu AUTOR NEUVEDEN. Johann Carl Friedrich Gauss [online]. [cit...]. Dostupný na WWW: http://www.rare-earth-magnets.com/t-johann-carl-friedrich-gauss.asp Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware).

VY INOVACE_MA Vytvořila: Mgr. Lucie Pošvářová Duben V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz../.5./.59 Z../.5./.59 Geometrická posloupnost VY INOVACE_MA AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Duben Posloupnost Geometrická posloupnost ( a ) geometrická, právě když eistuje takové q R, že pro každé n N platí : a a q. n n n n se nazývá - každý další člen dostaneme tak, že stávající člen vynásobíme q - q se nazývá kvocient geometrické posloupnosti Geometrická posloupnost - jak dostaneme libovolný člen pomocí kvocientu a prvního členu? V geometrické posloupnosti s kvocientem a n a q. n ( a ) n n q pro každé n N platí : a a a a q a q a q a 5 a q.q.q.q.q.q.q.q.q.q.q a a a a a n a n a n a a a a a 5 a n a n.q.q.q.q n-.q n

s kvocientem Geometrická posloupnost - jak dostaneme libovolný člen pomocí kvocientu a jiného členu? V geometrické posloupnosti a a r q s sr. ( a ) n n q pro každé r,s N platí : a a a 5 a q a q a q a a q Součet prvních n členů geometrické posloupnosti pro q s n n a.q.q.q.q.q.q kolik členů sčítáme a a a a a 5 a a první člen součtu (posloupnosti).q.q.q.q Součet prvních n členů geometrické posloupnosti pro q n q sn a q kolik členů sčítáme první člen součtu (posloupnosti) kvocient Prameny a literatura Doc. RNDr. Odvárko, DrSc., Oldřich. Matematika pro gymnázia Posloupnosti a řady. Praha: Prometheus,, ISBN 8-9-95- Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware).

VY INOVACE_MA Střední průmyslová škola, Hronov, Hostovského 9 VY INOVACE_MA Vytvořila: Mgr. Lucie Pošvářová Duben V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo GP: CZ../.5./.59 AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

VY INOVACE_MA Posloupnosti a jejich vlastnosti Pracovní list zadání, záznamový arch a.. Následující graf znázorňuje část konečné posloupnosti ( ) 5 n n a. Vypište prvních pět členů posloupnosti. b. Napište vzorec pro n-tý člen posloupnosti. c. Napište rekurentní vyjádření posloupnosti. d. Určete, zda je posloupnost aritmetická nebo geometrická. Své tvrzení zdůvodněte. e. Určete poslední člen posloupnosti. f. Určete součet všech členů posloupnosti. g. Určete, zda je posloupnost rostoucí nebo klesající. Své tvrzení zdůvodněte.

VY INOVACE_MA b.. Následující graf znázorňuje část konečné posloupnosti ( ) n n a. Vypište první tři členy posloupnosti. b. Napište vzorec pro n-tý člen posloupnosti. c. Napište rekurentní vyjádření posloupnosti. d. Určete, zda je posloupnost aritmetická nebo geometrická. Své tvrzení zdůvodněte. e. Určete poslední člen posloupnosti. f. Určete součet všech členů posloupnosti. g. Určete, zda je posloupnost rostoucí nebo klesající. Své tvrzení zdůvodněte.

VY INOVACE_MA Posloupnosti a jejich vlastnosti Pracovní list řešení. a. Prvních pět členů: a a a a a 5 b. Vzorec pro n-tý člen: ( n ) n a n c. Rekurentní určení: a a n an d. Posloupnost je aritmetická, protože a n an, odtud a n an. Rozdíl dvou sousedních členů není závislý na tom, jaké členy odčítáme. Je pořád stejný. Je to diference posloupnosti, d. an ( n ) n Geometrická není, protože. Podíl dvou sousedních an n n členů je závislý na tom, jaké členy dělíme. e. Posloupnost má 5 členů, a 5. 5 f. Součet všech členů posloupnosti: 5 5 s ( ) 5 ( ) ( ) ( ) 5 5 g. Posloupnost je klesající. Každá aritmetická posloupnost se zápornou diferencí je klesající.

VY INOVACE_MA 5. a. První tři členy: b 8 9 b b b. Vzorec pro n-tý člen: n n b c. Rekurentní určení: b n n b b d. Posloupnost je geometrická, protože, n n b b, odtud n n b b. Podíl dvou sousedních členů není závislý na tom, jaké členy dělíme. Je pořád stejný. Je to kvocient posloupnosti, q. Aritmetická není, protože n n n n b n b n n n. Rozdíl dvou sousedních členů je závislý na tom, jaké členy odčítáme. e. Posloupnost má členů, b. f. Součet všech členů posloupnosti: s ( ) g. Posloupnost je rostoucí. Každá geometrická posloupnost s kladným prvním členem a kladným kvocietem je rostoucí.

VY INOVACE_MA Prameny a literatura Doc. RNDr. Odvárko, DrSc., Oldřich. Matematika pro gymnázia Posloupnosti a řady. Praha: Prometheus,, ISBN 8-9-95- Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware).

VY INOVACE_MA 8 Vytvořila: Mgr. Lucie Pošvářová Květen V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz../.5./.59 Z../.5./.59 Limita posloupnosti VY INOVACE_MA 8 AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Květen Posloupnost ( a ) n n se nazývá konvergentní, právě když a R ε > n N n N n n a a < ε Číslo a se nazývá ita posloupnosti. Od jistého n počínaje se mi a n vejde do malinkatého okolí bodu a. - máme zvolené n ε > - umíme k němu najít n N tak, že od tohoto n počínaje, - je vezmeme vzdálenost menší každého ε a n od a menší než zvolené ε -to - vezmeme znamená, ještě že všechna menší εtato a n patří do vnitřku pásu ohraničeného aε, - vezmeme a-ε ještě menší ε Posloupnost ( ) n n a má itu a. n a n a Čteme: ita a n pro n jdoucí do nekonečna je rovna a. - a ještě menší ε Posloupnost, která není konvergentní, se nazývá divergentní.

n Posloupnost n a n n n Volte postupně ε ; ; ; 5 a udejte vždy od jakého n N platí <. a n ε ε ( a ), a je konvergentní, její ita. n n n a n ε n n ( n ) < < n N n n n n n ε 5 ε n n n n < < 5 Obrázek n 5 n -vzpomeňte si nejdříve, jak vypadá graf funkce -nyní tento graf změníme na graf posloupnosti y n a n n Prameny a literatura Doc. RNDr. Odvárko, DrSc., Oldřich. Matematika pro gymnázia Posloupnosti a řady. Praha: Prometheus,, ISBN 8-9-95- Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware).

VY INOVACE_MA 9 VY INOVACE_MA 9 Vytvořila: Mgr. Lucie Pošvářová Květen V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz../.5./.59 Z../.5./.59 Zápis pomocí AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Květen Suma n Suma a a n n a n pro n od jedné do nekonečna. a a a pro n od jedné do pěti.. Zapište pomocí součtu následující sumu: ( n ) n ( n ) n -budeme za n postupně dosazovat čísla od do a jednotlivé výrazy sčítat ( ) ( ) ( ) ( ) ( 5 ) ( ) 5 n a n a a a a a 5 ( ) ( ) ( 9 ) ( ) ( 5 ) ( 8 ) 5 8 5 Příklady

. Zapište pomocí součtu následující sumu: n 5 n 5 n 5 8 9 -jedná se o součet prvních devíti členů aritmetické posloupnosti, kde první člen a 5 a diference d 9 8 ( 5 ) 9 8 -budeme za n postupně dosazovat čísla od 5 do a jednotlivé výrazy sčítat 9 9 Další příklad n počet členů n s ( a ) n a n první člen poslední člen. Zapište součet pomocí sumy: 5 9 -sčítáme lichá čísla od 5 do -libovolné liché číslo můžeme napsat jako: n -lichá čísla od 5 do získáme, když pro n bude platit: n Součet pomocí sumy tedy zapíšeme jako: n N { ;;; ;} ( n ) n. Zapište součet pomocí sumy: -čísla ve jmenovateli zlomku jsou mocniny Součet pomocí sumy tedy zapíšeme jako: 9 8,,,, 8 n n, 5 8

Prameny a literatura Doc. RNDr. Odvárko, DrSc., Oldřich. Matematika pro gymnázia Posloupnosti a řady. Praha: Prometheus,, ISBN 8-9-95- RNDr. PETÁKOVÁ, Jindra. Matematika, příprava k maturitě a k přijímacím zkouškám na vysoké školy. Praha: Prometheus,, ISBN 8-9-99-. Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware).

VY INOVACE_MA Vytvořila: Mgr. Lucie Pošvářová Červen V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz../.5./.59 Z../.5./.59 VY INOVACE_MA Nekonečná geometrická řada AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Červen - máme dánu posloupnost ( a ) n n ( s ) n n - vytvoříme novou posloupnost, kde je součet prvních a n n členů posloupnosti ( ) n s a s a a s a a a s a a a a sn a a a a an s n Co to znamená, že je posloupnost součtů konvergentní? - posloupnost má vlastní itu s n n s Říkáme, že určujeme součet nekonečné řady. NEKONEČNÁ ŘADA a a a an a n n reálné číslo A budeme se ptát, zda je posloupnost součtů konvergentní.

- pokud je posloupnost součtů konvergentní, říkáme, že nekonečná řada je konvergentní - ita posloupnosti se nazývá součet nekonečné řady s n n n a s n s ( ) n n - pokud je daná posloupnost a geometrická s kvocientem q a n n -nekonečná řada se nazývá nekonečná geometrická řada s kvocientem q - pokud je posloupnost součtů divergentní, říkáme, že nekonečná řada je divergentní n Nekonečná geometrická řada a, kde a, je konvergentní, právě když pro její kvocient q platí q <. Pro součet s konvergentní nekonečné geometrické řady platí: a s q n Příklad: Napište ve tvaru zlomku číslo,.,,,,,, a n n 5 n 99 a a ( n ), 99 99 99 a n q,,99 95 99 a ( n ) a q < a s q Výsledek můžete zkontrolovat na kalkulačce.

Prameny a literatura Doc. RNDr. Odvárko, DrSc., Oldřich. Matematika pro gymnázia Posloupnosti a řady. Praha: Prometheus,, ISBN 8-9-95- Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware).

VY INOVACE_MA Střední průmyslová škola, Hronov, Hostovského 9 VY INOVACE_MA Vytvořila: Mgr. Lucie Pošvářová Červen V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo GP: CZ../.5./.59 AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

VY INOVACE_MA Nekonečná geometrická řada Pracovní list zadání, záznamový arch. Vypočítejte délku nekonečné lomené čáry na obrázku.. Vypočítejte délku nekonečné spirály na obrázku. Největší polokružnice má poloměr m.

VY INOVACE_MA Nekonečná geometrická řada Pracovní list řešení. Lomenou čáru rozdělíme na dvě části, vypočítáme délku každé z nich a tyto délky pak sečteme. Nejdříve vypočítáme délku šikmých úseček: A A 8 A A 5 A A Každá další úsečka je poloviční. Délky úseček tedy tvoří geometrickou posloupnost, kde první člen a a kvocient q. Součet příslušné geometrické řady označíme s. s a q Nyní vypočítáme délku rovných úseček: A A A A5 A A Každá další úsečka je poloviční. Délky úseček tedy tvoří geometrickou posloupnost, kde první člen a a kvocient q. Součet příslušné geometrické řady označíme s. a s q Celková délka je tedy s s s.

VY INOVACE_MA. První polokružnice má délku l π r π m, druhá polokružnice má délku l π r 5π m, třetí polokružnice má délku l π r, 5π m Každá další polokružnice má poloviční délku, délky polokružnic tvoří geometrickou posloupnost, kde první člen a π a kvocient q. Součet příslušné geometrické řady a π π je s π m. q

VY INOVACE_MA Prameny a literatura Doc. RNDr. Odvárko, DrSc., Oldřich. Matematika pro gymnázia Posloupnosti a řady. Praha: Prometheus,, ISBN 8-9-95- Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware). 5

VY INOVACE_MA Vytvořil: Mgr. Vladimír Klikar Září V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz../.5./.59 Z../.5./.59 Rovnost funkcí VY INOVACE_MA AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Září - funkce f a g se rovnají, právě když: ( f ) D( g). D. pro každé Zapisujeme jako ( f ) platí f ( ) g( ) D f g Příklad: Zjistěte, zda se rovnají funkce f : y a g : y D ( f ) ( ; ) ( ; ) D( g) R f g ( ) ( ) f ( ) g ( )

Příklad: Zjistěte, zda se rovnají funkce f : y a g : y D ( f ) ( ;) ( ; ) D( g) R f f g ( ) g( ) Příklad: Zjistěte, zda se rovnají funkce f : y a g : y D ( f ) R D( g) R f g ( ) ( ) ( ) g( ) f ( ) Prameny a literatura RNDr. Hrubý, Dag, RNDr. Kubát, Josef. Matematika pro gymnázia Diferenciální a integrální počet. Praha: Prometheus, 5, ISBN 8-9-- Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware).

VY INOVACE_MA Střední průmyslová škola, Hronov, Hostovského 9 VY INOVACE_MA Vytvořil: Mgr. Vladimír Klikar Září V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo GP: CZ../.5./.59 AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

VY INOVACE_MA Signum reálného čísla Pracovní list zadání, záznamový arch y sgn, ( f ) R H f ;; Pro > je sgn, pro je sgn, pro < je sgn. D, ( ) { } Přiřaďte ke grafům funkcí uvedené předpisy: y ( ) sgn y e sgn y sgn y sgn ( ) 5 y sgn ( ) y sgn

VY INOVACE_MA

VY INOVACE_MA Signum reálného čísla Pracovní list řešení sgn ( ) f : y f 5 : y e sgn f : y sgn ( ) 5 f : y sgn ( ) f : y sgn f : y sgn

VY INOVACE_MA Prameny a literatura RNDr. Hrubý, Dag, RNDr.Kubát, Josef. Matematika pro gymnázia Diferenciální a integrální počet. Praha: Prometheus, 5, ISBN 8-9-- Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware). 5

VY INOVACE_MA Střední průmyslová škola, Hronov, Hostovského 9 VY INOVACE_MA Vytvořil: Mgr. Vladimír Klikar Září V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo GP: CZ../.5./.59 AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

VY INOVACE_MA Celá část reálného čísla Pracovní list zadání, záznamový arch y [ ], D ( f ) R, H ( f ) Z Celá část reálného čísla je celé číslo n, pro které platí: n < n. Přiřaďte ke grafům funkcí uvedené předpisy: y [ ] y [ ] y [ ] y [ ] y [ ]

VY INOVACE_MA

VY INOVACE_MA Celá část reálného čísla Pracovní list řešení f f f 5 : y : y [ ] [ ] : y [ ] f : y [ ] f : y [ ]

VY INOVACE_MA Prameny a literatura RNDr. Hrubý, Dag, RNDr.Kubát, Josef. Matematika pro gymnázia Diferenciální a integrální počet. Praha: Prometheus, 5, ISBN 8-9-- Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware). 5

VY INOVACE_MA 5 Vytvořil: Mgr. Vladimír Klikar Září V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz../.5./.59 Z../.5./.59 Weierstrassova věta VY INOVACE_MA 5 AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Září Je li funkce f spojitá v uzavřeném intervalu a;b, eistuje alespoň jeden takový bod že pro všechna a; b platí a alespoň jeden takový bod a;, že pro všechna a; b b a; b, f f ( ) ( ), platí f ( ) f ( ). Je li funkce f spojitá v uzavřeném intervalu a;b, f ( a) f ( b), a potom ke každému číslu K, ( a) které leží mezi čísly f a f ( b), eistuje alespoň jeden takový bod c ( a;b), že f ( c) K. f( ) Weierstrassova věta f(b) K f(c) a Bolzano-Weierstrassova věta f( ) a b f(a) c b

Je li funkce f spojitá v uzavřeném intervalu a;b, f ( a) f ( b), a potom ke každému číslu K, ( a) které leží mezi čísly f a f ( b), eistuje alespoň jeden takový bod c ( a;b), že f ( c) K. Je li funkce f spojitá v uzavřeném intervalu a;b, a mají-li čísla f ( a) a f ( b) f ( a) f ( b) <, různá znaménka, tj. potom eistuje alespoň jeden takový bod c ( a;b), že f ( c). může jich být i víc než jeden f(b) a c b Důsledek Bolzano-Weierstrassovy věty f(a) Je li funkce f spojitá v uzavřeném intervalu a;b, a mají-li čísla f ( a) a f ( b) f ( a) f ( b) <, různá znaménka, tj. potom eistuje alespoň jeden takový bod c ( a;b), že f ( c). Prameny a literatura RNDr. Hrubý, Dag, RNDr. Kubát, Josef. Matematika pro gymnázia Diferenciální a integrální počet. Praha: Prometheus, 5, ISBN 8-9-- Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. může jich být i víc než jeden Všechny neocitované kliparty a další grafické objekty jsou součástí prostředků MS Office nebo dílem autora za použití programu Funkce. (Freeware).

VY INOVACE_MA Vytvořil: Mgr. Vladimír Klikar Září V rámci školního projektu: Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projeku:cz../.5./.59 Z../.5./.59 Limita funkce VY INOVACE_MA AKTIVITA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Září Pokud se chcete ještě zachránit, vyřešte následujících příkladů. Za každé správné řešení vám zmizí část obrázku. První příklad správně. příklad. příklad 5 5 5 5 ( ) ( ) ( ) Po zkontrolování výsledku klikněte na příslušné barevné políčko a budete odkázáni na další příklad.

. příklad První příklad špatně ( ) ( ) ( ) První příklad správně, druhý příklad správně. příklad 9 ( ) ( ) ( ) 9 9 9 9 9 9 9 9 První příklad správně, druhý příklad špatně. příklad 9 ( ) ( ) ( ) 9 9 9 9 9 9 9 9 První příklad špatně, druhý příklad správně. příklad 9 ( ) ( ) ( ) 9 9 9 9 9 9 9 9

První příklad špatně, druhý příklad špatně První příklad správně, druhý příklad správně, třetí příklad správně. příklad 9 ( 9) 9 9 9 9 9 ( 9) ( 9). příklad sin 5 5 sin 5 sin 5 5 5 5 5 První příklad správně, druhý příklad správně, třetí příklad špatně První příklad správně, druhý příklad špatně, třetí příklad správně.. příklad. příklad sin 5 sin 5 5 sin 5 sin 5 5 5 5 5 5 sin 5 sin 5 5 5 5 5

První příklad správně, druhý příklad špatně, třetí příklad špatně První příklad špatně, druhý příklad správně, třetí příklad správně. příklad. příklad sin 5 sin 5 5 sin 5 sin 5 5 5 5 5 5 sin 5 sin 5 5 5 5 5 První příklad špatně, druhý příklad správně, třetí příklad špatně První příklad špatně, druhý příklad špatně, třetí příklad správně. příklad. příklad sin 5 sin 5 5 sin 5 sin 5 5 5 5 5 5 sin 5 sin 5 5 5 5 5

První příklad špatně, druhý příklad špatně, třetí příklad špatně. příklad První příklad správně, druhý příklad správně, třetí příklad správně, čtvrtý příklad správně 5. příklad sin 5 5 sin 5 sin 5 5 5 5 5 První příklad správně, druhý příklad správně, třetí příklad správně, čtvrtý příklad špatně 5. příklad První příklad správně, druhý příklad správně, třetí příklad špatně, čtvrtý příklad správně 5. příklad 5

První příklad správně, druhý příklad správně, třetí příklad špatně, čtvrtý příklad špatně 5. příklad První příklad správně, druhý příklad špatně, třetí příklad správně, čtvrtý příklad správně 5. příklad První příklad správně, druhý příklad špatně, třetí příklad správně, čtvrtý příklad špatně 5. příklad První příklad správně, druhý příklad špatně, třetí příklad špatně, čtvrtý příklad správně 5. příklad

První příklad správně, druhý příklad špatně, třetí příklad špatně, čtvrtý příklad špatně 5. příklad První příklad špatně, druhý příklad správně, třetí příklad správně, čtvrtý příklad správně 5. příklad První příklad špatně, druhý příklad správně, třetí příklad správně, čtvrtý příklad špatně 5. příklad První příklad špatně, druhý příklad správně, třetí příklad špatně, čtvrtý příklad správně 5. příklad