ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA ŽIVOTNÍHO PROSTŘEDÍ DIPLOMOVÁ PRÁCE Modeloání proudění ody na měrném přeliu Vedoucí práce: Ing. Jiří Palásek, Ph.D. Diplomant: Roman Kožín 009
Prohlášení Prohlašuji, že jsem tuto diplomoou práci ypracoal samostatně pod edením Ing. Jiřího Paláska, Ph.D., a že jsem uedl šechny literární prameny ze kterých jsem čerpal. V Praze 30.7.009
Poděkoání Rád bych poděkoal edoucímu diplomoé práce, Ing. Jiřímu Paláskoi, Ph.D., za rady a připomínky. Dále pak Ing. Martinu Kantoroi a Ing. Aleši Macálkoi, kteří mi pomáhali s praktickou částí řešení e FLUENTu. Ing. Petru Baštoi za pomoc při interpolaci gridu a Šárce Brdlíkoé za pomoc při měření s totální stanicí.
Abstrakt Diplomoá práce se zabýá 3D simulací neustáleného proudění korytě Ptačího potoka na Šumaě, kde byl ybudoán měrný profil s Thomsonoým přeliem. Měrný profil i koryto byly zaměřeny za účelem ytoření ýpočetní sítě sloužící k simulaci proudění potoce a na měrném přeliu. Prostřednictím ariantních ýpočtů byly určeny body kozumpční křiky přeliu a její zpřesnění při etrémním průtoku. K tomu bylo yužito matematického modeloání CFD a softwaroého prostředí FLUENT. Přínos práce je oěření přesnosti měření průtoků a zpřesnění konzumpční křiky oblasti etrémních průtoků. Klíčoá sloa: CFD modeloání, oteřená koryta, konzumpční křika Abstract This thesis deals with 3D simulation of unsteady flow in open channel of Ptaci Potok in Sumaa. A V-notch scharp-crested weir was built up there with a hydrometric profile. The weir and the channel were located in order to set up a numerical grid for the flow simulation. Computational fluid dynamics (CFD) and FLUENT software was used for the simulation. Using the ariant calculus the points of discharge cure and its etrapolation for etreme discharge can be determined. This type of simulation can erify the actual alues of discharge measurements and improes the accuracy of the discharge cure for etreme discharges. Key words: CFD modeling, open channel, discharge cure
Obsah 1. Úod... 8. Cíle práce... 8 3. Charakteristika území... 9 3.1 Charakteristiky poodí... 10 3. Měrný přeli... 10 4. Mechanika tekutin... 11 4.1 Newtonské tekutiny... 11 4. Nenewtonské tekutiny... 1 4.3 Fyzikální lastnosti tekutin... 1 4.4 Hydrostatika... 14 4.5 Hydrodynamika... 15 4.5.1 Základní pojmy z hydrodynamiky... 15 4.5. Režim proudění... 18 4.5..1 Ustálené ronoměrné proudění... 18 4.5.. Ustálené neronoměrné proudění... 19 4.5..3 Neustálené proudění... 0 4.5..4 Proudění bystřinné, kritické a říční... 1 4.5.3 Ronice proudění tekutin... 4 4.5.3.1 Ronice kontinuity... 4 4.5.3. Euleroa ronice ideální tekutiny... 6 4.5.3.3 Naier-Stokesoa ronice pro nestlačitelnou tekutinu... 8 4.5.3.4 Bernoulliho ronice... 9 4.5.4 Proudění korytech a jeho řešení... 31 4.5.4.1 Ustálený ronoměrný průtok... 3 4.5.4. Ustálený neronoměrný průtok... 33 4.5.4.3 Neustálený průtok... 36 5. Přepad... 37 5.1 Přepad přes ostrou hranu... 37 5.1.1 Obecný tar ronice přepadu... 39 6. Thomsonů přeli... 40 6.1 Omezení použitelnosti... 43
6. Konzumpční křika při etrémních průtocích... 44 7 Matematické CFD modeloání... 45 7.1 Výpočetní síť... 45 7. Gambit... 46 7..1 Kalita sítě... 47 7.3 Fluent... 48 7.3.1 Metoda konečných objemů... 49 7.3. Numerické řešení turbulence... 5 7.3.3 Vícefázoé proudění... 56 7.3.4 Soler... 57 7.3.5 Konergence... 59 8 Interpolační metoda IDW... 60 9 Metodika... 6 9.1 Sběr a zpracoání dat... 6 9. Torba geometrie a sítě... 63 9.3 Vlastní ýpočet... 69 9.3.1 Nastaení ýpočtu... 69 10. Výsledky a diskuze... 74 11 Záěr... 78 1 Použitá literatura... 79 13 Příloha 1... 80
Použité značky p tlak [Pa] T teplota [ C, K] C p měrné teplo [J/Kg/K] ρ hustota [Kg/m3] m hmotnost [Kg] V objem [m3] β objemoá roztažnost χ objemoá stlačitelnost [m.n -1 ] η dynamická iskozita [N.s.m - ] ν kinematická iskozita [m.s -1 ] σ porchoé napětí [N.m -1 ] τ tangenciální napětí [N.m - ] R e Reynoldsoo číslo [-] R hydraulický poloměr [-] F r Froudoo číslo [-] S obsah, plocha [m ] rychlost [m.s -1 ] Q průtok [m 3.s -1 ] Q m hmotnostní průtok [kg.s -1 ] F síla [N] a zrychlení [m.s - ] l délka [m] g graitační zrychlení [m.s - ] ζ ztrátoý součinitel [-] e z ztrátoá energie [-] h, z, H ýška, hloubka [m] C e přepadoý součinitel [-] Θ úhel koruně přeliu [ ] α rychlostní koef. [-] E specifická energie [-] i 0, i e, i f sklon dna, čáry energie, čáry ztrát [-] m sklon břehů [-] b, B šířka [m] K h koef. lastnosti kapalin [-] C Chezyho rychlostní součinitel [m 0.5.s -1 ] n Manningů součinitel drsnosti [-]
1. Úod Řešení odtoku z malých lesnických a zemědělských poodí a jeho měření je problém, kterým se zabýá současná hydrologie. Práě zpřesňoání měření průtoků, zláště pak měření popř. simulace poodňoých ln jsou faktory, které nám pomohou poskytnout informace o choání daného poodí. Diplomoá práce se zabýá simulací proudění korytě Ptačího potoka, přesněji jeho části pramenné oblasti, kde byl ybudoán měrný profil s Thomsonoým přeliem. Ptačí potok ododňuje eperimentální poodí Modraa, které se nachází na seerním sahu Malé Mokrůky na Šumaě. Modraská poodí byla ybudoána Katedrou odního hospodářstí a Katedrou biotechnických úpra krajiny FLE ČZU roce 1998 rámci ýzkumných aktiit grantoého projektu VaV 60/6/97 Obnoa biodierzity a stability lesních ekosystémů pásmu přirozeného rozšíření smrku na území NP Šumaa. V současné době jsou spraoána Katedrou odního hospodářstí a enironmentálního modeloání. (www.khem.cz). Cíle práce Práce si klade za cíl zaměřit měrný profil a koryto Ptačího potoka. Vytořit ýpočetní síť a nasimuloat proudění potoce a na měrném přeliu. Prostřednictím ariantních ýpočtů určit měrnou křiku (kozumpční křiku) přeliu a její zpřesnění při etrémních průtocích. K tomu bude yužito matematického modeloání s numerickými metodami CFD (Computational Fluid Dynamics) a softwaroého prostředí FLUENT, který s těmito metodami pracuje. Následně yhodnocení ýsledků simulace a jejich poronání s ýsledky měření a oěření tak spráné funkce měrného přeliu. 8
3. Charakteristika území Eperimentální poodí Modraa se nachází na seerním sahu Malé Mokrůky pramenné oblasti Ptačího potoka (hydrologické pořadí poodí 1-08-01-00), 5 km jižně od Filipoy Huti, na hranici s Baorskem. Po kůrocoé kalamitě byla této lokalitě poolena těžba napadeného smrkoého porostu. Půodní smrkoý porost byl starý přibližně 160 let a na části plochy se yskytoal porost starý 6 let. Porost ronoměrně pokrýal celou plochu poodí. Po těžbě byla paseka zalesněna smrkem a částečně jeřábem a klenem. V současné době toří porch terénu ysazené a náletoé dřeiny, traní porost, tlející ěte a pařezy, které zde zbyly po těžbě. Na poodí se jako půdní typy yskytují předeším podzoly nebo kryptopodzoly s elkým zastoupením skeletu e šech půdních horizontech. Hloubka půdního profilu je 0,6 0,8 m (www.khem.cz). Z hydrologického hlediska jde o oblast srážkoě nadprůměrnou. Spadne zde průměru 14 mm za rok. V oblasti je půda obykle elmi saturoána, takže po ydatnějších deštích dochází k porchoému odtoku. Ten má pak za následek etrémní průtoky. Zatím nejětší průtok byl změřen 8.8.008 o hodnotě 77 l.s -1. Průměrný průtok činí,68 l.s -1. Co se týče teploty je oblast chladná a její průměrná teplota je 5,5 C. Minimum je -17,4 a maimum 31,5 C. 9
Obr. 3.1 Poodí Modraa (www.khem.cz, 009) 3.1 Charakteristiky poodí Plocha poodí: 0,16 Km Min. nadmořská ýška: 1197 m.n.m. Ma.nadmořská ýška: 1330 m.n.m. Délka údolnice: 0,745 Km Sklon sahů: 0,1 (www.khem.cz 009) 3. Měrný přeli Průtok profilu je ypočítáán z přepadoé ýšky na trojúhelníkoém Thomsonoě přeliu, která je automaticky snímána tlakoým čidlem časoém kroku 1 hod. Přeli je s bočními kontrakcemi jak je idět na (Obr. 3.). 10
Obr. 3. Měrný přeli (www.khem.cz 009) 4. Mechanika tekutin 4.1 Newtonské tekutiny Jsou tekutiny, které mají lineární záislost mezi tangenciálním napětím a rychlostním gradientem e směru kolmém k proudu (Kolář et al. 1966). Tzn., že u nich platí Newtonů zákon dynamické iskozity (Obr. 4.). d τ = η [N.m ] (4.1) dy 11
Obr. 4.1. Rozdělení tekutin (Kolář et al. 1966) Mezi tyto tekutiny patří ětšina plynů i kapalin o nízké molekulární tíze, např. oda. Obr. 4. Newtonů zákon dynamické iskozity (Drábkoá et al. 007) 4. Nenewtonské tekutiny Nemají ztah mezi tečným napětím a gradientem rychlosti lineární. Mezi takoéto tekutiny patří tekutiny dilatantní (silně koncentroané suspenze), pseudoplastické (roztoky polymerů jako jsou polyethylen a polystyren) a Binghamoy plastické hmoty (řídké kaše, bahno, kaly a pasty) (Kolář et al. 1966). 4.3 Fyzikální lastnosti tekutin Skupenstí ody může být pené, kapalné a plynné. Bod tání a ýparu se obecně mění s tlakem a samozřejmě s teplotou. U ody eistuje tz. trojný bod ody, e kterém může oda eistoat e šech třech skupenstích současně (Obr. 4.3). V tomto bodě je ronoáha 1
mezi penou, kapalnou a plynnou fází. Souřadnice pro TP jsou p=611,73 Pa a T=73,16 K (Kolář et al. 1966). Obr. 4.3 Trojný bod ody (www.wikipedia.org 009) Na (Obr. 4.3) je ještě důležitý kritický bod. Ve kterém může eistoat oda e skupenstí plynném i kapalném současně. V tomto bodě je tedy ronoáha mezi kapalnou a plynnou fází. Hodnoty pro CP jsou T=374 C a p=,064 MPa (naajo.cz 009). Měrné teplo ody je teplo Cp, které 1 Kg ody potřebuje k ohřátí o 1 C. Se pohybuje rozmezí 417,8 416 J.Kg -1.K -1 pro teploty 0 C 100 C při tlaku 1013,5 hpa (Kolář et al. 1966). Hustota, neboli měrná hmotnost je definoána jako [ Kg.m ] 3 m ρ = (4.) V Nejyšší hustota ody za normálního tlaku nastáá při teplotě 3,98 C (Kolář et al. 1966). Objemoá roztažnost tekutin je definoána jako (Kolář et al. 1966). 1 V β = (4.3) V T 0 13
Objemoá stlačitelnost tekutin je definoána jako (Kolář et al. 1966). 1 V χ = [m.n 1 ] (4.4) V p 0 Tepelná odiost tekutin yjadřuje schopnost látky ést teplo, nemění-li částice sou polohu zhledem ke zdroji tepla (Kolář et al. 1966). Viskozita (azkost) tekutin zniká důsledku tečných napětí a tedy tření, které je způsobeno pohybem sousedních rste tekutiny s různými rychlostmi. V kapalině je způsobená kohezí částic a plynech ýměnou hybnosti mezi rstami s různou rychlostí. Dynamická iskozita je tedy definoána jako dy η = τ [N.s.m ] (4.5) d Kinematickou iskozitu yjadřuje poměr dynamické iskozity a hustoty. Tedy: η ν = [m.s 1 ] (4.6) ρ Se stoupající teplotou iskozita kapalin klesá, kdežto u plynů roste (Kolář et al. 1966). Porchoé napětí olného porchu kapaliny je způsobeno molekulárními silami, které se jej snaží zmenšit. Napětí je dáno ztahem d F σ = [N.m 1 ] (4.7) dl yjadřující účinek kohezních sil mezi molekulami kapaliny ztažený na jednotku délky uzařené hranice (Kolář et al. 1966). 4.4 Hydrostatika Zabýá se zákony tlaku a jeho rozdělení kapalinách, které jsou klidu zhledem ke stěnám nádoby jež je obsahuje (Kolář et al. 1966). Znamená to tedy, že tar objemu kapaliny se nemění. Touto částí mechaniky se šak práce nezabýat nebude. Práce je zaměřena na část druhou hydrodynamiku. 14
4.5 Hydrodynamika Zabýá se prouděním kapalin. Proudění reálných kapalin je složitý problém proto se zaádí zjednodušení e formě ideální neazké kapaliny. Proudění se může yšetřoat prostoru, roině nebo po křice, známé také jako 3D, D a 1D proudění (Drábkoá et al. 007). 4.5.1 Základní pojmy z hydrodynamiky Laminární proudění: částice tekutiny se pohybují tenkých rstách, aniž se přemísťují po průřezu iz. (Obr. 4.4). U laminárního proudění potrubí je rychlostní profil rotační paraboloid iz. (Obr. 4.5). Obr. 4.4 Laminární proudění (Drábkoá et al. 007) Obr. 4.5 Rychlostní profil (Drábkoá et al. 007) Turbulentní proudění: částice tekutiny mají kromě podélné rychlosti také turbulentní (fluktuační) rychlost, jíž se přemísťují po průřezu iz. (Obr. 4.6). Částice tekutiny neustále přecházejí z jedné rsty do druhé, přičemž dochází k ýměně kinetické energie a jejich rychlosti po průřezu se značně yronáají. Protože při přemístění částic dochází též ke změně hybnosti, což se projeuje brzdícím účinkem, bude ýsledný odpor proti pohybu ětší než odpoídá smykoému napětí od azkosti při laminárním proudění. Rychlostní profil turbulentního proudu potrubí se proto íce podobá obdélníku, a to 15
tím íce, čím ětší je turbulence (Drábkoá et al. 007), tj. čím ětší je Reynoldsoo číslo R e iz. (Obr. 4.7). Obr. 4.6 Turbulentní proudění (Drábkoá et al. 007) Obr. 4.7 Rychlostní profil (Drábkoá et al. 007) Trajektorie je pomyslná čára po které probíhá částice tekutiny. Za ustáleného proudění se trajektorie s časem nemění naopak u neustáleného mohou být trajektorie každém časoém okamžiku jiné (Drábkoá et al. 007). Proudnice jsou obálkou ektorů rychlostí a jejich tečny udáají směr ektoru rychlosti. U neustáleného proudění ytářejí proudnice různé částice a nejsou totožné s drahami částic. U ustáleného proudění se nemění rychlosti s časem, a proto mají proudnice stále stejný tar a jsou totožné s drahami částic (Drábkoá et al. 007). 16
Obr. 4.8 Proudnice rychlosti čerpadle (Soukal et Sedlář 009) Proudoá trubice je tořena sazkem proudnic, které procházejí zolenou uzařenou křikou k. Plášť proudoé trubice má stejné lastnosti jako proudnice iz. (Obr. 4.9). Obr. 4.9 Proudoá trubice (Drábkoá et al. 007) Protože směr rychlosti je dán tečnami k proudnicím, je každém bodě pláště proudoé trubice normáloá složka rychlosti nuloá n = 0. Nemůže tedy žádná částice projít stěnou proudoé trubice. Proudoá trubice rozděluje prostoroé proudoé pole na dě části. Částice tekutiny nemohou přetékat z jedné části proudoého pole do druhého, a proto platí, že šechny částice protékající průřezem S proudoé trubice, musí protékat liboolnými průřezy S 1, S téže proudoé trubice. Jestliže průřez proudoé trubice S 0, dostane se proudoé lákno. Proudoá trubice předstauje pomyslné potrubí (Drábkoá et al. 007). 17
Reynoldsoo číslo charakterizuje daný proud a režim proudění. Vypočítá se dle ztahu.l Re = (4.8) ν kde je rychlost, l je charakteristická délka (u oteřených koryt se za l dosazuje hydraulický poloměr S R = (4.9) O O je omočený obod), ν je kinematická iskozita. Pro proudění korytech není hodnota R e rozdělující laminární (Obr. 4.4) a turbulentní (Obr. 4.6) režim. Jedná se spíše o interal <530-3450> charakterizující zónu přechodu. Kde může být proudění jak laminární tak turbulentní. R e < 530 zaručuje proudění laminární a R e > 3450 proudění turbulentní (Boor et al. 1968). Froudoo číslo je dáno ýrazem Fr = (4.10) g. y Dle Froudoa čísla se rozlišuje proudění bystřinné, kritické a říční, iz. níže. 4.5. Režim proudění Kromě proudění laminárního a turbulentního, jejichž definice je uedena ýše, se rozděluje proudění ještě do následujících kategorií. 4.5..1 Ustálené ronoměrné proudění Je neproměnné časoě i místně, tedy: Q Q = 0, = 0, = 0, = 0 t t t Může zniknout jen praidelných prizmatických korytech stálého sklonu, jehož šechny příčné řezy jsou stejné a je stálý průtok. Hladina je ronoběžná se dnem (při zanedbání místních ztrát), takže sklony hladiny a dna se ronají. Jelikož jsou střední rychlosti e šech průřezech stejné, bude i čára energie ronoběžná se dnem (Kunštátský et Patočka 1971). Čili jak 18
uádí Kolář (1966), jsou-li ronoáze síly působící pohyb kapaliny a síly tento pohyb brzdící. Pohyb kapaliny způsobuje gradient tlaku nebo složka graitačního zrychlení působící e směru proudění. 4.5.. Ustálené neronoměrné proudění Tento pohyb můžeme ještě dále rozdělit do dou kategorií. Zolna se měnící Charakterizuje při stálém průtoku zolna se měnící střední rychlost a tedy prizmatickém korytě změnu hloubky proudu. Tento pohyb zniká prizmatickém kanálu kde je např. překážka proudění jako je jez nebo změna spádu. Vzdutí a snížení znikající při tomto druhu pohybu záisí předeším na tření kapaliny o stěny koryta. Pohyb definují tyto ronice Q Q = 0, = 0, = 0, 0. t t Vlastnosti proudu a koryta se nemění po uažoanou dobu. Proudnice se poažují za ronoběžné což umožňuje předpoklad hydrostatického rozdělení tlaků celém průtočném průřezu a dále možnost zanedbat sislou a příčnou složku ektoru rychlosti a yšetřoat pohyb jako roinný. Pro střední rychlost platí ztah Q = (4.11) S Hloubka po sislici nebo po kolmici ke dnu je prakticky stejná. Součinitel drsnosti nezáisí na hloubce (Kolář et al. 1966). Náhle se měnící Tento pohyb se yznačuje předeším elkou křiostí proudnic, příkladem je třeba odní skok. V místě náhlé změny křiosti se ytoří oblast silné turbulence. Díky zakřiení proudnic dochází při proudění k šikmému rozdělení tlaků, které již pak nelze poažoat za hydrostatické (Sturm 001). Rychlá změna je krátkém úseku, takže tření je zanedbatelné. Náhlá změna pohybu záisí na geometrii překážek. Rozdělení rychlostí proudu není praidelné takže neplatí ronice (4.11). Toří se íry a álce takže účinná plocha proudu není 19
dána penými stěnami, ale plochou mezi íroými oblastmi (Kolář et al. 1966). 4.5..3 Neustálené proudění Nastáá jestliže průtok, rychlost, průtočná plocha a hloubka proudu jsou proměnné, záislé na poloze a čase. Tedy: Q Q 0, 0, 0, 0 t t Základní typy tohoto proudění jsou oscilační pohyb a translační pohyb. Oscilační pohyb Je charakterizoán kmitáním částic ody kolem ronoážné polohy bez přenosu průtoku od místa zniku lnoého pohybu (lny na hladině, lny yolané nárazem apod.). Translační (lnoý) pohyb Je kromě ychýlení hladiny z půodní polohy charakterizoán přenosem průtoku od místa zniku translačního pohybu (poodňoé lny). Jinými sloy translační lna je neustálený pohyb podélném směru, který yoláá změny průtoku, rychlosti a hloubky čase (Kolář et al. 1966). Rozlišují se čtyři charakteristiky translačního pohybu. Čelo lny: přechod mezi půodním prouděním a prouděním yolaným změnou polohy hladiny či průtoku. V případě pomalu proměnného proudění je čelo lny prakticky nepostřehnutelné, kdežto u rázoých ln zasahuje konečnou oblast. V případě ln poměrně ysokých (y ma : y 0 > 1,8 m) zhledem k hloubce půodního proudění je čelo tořeno překlápějícím se prozdušněným odním álcem. Pro 1,8 < y ma : y 0 < 1,4 je čelo tořeno menším prozdušněným álcem a zlněnou hladinou kratším úseku. Pro y ma : y 0 < 1,4 je čelo tořeno řadou ln, obdobným oscilačním lnám, jejichž amplituda se postupně směrem od půodního proudění zmenšuje, přičemž hladina kolísá kolem určité střední polohy, kterou postupně přechází (Kolář et al. 1966). Tělo lny: je oblast za čelem lny, kde dochází mezi krajním profilem čela lny a obecným profilem těla lny ke změně průtoku ΔQ. 0
Ten je definoán jako lnoý průtok, tj. průtok přenášený lnou této oblasti (Kolář et al. 1966). Absolutní postupiost čela lny je rychlost, kterou postupuje čelo lny po proudu nebo proti proudu půodniho proudění zhledem k pozoroateli stojícímu na břehu (Kolář et al. 1966). Relatiní postupiost čela lny je rychlost, kterou postupuje čelo lny zhledem k pozoroateli pohybujícímu se rychlostí půodního proudění. Pohybuje-li se translační lna po hladině klidu, potom je absolutní postupiost rona relatiní postupiosti. (Kolář et al. 1966). 4.5..4 Proudění bystřinné, kritické a říční Jak již bylo uedeno ýše, bystřinné, kritické a říční proudění rozděluje Froudoo číslo. Toto číslo je elmi spjato s energií proudění a tak jeho odození začne definicí specifické energie čili energetické ýšky. Specifická energie (energetická ýška) Tento termín popré zaedl roce 191 Bakhmeteff a definoal ho jako P ρg + z = h kde h je hloubka. Takže ýška specifické energie se definuje jako H (4.1) = h + (4.13) g 0 α kde α je koeficient rozdělení rychlosti. Je idět, že specifická energie se roná součtu hloubky korytě a rychlostní ýšky. Ošem za předpokladu, že proudnice jsou nezakřiené a ronoběžné. Platí-li ronice (4.11) potom H 0 Q = h + α (4.14) gs kde S je plocha průřezu a Q je průtok tímto průřezem. Z této ronice je idět, že za konstantního průtoku dané části koryta je specifická energie funkcí pouze hloubky ody (Bos et al. 1976). Grafické ynesení záislosti hloubky ody h a specifické energie dáá křiku specifické energie iz. (Obr. 4.10). 1
Obr. 4.10 Vztah hloubky na specifické energii (Bos et al. 1976) Pro daný průtok a příslušnou specifickou energii jsou dě alternatiní hloubky. V bodě C je specifická energie na minimu pro daný průtok a dě alternatiní hloubky se ronají. Tato hloubka se nazýá kritickou a značí se h c. Vztah mezi touto minimální specifickou energií a kritickou hloubkou udáá diferenciální ronice, kde průtok Q je konstantní. dh dh 0 Q ds ds = 1 α = 1 α (4.15) 3 gs dh gs dh dosadí se ds = B.dh, potom je tedy dh dh 0 B = 1 α (4.16) gs dh Je-li specifická energie minimální, platí 0 = 0 a může se psát dh S = g B α c c (4.17) c Tato ronice platí pouze za předpokladu ustáleného proudění s ronoběžnými proudnicemi a koryta s malým sklonem dna. Je-li rychlostní koeficient α roen jedné, kriterium pro kritické proudění je následující: čili c = g S B c c (4.18)
S = gh (4.19) c c g = Bc kde c je kritická rychlost, S c průřez, B c šířka. Výraz pro c tedy udáá Froudoo číslo, které je tomto případě rono jedné. c c c F r = (4.0) gh (Bos et al. 1976) Je-li hloubka ětší než hloubka kritická proudění se nazýá podkritické (říční) a F r < 1, je-li nižší než kritická hloubka, proudění je nadkritické (bystřinné) a F r > 1. Bystřinné proudění tedy charakterizuje malá hloubka a elká rychlost a říční proudění naopak ětší hloubka a menší rychlost (Bos et al. 1976). Při říčním proudění je rychlost ody menší než kritická, tedy menší než rychlost šíření ln, které proto mohou postupoat po hladině směrem po proudu i proti němu. Naopak při bystřinném proudění nemůže lna postupoat proti proudu (Kunštátský et Patocka 1971). Jestliže nastane rychlá změna hloubce proudu z yšší hladiny na hladinu nižší, nastáá tz. hydraulický propad. Na druhou stranu, stoupne-li rychle hladina z nižší úroně na yšší nastáá tz. hydraulický (odní) skok, který se projeuje turbulencemi (Bos et al. 1976). A je ždy proázen značnou ztrátou energie. Zpraidla nastáá při přechodu z bystřinného do říčního proudění. (Kunštátský et Patočka 1971). Vodní skok je ilustroán na (Obr. 4.11). 3
Obr. 4.11 Vodní skok (Sturm 001) Turbulentní íry disipují energii hlaního proudu, mimo to se disipuje také kinetická energie turbulence. Proto je kinetická energie elmi malá na konci odního skoku. Pro ýpočet odního skoku je hodné použíat ronice hybnosti, protože přesný matematický popis tohoto proudění je prakticky nemožný. Výpočet a detailnější popis uádí (Sturm 001). 4.5.3 Ronice proudění tekutin 4.5.3.1 Ronice kontinuity Ronice kontinuity, často nazýaná také ronice spojitosti, yjadřuje obecný fyzikální zákon o zachoání hmotnosti. Pro elementární objem, kterým proudí tekutina, musí být hmotnost tekutiny konstantní m = konst., a tedy celkoá změna hmotnosti nuloá dm = 0. Celkoou změnu hmotnosti lze dělit na lokální a konektiní, kde lokální (časoá) změna probíhá elementárním objemu samém (tekutina se stlačuje nebo rozpíná) a konektiní změna je způsobena rozdílem hmotnosti přitékající a ytékající tekutiny z elementárního objemu. Součet konektiní a časoé změny průtoku je roen nule. Ronici kontinuity je možné definoat také tak, že rozdíl stupující hmotnosti do kontrolního objemu a ystupující hmotnosti z kontrolního objemu je roen hmotnosti, která se tomto kontrolním objemu 4
akumuluje (Drábkoá et al. 007) Tímto kontrolním objemem dv = d.dy.dz tedy protéká tekutina o rychlosti = (, y, z ) Změny způsobené konekcí - hmotnostní průtok elementem plochy ds je dán ztahem dq m = ρ n. ds (4.1) kde ektor rychlosti se skalárně násobí normáloým ektorem zhledem k ploše ds, protože průtok je definoán kolmém směru na průtočnou plochu ds. Celkoý průtok plochou S je tedy určen plošným integrálem Q m. = ρ n ds (4.) S Ten se pomocí Gaussoa Ostrogradského ěty o diergenci ektoru přeede na objemoý iz. ronice (4.3). Q m = S ( ρ ) ( ρ y) ( ρ ) n. ds di( n) ddydz. ddydz y z z ρ = ρ = + + (4.3) V V (Drábkoá et al. 007). Změny časoé - hmotnost je také definoána ztahem m = ρv. Jelikož hustota nemusí být celém objemu konstantní, definuje se na elementárním objemu dm = ρ dv, potom je tedy celkoá hmotnost objemu Průtok za čas t je dán ztahem. m = ρ.dv (4.4) Q m = V V ρ dv = t V ρ d t d y d z (4.5) Podle zákona zachoání hmotnosti (hmotnostního průtoku) platí, že součet konektiní a časoé změny je roen nule. V ρ d t d d + y V ( ρ ) ( ρ + y y ) ( ρ + z ). d d z y d z = 0 (4.6) Jelikož tato ronice platí pro liboolný objem V, může se ronice kontinuity zapsat diferenciálním taru 5
ρ ( ρ + t ) ( ρ + y y ) ( ρ + z z ) = 0 (4.7) Při proudění kapalin se předpokládá zhledem k minimálním změnám hustoty že ρ ρ = konst a = 0 t Potom se dá ronice kontinuity zapsat e zjednodušeném taru nebo e ektoroém taru y + y z + z = 0 (4.8) (Drábkoá et al. 007). di ( ) = 0 (4.9) 4.5.3. Euleroa ronice ideální tekutiny Ronice yjadřuje ronoáhu sil hmotnostních (objemoých), S = O P tlakoých a setračných F F + F (Obr. 4.14). Obr. 4.1 Rozdělení sil na elementární objem (Drábkoá et al. 007) 6
Diferenciál síly hmotnostní je dán ztahem d F O = a. dm = ρ a. dv (4.30) a diferenciál síly tlakoé udáá ztah d F p = p n. ds (4.31) Celkoá síla je pak dána objemoým integrálem pro sílu hmotnostní F = ρ a. dv O a plošným integrálem pro sílu tlakoou V (4.3) p. Diferenciál setračné síly je dán zrychlením D Dt F = p n ds (4.33) S D (4.34) Dt je tz. substanciální deriace a rozpis pro jednu složku např. ypadá následoně: D Dt t y y t z t = + + + = + y z (4.35) t z Pro šechny tři složky je tedy zrychlení t y z D Dt = + (. grad) (4.36) dt kde (. grad) předstauje zrychlení konektiní. Přeede li se plošný integrál na integrál objemoý dle Gaussoy Ostrogradského ěty, může se psát p n ds = F =. gradp. dv (4.37) p S V V D ρ. dv = ρ a. dv gradp. dv (4.38) Dt Jelikož ztah platí pro liboolný objem tekutiny, bude platit i pro ýraz stojící u integrálu. V V 7
Tedy: Nebo ještě lépe D Dt 1 = a gradp ρ (4.39) 1 + (. grad) = a gradp dt ρ (4.40) Což je Euleroa ronice e ektoroém taru pro neustálené proudění ideální tekutiny (Drábkoá et al. 007). Podobné odození uádí i (Kolář et al. 1966) nebo (Boor et al. 1968). 4.5.3.3 Naier-Stokesoa ronice pro nestlačitelnou tekutinu N-S ronice yjadřuje ronoáhu sil při proudění kapaliny, kdy setračná síla je rona součtu síly hmotnostní, tlakoé a třecí F S = FO + FP + Ft. Třecí síla Ft je způsobena iskozitou tekutiny. Základ pro N-S ronici toří Euleroa ronice 1 + (. grad) = a gradp dt ρ (4.41) N-S ronice se získá přičtením členu ν Δ, který předstauje sílu potřebnou k překonání iskózního tření tekutiny. Jeho rozpis pro složku je následující Δ ν = + + ν (4.4) y z Výsledný ztah N-S ronice pro nestlačitelnou tekutinu je pak následující 1 + (. grad) = a gradp + νδ (4.43) dt ρ Při řešení proudění se zpraidla určuje rozložení rychlostí a tlaků. V systému N-S ronice a ronice kontinuity jsou neznámé čtyři eličiny. Složky rychlosti, y, z a tlak p. Pro řešení těchto ronic tedy musíme znát nější zrychlení a, hustotu tekutiny ρ a okrajoé podmínky. Ronice se řeší numericky metodou konečných objemů nebo konečných prků (Drábkoá et al. 007). 8
4.5.3.4 Bernoulliho ronice Bernoulliho ronice se dá ododit z ronice Naier Stokesoy, která yjadřuje ronoáhu sil při proudění reálných tekutin. 1 + (. grad) = a gradp + νδ (4.44) dt ρ Předpokladem je jednorozměrné proudění trubici, tedy předchozí ronice se zjednoduší tak, že se uažuje pouze jeden souřadný směr. Vektor rychlosti má jen jednu souřadnici a rozměr je označen l. dl + t 1 l 1 p dl = a.cosϕ. dl dl + ν dl (4.45) ρ l l Jednotlié členy ronice odpoídají jednotliým energiím. Zlea to je energie zrychlení (při neustáleném proudění), kinetická energie, potenciální energie, tlakoá energie a ztrátoá energie. Integrací ýše uedené ronice a zaedením potenciálu siloého pole du=a.cosϕ.dl se dostane následující ronice dl + t 1 l dl + 1 p dl ρ l ν dl l du. dl = 0 (4.46) Obr. 4.13 Schéma proudění trubici Pro nestlačitelné proudění se yčíslí integrály pro průřez 1 a proudoé trubice. 1 dl + t 1 1 + ( p ρ p ) 1 ν dl ( U l 1 U 1 ) = 0 (4.47) Vyčíslení integrálu yjadřujícího třecí síly je obtížné, proto se prakticky určuje 9
poloempirickými ztahy a označuje se e z. Předstauje práci třecích sil na jednotku hmotnosti proudící tekutiny, což je rozptýlená (disipoaná) energie, nebo též ztrátoá energie spotřeboaná na překonání hydraulických odporů na úseku 1 proudoé trubice. Tato ztrátoá energie zmenšuje mechanickou energii (tlakoou + kinetickou + polohoou) tekutiny a mění se teplo (Drábkoá et al. 007). Bernoulliho ronice pro proudění skutečné tekutiny za neustáleného režimu a za předpokladu netlakoého proudění, kde působí pouze tíhoé zrychlení a = -g a tedy U = -gh je následující 1 p1 p + + gh = + + gh + 1 dl + ρ ρ 1 t Ztrátoá energie e z se může yjádřit jako násobek kinetické energie e z e z (4.48) = ζ (4.49) nebo tlakoé ztrátoé energie pz e z = (4.50) ρ popřípadě ztrátoé ýšky e z = h z g (4.51) Sronáním uedených ztahů se dostane p = hz ρg ζ ρ (4.5) z = ζ je ztrátoý součinitel a záisí na druhu hydraulického odporu či ztráty. Bernoulliho ronice pro proudění skutečné tekutiny za ustáleného režimu, kde = 0 má tar t p1 1 p + + gh1 = + + gh + ρ ρ Bernoulliho ronice yjádřena e ýškách, tj. polohoé, tlakoé, kinetické a ztrátoé je na (Obr. 4.14). Rozdíl mezi čarou celkoé energie H a čarou mechanické energie předstauje rozptýlenou (ztrátoou) energii. e z (4.53) 30
Obr. 4.14 Beroulliho ronice yjádřená e ýškách (Drábkoá et al. 007) 4.5.4 Proudění korytech a jeho řešení Proudění říčních korytech je proudění o olné hladině, které zniká, když omočený obod netoří uzařenou křiku (Kolář et al. 1966). Volná hladina je místem, kde se stýká proud kapaliny s ozduším (atmosférickým tlakem). Zpraidla se jedná o turbulentní proudění. U oteřených profilů není tečné napětí rozděleno stejnoměrně podél omočeného obodu a rozdíl tlaků způsobuje jednotliých profilech druhotná proudění, která zkreslují rozdělení rychlostí a zětšují ztráty při proudění. U odní hladiny jsou tato proudění naíc oliněna prouděním zduchu (což se šak často zanedbáá) (Drábkoá et al. 007). Rychlost proudění se mění jak s hloubkou tak po šířce koryta. Maimální rychlost ošem není uprostřed koryta na hladině, ale jak je zřejmé z izočar rychlosti (Obr. 4.15), je oblast maimální rychlosti posunuta pod hladinu, což je způsobeno brzděním hladiny o okolní prostředí, tedy o zduch. Ztráta rychlosti po obodu je způsobena třením ody o dno a stěny koryta (Drábkoá et al. 007). Tření zniká důsledku drsnosti, která se zpraidla dost liší jednotliých úsecích, kynetě a bermách. Drsnost, která je způsobena jak elementy e dně (písek, štěrk, kameny), tak egetací při březích či jinými překážkami jako ěte, kmeny apod. je těžko určitelná. Základním a důležitým parametrem po popis proudění korytě je Froudoo číslo (Sturm 001). 31