BAKALÁŘSKÁ STA I. + II.

Podobné dokumenty
Deskriptivní statistika 1

Pravděpodobnost a aplikovaná statistika

Odhady parametrů 1. Odhady parametrů

12. N á h o d n ý v ý b ě r

P2: Statistické zpracování dat

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Závislost slovních znaků

Náhodný výběr 1. Náhodný výběr

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

vají statistické metody v biomedicíně Literatura Statistika v biomedicínsk nském výzkumu a ve zdravotnictví

Pravděpodobnost a aplikovaná statistika

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

vají statistické metody v biomedicíně

Intervalové odhady parametrů některých rozdělení.

8. Analýza rozptylu.

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

6. P o p i s n á s t a t i s t i k a

1. Základy počtu pravděpodobnosti:

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

13 Popisná statistika

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.

PRAVDĚPODOBNOST A STATISTIKA

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

NEPARAMETRICKÉ METODY

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

Statistika pro metrologii

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

2. Náhodná veličina. je konečná nebo spočetná množina;

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

1. JEV JISTÝ a. je jev, který nikdy nenastane b. je jev, jehož pravděpodobnost = ½ c. je jev, jehož pravděpodobnost = 0 d.

Přednáška VIII. Testování hypotéz o kvantitativních proměnných

14. B o d o v é o d h a d y p a r a m e t r ů

Pravděpodobnost a aplikovaná statistika

Intervalové odhady parametrů

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

Elementární zpracování statistického souboru

Pravděpodobnostní modely

4. B o d o v é o d h a d y p a r a m e t r ů

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

3. Charakteristiky a parametry náhodných veličin

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý.

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Popisná statistika. Zdeněk Janák 9. prosince 2007

17. Statistické hypotézy parametrické testy

1.3. POLYNOMY. V této kapitole se dozvíte:

7. Odhady populačních průměrů a ostatních parametrů populace

10.3 GEOMERTICKÝ PRŮMĚR

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

Matematika I, část II

Pravděpodobnost a statistika - absolutní minumum

Úloha II.S... odhadnutelná

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním

Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Náhodný výběr, statistiky a bodový odhad

V. Normální rozdělení

Testování statistických hypotéz

z možností, jak tuto veličinu charakterizovat, je určit součet

Číselné charakteristiky náhodných veličin

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

Základní požadavky a pravidla měření

} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy

UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

STATISTIKA PRO EKONOMY

1 PSE Definice základních pojmů. (ω je elementární jev: A ω (A ω) nebo (A );

Teorie chyb a vyrovnávací počet. Obsah:

Metody zkoumání závislosti numerických proměnných

1 Základy Z-transformace. pro aplikace v oblasti

Petr Šedivý Šedivá matematika

8. Odhady parametrů rozdělení pravděpodobnosti

6. Posloupnosti a jejich limity, řady

9. Měření závislostí ve statistice Pevná a volná závislost

Přednášky část 7 Statistické metody vyhodnocování dat

11. P o p i s n á s t a t i s t i k a

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a a N. n=1

1. Měření ve fyzice, soustava jednotek SI

7. P o p i s n á s t a t i s t i k a

0,063 0,937 0,063 0, P 0,048 0,078 0,95. = funkce CONFIDENCE.NORM(2α; p(1 p)

Dynamická pevnost a životnost Statistika

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Úloha III.S... limitní

Transkript:

Statistika I. - Teorie ) Statistika - Číselé údaje o hromadých jevech. Praktická čiost - sběr, zpracováí a vyhodocováí statistických údajů - Teoretická disciplía - metody k odhalováí zákoitostí při působeí podstatých, relativě stálých čiitelů a hromadé jevy - Etapa statistického zjišťováí (šetřeí), zpracováí zjištěých údajů, vyhodocováí a statistického usuzováí (rozbor, aalýza) - Spojicový graf četost 5 5 3 4 - Sloupcový graf- tvoře obdobě jako graf spojicový, hodoty ve sloupcích 5 Zámka z matematiky četost 5 3 4 Zámka z matematiky - Sektorový (výsečový) graf - zázorěí relativích četostí vyjádřeých v procetech. - -

- Krabicový graf - data zobrazea pomocí kvartilů (maximum) (miimum) ) Statistické zaky - Vlastost statistické jedotky (příjem, zisk, velikost). - Kvatitativí (číselé) - určují možství (v SPSS SCALE) -- Pořadové a Měřitelé (děleí viz dále): --- Nespojité (diskrétí) abývají celočíselých hodot (počet studetů a PaE a PaA), výstupem: izolovaé body (sloupcový graf) -- Spojité abývají všech hodot daého itervalu (zlomky, desetiá čísla),(apř. míra ezaměstaosti), výstupem: spojitá přímka - Kvalitativí (sloví) - určují kvalitu -- Alterativí - pouze možosti (ao/e; muž/žea) --Možé - abývají více možostí 3) Pojmy - Statistická jedotka subjekt, který zkoumáme (domácost, podik) - Statistický soubor obsahuje kokrétí data - Základí soubor obsahuje všechy jedotky, které jsou předmětem statistického - zkoumáí (studeti PEF), mohou být koečé i ekoečé. (výsledek úplého šetřeí) - Výběrový soubor obsahuje pouze část jedotek (Studeti statistiky PAA) (výsledek eúplého šetřeí) - Kategoriálí proměá (kvalitativí) proměá, kterou eí možo měřit, kvatifikovat, ale je zařadit do tříd (apř. svobodý, žeatý, rozvedeý, vdovec) 4) (6) Pravděpodobost - áhodý pokus opakovatelá čiost, prováděá za stejých podmíek, která může, v závislosti a áhodě, vést k růzým výsledkům (Hod micí) - áhodý jev výsledek áhodého pokusu (Paa) - možia všech výsledků hodu kostkou U {,, 3, 4, 5, 6} {E, E, E3, E4, E5, E6} - -

- Pravděpodobost - (P. S. Laplace) číslo, které vyjadřuje míru možosti realizace áhodého jevu m P ( A) m počet astoupeí jevu A. celkový počet pokusů - Statistická defiice (R. vo Mises) S rostoucím počtem pokusů se relativí četost stabilizuje a přibližuje se k určitému kostatímu číslu. - Vlastosti pravděpodobosti ) P(A) ) P(U), protože pro jistý jev m 3) P(V), protože pro emožý jev m 4) P(A) - P(A) 5) Sčítáí a ásobeí pravděpodobosti - Věta o sčítáí pravděpodobosti - Pro vyjádřeí pravděpodobosti sjedoceí áhodých jevů. - Jedá-li se o jevy eslučitelé. - Věta o ásobeí pravděpodobostí - Pro vyjádřeí pravděpodobosti průiku áhodých jevů. P(A -- Pojem závislosti áhodých jevů - Jev A je ezávislý a jevu B, jestliže výskyt jevu B eovliví pravděpodobost výskytu jevu A. Platí P(A/B) P(A) a také P(B/A) P(B) P(A I I -- Podmíěá pravděpodobost - P(A) U B) P( A) + P( B) P( AI ) lim N + M N P( A B P ( AU B) P( A) + P( B) B) P(A/B) P(B) P(B/A) P(A) B) P(A) P(B) P(A B) P(A/B) P(B) 6) (6) Pravděpodobostí rozděleí a áhodá veličia - Pravděpodobostí rozděleí Diskrétí (apř. Poissoovo) a Spojité (apř. Normálí) - Náhodá veličia proměá, která abývá kokrétích hodot, ebo hodot z určitého itervalu - Hod kostkou - šest možých výsledků, každý astává s pravděpodobostí /6, platí:p+p+ +p - 3 -

-- Záko rozděleí áhodé veličiy: --- Diskrétí áhodé veličiy - řada rozděleí, distribučí fukce F(x) --- Spojité áhodé veličiy - hustota pravděpodobosti f(x), distribučí fukce F(x) -- Číselé charakteristiky áhodé veličiy - Středí hodota E(X) charakterizuje polohu rozděleí, Rozptyl rozděleí D(X) charakterizuje variabilitu rozděleí 7) Distribučí fukce a hustota pravděpodobosti - uiverzálí možost vyjádřeí zákoa rozděleí áhodé veličiy, F(x) P(X < x) pro všecha x Є (-, + ) - Diskrétí. v. - F(x) espojitá zprava v bodech, které reprezetují hodoty X - Spojité. v. F(x) spojitá - Vlastosti distribučí fukce ) F(x) ) distribučí fukce je eklesající fukce, pro všecha x<x platí F(x) F(x) 3) lim F( x), eboť F(- )P(X<- ) x lim F( x) x +, eboť F(+ )P(X<+ ) 4) P(a X<b)F(b)-F(a) - Hustota pravděpodobosti df( x) f ( x) F ( x) dx 8) (6) Normálí (Gaussovo) rozděleí - E(X) µ D(X) σ - 4 -

- Dvě rozděleí se stejým rozptylem, ale odlišou středí hodotou Dvě rozděleí se stejou středí hodotou, ale odlišým rozptylem - Distribučí fukce ormálího rozděleí F(x) x f(t) dt - 5 -

- Distribučí fukce F(x) P( X < x ) p-procetí kvatil x p F(x p ) P( X < x p )p - Výpočet pravděpodobosti P(a < X < b) - Pravidlo tří sigma (3σ) - 6 -

9) Normálí ormovaé rozděleí - - X U L L N N - Stadardizace ( µ,σ ) (,) - Výpočet pravděpodobosti P(a < X < b) - Distribučí fukce ormálího ormovaého rozděleí Φ(u) Φ(-u) Φ(u) ) (4) Tříděí - rozděleí jedotek souboru do takových skupi, aby co ejlépe vyikly charakteristické vlastosti zkoumaých jevů - uspořádáí údajů do přehledé formy včetě jejich zhuštěí - Jedostupňové podle obmě jedoho zaku - Vícestupňové podle obmě více zaků ajedou ) Prosté rozděleí četostí - espojité statistické zaky, údaje uspořádáme do rostoucí poslouposti a každé hodotě zaku přiřadíme počty (četosti) příslušých statistických jedotek - Absolutí četost i - Relativí četost f i µ U X σ b µ a µ P(a < X < b) F(b) F(a) Φ Φ σ σ + + 3 + L+ f i - Kumulativí četost absolutí (N i ), relativí (F i ), kolik jedotek souboru, resp. jaká poměrá část souboru má variatu zaku meší ebo rovou určité daé obměě N N + N3 + + 3 k k i i k + f + f3 + + fk fi i i, f L N k + + 3 + L+ k k i i - 7 -

) Itervalové rozděleí četostí - zak spojitý ebo diskrétí s velkým počtem obmě. - Je uto řídit se ěkolika pravidly: počet itervalů podstaté rysy, k - Staoveí počtu itervalů, Sturgesovo pravidlo R h k - Délka itervalu, Střed itervalu h/ a zaokrouhlit, R variačí rozpětí (R x max x mi ) - extrém otevřeé itervaly - jedozačě určit, do jakého itervalu hodota patří 3) Popisá statistika - Popisé statistické charakteristiky - charakterizují ve zhuštěé formě podstaté vlastosti celého rozděleí. - Čleí se a: - charakteristiky polohy rozděleí - průměry (ze všech hodot souboru) a ostatí středí hodoty (založey a ěkterých vybraých hodotách souboru) - charakteristiky variability - charakteristiky šikmosti rozděleí - charakteristiky špičatosti rozděleí - Kvatilové charakteristiky 4) Charakteristiky polohy rozděleí - Průměr: (harmoický meší ebo rove geometrickému meší ebo rove aritmetickému) -- Aritmetický - Prostý (esetříděá data) - Vážeý (setříděá data) x x - 8 - x + x k + + 3,3 log + x L i x + x + L+ x x i k k i k + + L+ k k i x i i i

-- Geometrický Prostý (-tá odmocia ze součiu x i x ), Vážeý (-tá odmocia ze součiu x i i ) -- Harmoický Prostý ( / (suma /x i )), Vážeý (/(suma i /x i )) - Ostatí středí hodoty: (Nezabývají se krajími) xˆ -- Modus - ejčastěji se vyskytující hodota v souboru (pokud se hodoty vyskytují pouze jedou modus eí, pokud je -hodot se stejou ejvyšší četostí, je -modusů) x~ -- Mediá - prostředí hodota z řady čísel uspořádaých podle velikosti (pokud má řada sudý počet prvků je mediáem aritmetický průměr dvou středích hodot) 5) Charakteristiky variability - Měří rozptýleí hodot příslušého souboru. Rozšiřují iformace o statistickém souboru - Využívají se k posouzeí vypovídací schoposti aritmetického průměru. - Absolutí: -- Variačí rozpětí - rozdíl ejvětší a ejmeší hodoty zaku s ( x x) -- Rozptyl - Prostá forma, Výpočtový tvar i s i - Vážeá forma, Výpočtový tvar s xi i x k ( xi x) i i k k xi i xii i i s -- Směrodatá odchylka - uvádí se ve stejých měrých jedotkách jako zkoumaý zak 6) (3) Relativí charakteristiky variability - Srováváí variability růzých statistických zaků a souborů. Posouzeí relativí velikosti rozptýleosti dat vzhledem k průměru. - Porováí rozptýleosti dat skupi měřeí stejé proměé s růzým průměrem. - Variačí koeficiet s v x [%] 7) (4) Kvatilové charakteristiky - Kvatily - míra polohy rozděleí pravděpodobosti áhodé veličiy - Kvartily - dolí kvartil Q,5 (5% prvků má hodoty meší ež dolí kvartil), prostředí kvartil (mediá), horí kvartil Q,75 - decily, percetily, k-té (Q k/, Q k/ ) - Kvatilové rozpětí - kvartilové rozpětí (Q,75 - Q,5 ), decilové (Q,9 - Q, ) - 9 -

8) Míry šikmosti - srováí stupě ahuštěosti malých a velkých hodot sledovaého zaku - stejý stupeň hustoty malých a velkých hodot symetrie rozděleí - výpočet: staoveí třetího cetrálího mometu, forma prostá ebo vážeá 3 ( xi x) ( xi i i α α 3 3 s - polovia malých hodot zaku má meší variabilitu ež polovia velkých hodot (zešikmeé doleva) souměrost rozděleí polovia malých hodot zaku má větší variabilitu ež polovia velkých hodot zaku (zešikmeé doprava) s x) 3 i 9) Míry špičatosti - stupeň kocetrace hodot zaku kolem charakteristiky úrově - srováí stupě ahuštěosti hodot prostředí velikosti se stupěm ahuštěosti ostatích hodot, resp. všech hodot proměé - Plochý tvar rozděleí - podíl četostí prostředích hodot srovatelý s četostmi ostatích hodot - Špičatý tvar rozděleí - větší stupeň kocetrace (ahuštěí) prostředích hodot ve srováí s četostmi všech (ostatích) hodot proměé 4 ( x x) 4 i ( xi x) i i β 3 i 4 s β 3 4 s - rozděleí je špičatější ež ormálí, ormálí rozděleí, rozděleí je plošší ež ormálí - -

) Statistická idukce - Proces, při kterém lze z výběrového souboru usuzovat a soubor základí - Vhodé vlastosti statistiky estraá, kozistetí, vydatá, postačující - Vyčerpávající iformace o sledovaém jevu obdržíme pouze ze základího souboru - Obvykle základí soubor ezáme, popisujeme a základě zámých výběrových charakteristik - Dvě oblasti - Teorie odhadu a Testováí statistických hypotéz ) (8) Teorie odhadu - Jejím úkolem je odhadout ezámé parametry základího souboru a základě výběrových dat. Výsledkem je jedié číslo. - Základí soubor - Výběrový soubor, Zjišťováí úplé - Zjišťováí výběrové ) Bodové odhady - Na základě zjištěých hodot výběrového souboru vypočteme předem staoveým způsobem jedo číslo, které považujeme za odhad parametru ZS. - Bodový odhad průměru ZS je výběrový průměr můžeme tedy psát µ x. - Bodovým odhadem rozptylu ZS eí rozptyl souboru s (viz. vzorce) - Bodový odhad variačího koeficietu ZS µ X i x N i - Bodový odhad relativí četosti ZS - Bodovým odhadem relativí četosti ZS je výběrová relativí četost f i. π f i N V v x i i N N - -

3) (7) Itervalové odhady - Nezámou hodotu parametru odhademe tak, že uvedeme iterval spolehlivosti, který s předem daou pravděpodobostí obsahuje daou hodotu parametru ZS. - P(T θ T ) α - Spolehlivost odhadu ( α), Pravděpodobost α, Přesost odhadu - Itervalový odhad průměru ZS - Je potřeba vycházet z ěkolika předpokladů: -- základí soubor má ormálí rozděleí ebo rozděleí ZS ezáme, ale áhodý výběr má velký rozsah, -- záme ebo ezáme rozptyl ZS σ, --zda se jedá o výběr s vraceím ebo bez vraceí a zda půjde o iterval jedostraý ebo oboustraý. -- P ( x < µ < x + ) α, - Iterval spolehlivosti pro populačí průměr (viz. vzorce) 4) Rozšířeé výpočty pro itervalové odhady - Výpočet přípusté chyby - maximálí možá chyba, které se lze dopustit při kostrukci itervalu spolehlivosti. (viz. vzorce) - Staoveí rozsahu souboru pro požadovaou spolehlivost a přípustou chybu. (viz. vzorce) - Určeí spolehlivosti odhadu - (viz. vzorce) - Rozděleí t lze za obecých podmíek aproximovat ormálím rozděleím, distribučí fukci ormovaého ormálího rozděleí. P(-,34< u <,34) F(,34) F(-,34) F(,34) [-F(,34)],999 (,999),898 - Iterval spolehlivosti pro populačí relativí četost - (viz. vzorce) - Iterval spolehlivosti pro populačí rozptyl - (viz. vzorce) 5) Itervalový odhad parametru p (π) alterativího rozděleí (itervalový odhad relativí četosti ZS) - Bodovým odhadem je výběrová relativí četost f i m/, kde je rozsah výběrového souboru a m počet jedotek s určitou vlastostí. - Teto výběrový podíl je estraým odhadem parametru p. - Je uto rozlišovat, zda pracujeme s malými ebo velkými výběry. (Velký je miimálě ) - Jedá-li o výběrový soubor velkého rozsahu, lze rozděleí výběrové relativí četosti m/ aproximovat ormálím rozděleím se středí hodotu p a směrodatou odchylkou p ( p) 6) Statistická hypotéza - Předpoklad týkající se ezámého rozděleí populace - Tvrzeí o parametrech ebo tvaru rozděleí zkoumaého zaku - Nulová hypotéza (testovaá hypotéza) H - θ hypotetická hodota zkoumaého parametru H : θ θ - Alterativí hypotéza H - H : θ θ oboustraá alterativa - H : θ > θ pravostraá alterativa - H : θ < θ levostraá alterativa - -

7) (8) Testováí hypotéz - Proces ověřováí platosti statistických hypotéz a základě výsledků získaých áhodým výběrem - Test Parametrické ebo eparametrické. Jedo, dvou ebo vícevýběrové. Oboustraé ebo jedostraé (pravostraé ebo levostraé) - Kritický obor - obor možých hodot testového kritéria T je rozděle a disjuktí možiy kritickou hodotou -- Kritický obor K (zamítáme H ), Obor přijetí R (výskyt hodot T, které ejsou v rozporu s H ) - Postup testováí statistických hypotéz: - Formulace ulové a alterativí hypotézy. Volba hladiy výzamosti α. - Volba testového kritéria (a testu). Výpočet hodoty testového kritéria T z výběrových hodot - určeí kritického oboru K (vyhledáí tabulkové hodoty podle zvoleého testu) - formulace výsledků testu (rozhodutí). ROZHODNUTÍ: vypočteá hodota > tabulková hodota H 8) () Parametrické testy jedovýběrové - Test hypotézy o průměru ormálího rozděleí - H : µ µ výpočet TK (viz. vzorce), u α a t α(-) jsou tabulkové hodoty - Test hypotézy o parametru p alterativího rozděleí (relativí četost) - H : π π výpočet TK (viz. vzorce), u α je tabulková hodota 9) (7) Parametrické testy dvouvýběrové - Test rozdílu dvou výběrových rozptylů (F-test) - H : σ σ - výpočet TK (viz. vzorce), F α (f, f) je tabulková hodota - Dvouvýběrový test o shodě dvou průměrů (Existuje výzamý rozdíl mezi dvěma soubory?) --. krok F test (test H σ σ ) --. krok - Dvouvýběrový t-test eí-li H F-testu zamítuta(σ σ ) zamítuta - výpočet TK (viz. vzorce), Welchův test je-li H F-testu (σ >σ ) - výpočet TK (viz. vzorce) - Dvouvýběrový test o shodě dvou průměrů závislé výběry (párový t-test) (dvě pozorováí a jedé skupiě jedotek) -- H : µ µ H : µ d, d µd je průměr souboru diferecí d i - výpočet TK (viz. vzorce) t α(-) je tabulková hodota - Test rozdílu dvou výběrových relativích četostí - H : π π, velké rozsahy a ( > ; > ) - výpočet TK (viz. vzorce), u α je tabulková hodota 3) (4) Parametrické vícevýběrové testy - Smysl aalýzy rozptylu jedoduchého tříděí - vícevýběrový test, vliv jedoho ebo více faktorů a výsledý zak kvatitativí X -- faktor jedofaktorová ANOVA (jedoduchého tříděí), faktory dvoufaktorová ANOVA (dvojého tříděí), atd. -- rozklad celkového rozptylu a rozptyly dílčí, tyto dílčí rozptyly esou iformaci, která ovlivňuje hodoty sledovaého zaku xij v daém tříděí - s rozptyl mezi třídami s a rozptyl uvitř tříd (reziduálí) s r - 3 -

3) (6) Model aalýzy rozptylu jedoduchého tříděí - x ij kolísá okolo průměru v důsledku efektu a i a áhodého efektu e ij N (,σ ) x x + a + e ij i ij -vyvážeý ebo evyvážeý model. Předpoklady modelu (ormalita rozděleí a ezávislost výběrů a homogeita rozptylů) - Postup sestaveí modelu: -- formulace ulové hypotézy (H : µ µ µ m ebo H : a a a m ) -- alterativí hypotéza H - slově alespoň v jedé ze srovávaých dvojic existuje výzamý rozdíl m H : a i > i -- ověřeí ormality (v praxi se eověřuje, emá vliv a výsledky testu); ověřeí homogeity rozptylu Bartlettův test; rozklad celkového rozptylu a rozptyly dílčí s s + s r -- F-test; formulace dílčích závěrů; v případě platosti (H test kočí, H mohoásobé porováí) 3) Podrobější vyhodoceí výsledků ANOVA (případ platosti H ) - Scheffého metoda (S metoda) uiverzálí (viz. vzorce) - Tuckeyova metoda (T metoda) - vyvážeý model (viz. vzorce) - Ducaova metoda - vyvážeý model, seřazeí výběrových průměrů dle velikosti, odhad rozptyl výběrových průměrů --R p; (f); α - sr s x sx s x - 4 -

Pravděpodobost - Laplace Státí závěrečá zkouška BAKALÁŘSKÁ STA I. + II. m počet astoupeí jevu A. celkový počet pokusů Statistika I. - Příklady - Př. Ve třídě je dívek a 8 chlapců. Jaká je pravděpodobost, že bude (při áhodém výběru) vyvoláa dívka? m P(A)/ - Vlastosti pravděpodobosti - vo Mises P ( A) m ) P(A) ) P(U), protože pro jistý jev m 3) P(V), protože pro emožý jev m 4) P(A) - P(A) P(A) lim N + - Věta o sčítáí pravděpodobosti - Př. Telefoí operátor zjistil, že 75% zákazíků požaduji telefo s fukci psaí SMS, 8% fotografováí a 65% požaduje obě fukce. Jaká je pravděpodobost, že zákazík bude požadovat alespoň jedu z uvedeých možostí? A SMS P(A),75 B fotografováí P(B),8 P(A B),65 - Jedá-li se o jevy eslučitelé - M N P(A B) P(A) + P(B) - P(A B),75 +,8 -,65,9 - Věta o ásobeí pravděpodobostí U B) P( A) + P( B) P( AI ) P( A B P ( AU B) P( A) + P( B) P(A I B) P(A/B) P(B) P(B/A) P(A) - 5 -

Jevy A a B jsou ezávislé, jestliže pro ě platí P(A/B) P(A) a také P(B/A) P(B). Pak lze větu o ásobeí pravděpodobostí zapsat: P(A - Př. Pa Novák lže s pravděpodobostí P(A), Pa Horák lže s pravděpodobostí P(B),3 Zeptáte-li se obou (ezávisle a sobě!) a iformaci, jaká je pravděpodobost, že budou oba lhát? Jaká je pravděpodobost, že oba řekou pravdu? I P(A B) P(A) P(B),,3,6 I P( A B) P(A) P(B),8,7,56 Jaká je pravděpodobost, že alespoň jede řeke pravdu? P( A B),8 +,7,8,7,94 P( A B) P(A B),6,94 B) P(A) P(B) - Podmíěá pravděpodobost - P(A B) P(A/B) P(B) - Př. - Házíme dvěma kostkami, bílou a čerou. Jaká je podmíěá pravděpodobost, že a bílé kostce pade 5 za podmíky, že součet a obou kostkách bude devět? B5{(5,),(5,),(5,3),(5,4),(5,5),(5,6)} S9{(3,6),(4,5),(5,4),(6,3)} P(B5 S9) P(B /S9) P(S ) 5 9 4 Pravděpodobostí rozděleí - Náhodá veličia - řada (tabulka) rozděleí áhodé veličiy (Pro hrací kostku) šest možých výsledků, každý astává s pravděpodobostí /6, platí: p+p+ +p - 6 -

- Distribučí fukce (Pro hrací kostku) Normálí a ormálí ormovaé rozděleí - Př. Náhodá veličia X má ormálí rozděleí s průměrem µ a směrodatou odchylkou σ5. Pak hodota veličiy U pro X6 je: X µ 6 U, σ 5 Hodota X je,ásobek směrodaté odchylky (, x 56) ad průměrem (). - 7 -

Itervalové rozděleí četosti - Př. - Jsou k dispozici údaje o výdělcích brigádíků za určitý měsíc. Setřiďte hodoty do přehledější formy. Staoveí počtu itervalů Staoveí šířky itervalu k 3 5,477 R 5 4 h 86,666 k 6 Sturgesovo pravidlo počet itervalů zhruba stejý k + 3,3log + 3,3log 3 5,87 Charakteristiky polohy rozděleí - Aritmetický průměr prostý Př. - Vypočítejte průměrou výšku (cm) hráček volejbalového družstva. Hodoty jsou: 85, 78, 75, 75, 8, 7. x 85 + 78 + 75 + 75 + 8+ 7 6 i i x 77,66-8 -

- Aritmetický průměr vážeý Př. - Pojišťova si zjišťuje průměrý věk aut ze své databáze. xi i x i + 9 + 3 7 + 4 + 5 9 + 6 7 + 7 8 + 8 5 + 9 3+ x 399 x 3,99 - Př. - Zajímá ás průměrý výdělek a studeta za určitý měsíc. xi i x i 6 8666,67 3 Charakteristiky polohy rozděleí - Variabilita Př. - Máme k dispozici ásledující data: 8 9 5. Chceme popsat variabilitu tohoto souboru. 35 xi x 5 7 ( xi x) i ( 5) + ( 8 5) +... + ( 5 5) s 4,9 7 7 s s 4,9 3,78 s 3,78 v 75,6 % 5 x - 9 -

- Př. - Máme data týkající se věku pojištěých aut. Teto soubor chceme popsat pomocí charakteristik variability. Value.. 3. 4. 5. 6. 7. 8. 9.. Cout Freuecy Couts 9 7 9 7 8 5 3 Cell Percet. 9. 7.. 9. 7. 8. 5. 3.. Cum Percet. 9. 56. 66. 75. 8. 9. 95. 98.. 399 x 3, 99 s s 5,9,3 s,3 v 57,64 % 3,99 x s k ( xi x) i i ( 3,99) +... + ( 3,99) 58,99 5,9 - -

- Př. - Zajímá ás variabilita měsíčích výdělků vybraých studetů. xi i x i 6 8666,67 3 s k ( xi x) i i 8666666,7 3 s s 6955555,56 637,34 s 637,34 v 3,43 % 8666,67 x 6955555,56 - Míry šikmosti Př. - -

Základí charakteristiky - Soubor A soubor B soubor C ~ x 5 x 5 xˆ 5 s 3,653 Soubor A rozděleí četostí je souměré okolo průměru,b a C rozděleí četostí je esouměré Rozděleí souboru B polovia malých hodot zaku má meší variabilitu ež polovia velkých hodot rozděleí s kladou šikmostí (zešikmeé doleva). Rozděleí souboru C polovia malých hodot zaku má větší variabilitu ež polovia velkých hodot zaku rozděleí se záporou šikmostí (zešikmeé doprava). Výpočet míry šikmosti vzhledem k provedeé tříděí je uto použít vážeou formu Soubor A α i ( x i x) s 3 3 i 5 48,343 Soubor B -α,868 sešikmeí doleva Soubor C -α -,868 sešikmeí doprava - Míry špičatosti Př. Rozsah, stejý aritmetický průměr, mediá, modus v hodotě 4, stejý rozptyl a stejou šikmost α ; liší se... Soubor D - -

β i ( x i x) s 4 Soubor D plošší rozděleí četostí Soubor E 4 i 7 3,78 3,465 β i 4 ( x x) i s 4 i 6 3,99 3,465 vyšší kocetrace hodot okolo středí hodoty, špičatější rozděleí četostí Itervalové odhady - 3 -

- Spolehlivost pro průměr Př. - Z velké zásilky součástek jsme jich áhodým výběrem vybrali 4 a zjistili pro ěkterý jejich rozměr průměr 6 mm a směrodatou odchylku 4,8 mm. Na základě těchto údajů chceme staovit 95% dvoustraý iterval spolehlivosti pro průměr tohoto rozměru přejímaých součástek v celé zásilce. 4,9 4,9 6,96 < µ < 6 +,96 4 4 6,4 < µ < 6 +,4 P ( 5,6 < µ < 6,4), 95 Iterval pravostraý 4,9 < 6 +,6448 4 µ P ( µ <6,3364), 95 - Staoveí rozsahu souboru Př. - Požadujeme spolehlivost 95 % a přípustou chybu odhadu mm. Kolik jedotek je potřeba vybrat? s 4,9 t,5 (399),96,96 4,9 64,9 & 65 - Určeí spolehlivosti odhadu Př. - Jaká bude spolehlivost odhadu, pokud požadujeme šířku itervalu mm a výběr elze dále rozšířit? s 4,8 3 3 t α 4,9,34 Rozděleí t lze za obecých podmíek aproximovat ormálím rozděleím, distribučí fukci ormovaého ormálího rozděleí. P(-,34< u <,34) F(,34) F(-,34) F(,34) [-F(,34)],999 (,999),898 - Itervalový odhad parametru alterativího rozděleí Př. - U pojištěých aut bylo zjištěo, že 8 aut je starších ež 7 let. Chceme staovit 95% iterval spolehlivosti pro podíl aut starších 7 let v základím souboru. 8 i f,8 u i α u,5, 96 u α f i ( f ) i,96,8 (,8),753 7,53 % P (,8,753 < π <,8 +,753), 95 P (,47 < π <,553), 95-4 -

Jak velký výběrový soubor bychom potřebovali v případě, že požadujeme velikost přípusté chyby pouze 5 %? uα fi ( fi ),96,8 (,8) 6,8 7,5 Jakou spolehlivost zaručuje výběr respodetů s přípustou chybou 5 %? u α f i ( f i ),5,8,8,3 P(-,3 < u <,3) F(,3) F(-,3) F(,3),93,864 Parametrické testy jedovýběrové - Test hypotézy o průměru ormálího rozděleí Př. - Z velké zásilky součástek jsme jich áhodým výběrem vybrali 4 a zjistili pro ěkterý jejich rozměr průměr 6 mm a směrodatou odchylku 4,8 mm. Podle techické ormy má teto rozměr dosahovat úrově 8 mm. Ověřte a hladiě výzamosti,5, zda uvedeá zásilka splňuje daou ormu. 4 s 4,8 µ 8 x 6 H : µ µ H : µ µ t α (-) t,5 (4-), t > t α (-) H se zamítá Závěr: s 4,8 6,65456 s s x µ t s 4 6,65456 7,86 39 6 8 7,86 4 3,65-5 -

- Test hypotézy o parametru p alterativího rozděleí Př. - U pojištěých aut bylo zjištěo, že 8 aut je starších ež 7 let. Podle předpokladů a odhadů pojišťovy má podíl aut starších 7 let dosahovat podílu 5 %. Ověřte, zda podíl aut starších ež 7 let je skutečě jiý ež uvedeý předpoklad o 5% podílu. f i,8 π,5 fi π,8,5 H : π π u,6658 H : π π POZOR, změa oproti slidům π ( π ),5 (,5) u α,96 IuI < u α H se ezamítá Závěr: - Test rozdílu dvou výběrových rozptylů (F-test) Př. - Z velké zásilky součástek jsme jich áhodým výběrem vybrali 3 a zjistili pro ěkterý jejich rozměr směrodatou odchylku 4,8 mm. Ze zásilky od druhého dodavatele jsme vybrali 5 součástek a zjistili jsme pro stejý rozměr rozptyl 8,5. Na základě těchto údajů chceme ověřit, zda variabilita sledovaého parametru je u obou dodávek shodá. m 3 5 s 6,65456 s 8, 5 H H σ : σ : σ σ > F α (f, f) F,5 (4; 9),9 F < F α (f, f) H ezamítáme a variabilita obou dodávek je v ZS shodá. 3 s 6,65456 7,886 9 5 s 8,5 9,4 4 s 9,4 F,346 s 7,886-6 -

- Dvouvýběrový test o shodě dvou průměrů Př. - Máme k dispozici údaje o mzdách (tis. Kč) áhodě vybraých zaměstacích určité firmy z regiou A a B. Je možé kostatovat, že z hlediska průměré mzdy existuje výzamý rozdíl mezi regioy A a B? H : µ µ průměré mzdy se výzamě eliší H : µ µ m 5 x 58,33 s 85,884 x s 53,3 67,379. F test H : σ σ H : σ > σ s F s 85,884 67,379,758 F,5 (4; ),86 F < F α (f, f) H se ezamítá, tz. že variabilita obou souborů v ZS je shodá - 7 -

. t testem pro variatu shodých rozptylů t,5 (5+-),69 t,37 < t α,69 [( m ) s + ( ) s ] s m + s 4 85,884 + 9 67,379 78, 5 + x y 58,33 53,3 t,37 s + 78,68 + m 5 ( ) 68 t < t α (f) H : µ µ - Př. - Máme k dispozici údaje o mzdách áhodě vybraých zaměstaců dvou růzých společostí A a B (tis. Kč). Je možé kostatovat, že jsou průměré mzdy obou společostí výzamě odlišé? m 5 x 7,6 s 34,64 5 x s 56, 8,7 H : µ µ průměrá mzda se výzamě eliší H : µ µ. F test H : σ σ H : σ > σ F,5 (4; 4),98 F > F α (f, f) H se zamítá s F s 8,7 34,64,384-8 -

. t testem pro variatu rozdílých rozptylů, Welchův test t x y s s + m 7,6 56,5 34,64 5 + 8,7 5 6,995 s s + m f s s m + m t,5 (4), t 6,99 > t α, t > t α (f) H : µ µ se zamítá 34,64 8,7 + 5 5 34,64 5 4 + 8,7 5 4 4, - Dvouvýběrový test o shodě dvou průměrů závislé výběry (párový t-test) Př. - Máme k dispozici údaje o výkoech žáků ve skoku do dálky při tréiku a při závodě. Je možé kostatovat, že jsou výkoy žáků při tréiku a při závodě shodé? H : µ µ H : µ µ d d t d s d ( d d ) i i,5,5,5,369 t α(-) t,5 (), t < t α (-) H se ezamítá s d,83,665,369-9 -

- Test rozdílu dvou výběrových relativích četostí Př. - Máme k dispozici údaje o počtu arozeých dětí v rámci dvou regioů. V regiou A zjistili, že během sledovaého období se v rámci dětí arodilo 5 chlapců, zatímco v regiou B se za stejé období arodilo celkem 5 dětí, z toho 66 děvčat. Je možé kostatovat, že pravděpodobost arozeí chlapce je u obou regioů stejá? H : π π H : π π m 5 m 84 5 m + m 5+ 84 5 p,5 66, 6 + + 5 + + 5 u f f 5 84 5,5,5 66,6 p,45 u α u,5,96 u > u α H se zamítá - 3 -

Statistika I. Studijí materiál ANALÝZA ROZPTYLU-ANOVA dělá se při dvouvýběrovém testu; pozorovaé veličiy jsou ezávislé s ormálím rozděleím a stejým rozptylem; zkoumá, zda ěkterá z porovávaých dvojic (průměrů) se liší, pomocí ANOVY se testuje ulová hypotézapokud eí zamítuta, práce kočí; pokud je zamítuta pokračujeme dál testováím Aalýza rozptylu soubor metod, pomocí kterých lze sledovat vliv jedoho ebo více faktorů a populačí průměr, specielě porovat průměry m populací, kde m > MEDIÁNpatří spolu s průměrem a modusem mezi charakteristiky polohy, začí se x s vlovkou, hodota mediáu udává středí hodotu řady, která je vzestupá, dělí ji tak a poloviy CHARAKTERISTIKY POLOHYeboli rozděleí podle umístěí (v řadě); patří sem průměr, mediá (viz. výše) a modus; průměr-sečteme všechy hodoty a vydělíme jejich počtem, modus-hodota ejčastějšího zaku (hodoty) VARIABILITA A CHARAKTERISTIKY VARIABILITY Variabilita promělivost, odchylost od ormálu, hodota rozptýleí dat v souboru, růzorodost, odchylka hodot od průměru Míry variability Pomocí je měr polohy elze přesě popsat výběr, protože moho dat má stejé ebo přibližě stejé hodoty jedotlivých parametrů měr polohy, přesto jsou a prví pohled odlišé (s) směrodatá odchylka-kvadratický průměr odchylek hodot zaku od jejich aritmetického průměru; (s )rozptyl-středí hodota kvadrátů odchylek od středí hodoty; (V) variačí koeficiet- směrodatá odchylka / průměr * ; (R) variačí rozpětí-rozdíl mezi ejmeší a ejvětší hodotou řady KATEGORIÁLNÍ PROMĚNNÉ- omiálí (zaky většiou pro typy (muž žea, emocý zdravý, ale i pro barvu apř. 5 barev; ezávislé a sobě), ordiálí (můžeme je vzestupě/sestupě řadit-dosažeé vzděláí a kvatitativí (číselé-hodota v číslehmotost, výška ) proměé; sloví proměé (kvalitativí) dělíme ještě a spojité (mohou zasahovat i desetiá čísla-váha,výška..) a espojité (počty mláďat,počet seseých vajec..); používají se pro testy relativí četosti - 3 -

TYPY GRAFŮ a) boxplot (krabičkový graf)-graficky zázorňuje umerická data pomocí kvartilů, umožňuje posouzeí mediáu, symetrie, variabilitu datového souboru a extrémích hodot. prví kvartil;. mediá; 3. třetí kvartil b) histogram (stem ad laef)-lodyha a listy- graf ukazující relativí četosti (hustota) a jedotlivé hodoty; vlevo-četosti (apř -tz. x), vpravo- prví číslice desítky, pak jedotky tz. Např...4. 89 -> cea 48,49 ( cey začíající 4->4+8,4+9 Četosti; Lodyha & Listy, 4. 89 4, 5. 334, 5. 5556677 c) sloupcový graf d) koláčový graf - 3 -

NORMÁLNÍ A NORMOVANÉ ROZDĚLENÍ-ROZDÍL- u ormovaého má ý (středí hodota) hodotu a s (směrodatá odchylka) hodotu ; - ormálí; Normovaé N (,) DISTRIBUČNÍ FUNKCE Distribučí fukce možo použít pro diskrétí, tak i pro spojité áhodé veličiy. Je to fce, která každému reálému číslu přiřazuje ppst, že áhodá veličia abude hodoty meší ež toto číslo. Je to ppst a ta leží v itervalu <,>, je eklesající NORMÁLNÍ ROZDĚLENÍ-GAUSSOVO (GAUSSOVA KŘIVKA)běžé rozděleí, je ejdůležitějším pravděpodobostím rozděleím a používá se hlavě jako model pro rozděleí áhodých chyb měřeí, které jsou způsobeé možstvím malých, a sobě ezávislých áhodých jevů, předpokladem je dostatečě velký rozptyl přibližých hodot (aproximace), obvykle 9, větší ež 5 ezaručují dobré přiblížeí; středí hodota µ a rozptyl σ 3 SIGMA výsledky áhodého pokusu eleží od středí hodoty dále ež sigma doleva a sigma doprava (poté sigma a 3 sigma); itervaly: (µ σ, µ + σ) s pravděpodobostí 68,7%, (34,+34, cca 68,) (µ σ, µ + σ) s pravděpodobostí 95,45%, (68,+3,6+3,6 95,4) (µ 3σ, µ + 3σ) s pravděpodobostí 99,73% (95,4+,+, 99,6) STATISTICKÝ ZNAK, STATISTICKÁ JEDNOTKA, ZÁKLADNÍ A VÝBĚROVÝ SOUBOR statistický soubor (databáze-rostliy, lidé, firmy ); Statistická jedotka jede kokrétí prvek statistického souboru (zaměstaec); - 33 -

Statistický zakpohlaví vzděláí, věk, bydliště ( kokrétí položka statistické jedotky Základí soubor soubor všech statistických jedotek, a ěž se vztahuje příslušé statistické zkoumáí. (populace, zvířata) Může být koečý i ekoečý (experimetálí výzkum techologický, biologický), (lze za stále stejých podmíek pozorováí epřetržitě opakovat. Výběrový soubor soubor určitého koečého počtu jediců vybraých ze základího souboru, u kterých je provedeo praktické sledováí (měřeí) zkoumaé vlastosti. (zvířata v pražské ZOO) Na základě pozáí vlastostí výběrového souboru se usuzuje a vlastosti celé populace, proto by měl být výběrový soubor co ejlepším představitelem základího souboru. NULOVÁ A ALTERNATIVNÍ HYPOTÉZA+JEDNOSTRANNÁ, OBOUSTRANNÁ Nulová hypotéza vždy tvrzeí o shodě (rovosti), shoda mezi skutečostí a předpokladem, eexistuje statisticky výzamý rozdíl mezi předpokladem a skutečostí Alterativí hypotéza eshoda, rozdíl mezi předpokladem a skutečostí, popírá hypotézu, existuje statisticky výzamý rozdíl mezi předpokladem a skutečostí. Je oboustraá, pravostraá a levostraá NÁHODNÁ VELIČINAčíselé vyjádřeí áhodého jevu; výsledek za předpokladu určitých podmíek vlivem áhodých čiitelů->růzé hodoty -veličia, kterou lze opakovaě měřit u růzých objektů, v růzých místech ebo v růzém čase (apř. teplota v určitou hodiu měřeá každý de, počet teček při hodu kostkou ) -abývá kokrétích hodot či hodot z růzých itervalů v závislosti a áhodě -dělíme a espojitédiskrétí (celá čísla-počet seseých vajec, počet poruch přístroje) a spojité (iterval-výška člověka, váha zvířete, míra ezaměstaosti, spotřeba paliva ) NAHODILÝ JEV, POKUS Náhodý pokus opakovatelá čiost prováděá za stejých podmíek (hod kostkou) Náhodý jev výsledek áhodého pokusu (pade trojka) Sjedoceí áhodých jevů áhodý jev, který astae, astae-li alespoň jede z jevů A a B Průik současý ástup jevů A a B BODOVÝ A INTERVALOVÝ ODHAD Bodový odhad a základě zjištěých hodot výběrového souboru vypočteme předem staoveým způsobem jedo číslo, které považujeme za odhad parametru základího souboru. Itervalový odhad můžeme ezámou hodotu odhadout tak, že uvedeme iterval, který s předem daou ppstí obsahuje daou hodotu parametru základího souboru (pokrývá ezámou hodotu parametru souboru) CHYBA. A. ŘÁDU Chyba. řádu zamítutí správé ulové hypotézy (která je pravdivá) pravděpodobost chyby. druhu hladia výzamosti alfa Chyba. řádu přijetí esprávé ulové hypotézy pravděpodobost chyby. druhu beta Síla testu ( - beta) ppst zamítutí esprávé ulové hypotézy - 34 -

MOŽNOST VÝBĚRU Z POPULACE a)výběr a základě dobrovolosti b)výběr a základě dostuposti c)kvótí výběr d)áhodý výběr: prostý áhodý výběr každý prvek populace má stejou pravděpodobost, že bude vybrá - každý výběrový soubor o rozsahu má stejou pravděpodobost výběru KLASICKÁ A STATISTICKÁ TEORIE PRAVDĚPODOBNOSTI Statistická teorie (Richard vo Mieses) defiice spojea s pojmem relativí četost. zvyšujícím se počtem pokusů se relativí četost stabilizuje a přibližuje se k určitému kostatímu číslu Klasická teorie (Pierre Simo Laplace) Může-li určitý pokus vykázat koečý počet růzých výsledků (prvotích jevů), které jsou stejě možé a jestliže m těchto výsledků má za ásledek astoupeí jevu A, kdežto zbylých -m je vylučuje, potom pravděpodobost jevu A položíme rovu... P (A) m/ PARAMETRICKÉ A NEPARAMETICKÉ TESTY Parametrické - je uté zát tvar rozděleí, předpokládáme ormálí rozděleí - sigma, mý. Jsou to t-testy -jedovýběrový a dvouvýběrový, aalýza rozptylu, F-test, ) Neparametrické - eí utá zalost tvaru rozděleí, jsou jedodušší a výpočet, pro malé výběrové soubory, evýhodou je meší síla testu a pracujeme s pořadovými čísly (Kruskal Wallisův test, Wilcoxoův test, dvouvýběrový Wilcoxoův, ) 95% INTERVAL SPOLEHLIVOSTI Hladia výzamosti (chyba alfa)-> 95% šace, že zamíteme H, 5% že H bude platit. Čím meší je alfa, tím meší je šace, že H bude platit a tím je měřeí přesější. RELATIVNÍ ČETNOST Relativí četost udává, kolik procet hodot zaku ze statistického souboru je rovo hodotě z. Relativí četost zaku z vypočteme takto: rz a / S, kde z a je absolutí četost zaku z a S je rozsah statistického souboru, tj. počet prvků Statistika I. Studijí materiál ) Defiujte pojem statistika. - věda o sběru dat a zpracováí hromadých údajů, zabývá se jevy, které mají hromadý charakter - hromadost studováa a statistických souborech ) Co je to popisá statistika? - elemetárí metody sběru a zpracováí iformací - jedotkou je statistický soubor (osob, podiků, istitucí, zvířat, zemí, atd.). - statistické soubory jsou tvořey statistickými jedotkami, mají vlastosti jedozačě vymezey. - 35 -

3) Co je matematická statistika a jak se dělí. - moderí zabývá se složitějšími metodami sběru a zpracováí hromadých údajů; vytváří zvláští druh matematických modelů tzv. pravděpodobostí modely teorie pravděpodobosti 4) Typy statistických ukazatelů - okamžikové, itervalové, primárí, sekudárí, exteziví, iteziví, stejorodé, estejorodé 5) Druhy statistických vlastostí () 6) Statistické jedotky - elemetárí jedotky stat. pozorováí, jsou ositeli zaků 7) Statistické zaky - vlastosti jedotek, která je předmětem zkoumáí - kvalitativí slově vyjádřeé alterativí ( obměy zaku); možé (více ež obměy) - kvatitativí číselě vyjádřeé, diskrétí (celočíselé), spojité (desetié číslo, logaritmy) 8) Statistický soubor - možia jediců, a kterých je prováděo statistické šetřeí - základí soubor všechy jedotky s daou vlastostí - výběrový soubor vybrá ze základího, podmožia je meší 9) Rozdíl mezi ZS a VS - VS je vlastě část ZS - VS je meší ež ZS (úplé zjišťováí, tvoře všemi jedotkami), VS(eúplé zjišťováí) ) Základí etapy statistických prací - statistické šetřeí (zjišťováí) - získáváí ezámých iformací o zacích statistických jedotek, výsledkem statistického zjišťováí jsou euspořádaé údaje - statistické zpracováí - statistická aalýza ) Co je statistické zjišťováí? - získáváí ezámých iformací o zacích statistických jedotek - výsledkem statistického zjišťováí jsou euspořádaé údaje - akety, dotazíky, experimet, výsledek vědeckého experimetu - pro zpřehleděí se data třídí ) Základí míry polohy rozděleí a k čemu slouží - průměry: aritmetický; vážeý ar. prům.; harmoický; geometrický; celkový ar. prům.; chroologický - ostatí středí hodoty: mediá, modus - měly by jedím číslem popsat středí úroveň hodoty statistického zaku a umožit jeho hlubší aalýzy - reprezetují vhodou středí hodotu daého souboru kolem íž se soustřeďují hodoty tohoto souboru 3) Prosté x vážeé charakteristiky polohy rozdíl (3) - prosté u esetříděých dat, máme-li relativí četosti - vážeé u setříděých dat (tabulka rozděleí četostí 4) Průměr aritmetický - součet všech hodot zaků děleý počtem zaků - 36 -

5) Průměr geometrický - -tá odmocia ze součiu zaků 6) Jaké záte míry založeé a geometrickém průměru? - všude tam, kde má smysl ásobit hodoty, apř. průměrý koeficiet růstu ebo Fisherův idex 7) V jakém oboru statistiky se můžeme setkat s geometrickým průměrem - používá se u časových řad průměré tempo růstu (koeficiet růstu) 8) Průměr harmoický - podíl počtu pozorováí a sumy převráceých hodot zaků 9) Kdy a k čemu používáme harmoický průměr (3) -v idexí aalýze; průměr převráceých hodot ) Průměr chroologický - použití v okamžikové časové řadě - prostá forma tam, kde délka mezi rozhodými obdobími je stejá) - vážeá forma kde vahami jsou počty dí v měsíci, ) Tempo a průměrý koeficiet tempa růstu - počítáí geometrického průměru ) Mediá - x s vlovkou - prostředí hodota zaku v souboru uspořádaá podle velikosti - lichý počet hodot v souboru - středí hodota - sudý počet hodot - průměr středí hodoty 3) Modus - hodota, která se ejčastěji vyskytuje, hodota zaku s ejvětší četostí 4) Jak vypočítáte modus a mediá spojité áhodé veličiy, záte-li její distribučí fukci? - pokud má spojitá áhodá veličia ormálí rozděleí je mediá a modus rove středí hodotě. 5) Uveďte situaci, kdy může mediá popsat polohu statistického souboru lépe ež průměr. - mediá může popsat polohu statistického souboru lépe, pokud je ějaká hodota hodě vychýleá, tz., že se hodě liší od ostatích - pak je průměr zkresleý a mediá je lepší měrou polohy statistického souboru. př.: 4, 5, 5, 5, 5, 7, 48 6) Pro která pravděpodobostí rozděleí je jejich středí hodota rova mediáu a zároveň modu? Vysvětlete a uveďte příklady. Pro symetrická (Normálí, studetovo) 7) K čemu se používají podmíěé průměry je to ejjedodušší způsob určeí regresí závislosti (přímka podmíěých průměrů)- elze však a jejich základě provádět odhady 8) Co se stae s průměrem, rozptylem, směrodatou odchylkou, mediáem a rozpětím statistického souboru, jestliže každá hodota statistického souboru se: a) zvětší dvakrát - průměr a mediá se zdvojásobí, rozptyl se zvýší čtyřikrát; směrodatá odchylka a rozpětí statistického souboru se zvýší dvakrát b) zvětší o čtyři průměr a mediá se zvětší o čtyři; rozptyl se ezměí; směrodatá odchylka a rozpětí statistického souboru se ezměí - 37 -

9) Rozděleí četosti a co je itervalové rozděleí četosti - rozděleí četostí - u espojitých zaků původě euspořádaé údaje roztřídit do rozděleí četostí 3) Jak se staovuje iterval relativí četosti ZS u malých VS - výběr relativí četosti se řídí biomickým rozděleím v případě výběru bez vraceí se řídí hyperbolickým rozděleím - výpočet vede ke složitým variacím, proto máme sestavey tabulky a přímo odečítáme meze itervalu z tabulek 3) Defiice pojmu kumulativí četost - absolutí a relativí - vzikají postupým ačítáím 3) Druhy grafů - spojicové, sloupcové(polygo, histogram), bodové, výsečové, speciálí (kvartogram) 33) Histogram - sloupcový graf - u itervalového rozděleí četostí 34) Které charakteristiky statistického souboru můžete přibližě zjistit z histogramu četosti, aiž byste prováděli výpočet? - počet itervalů a jejich šířku, absolutí četost itervalu a pokud jsou itervaly stejě dlouhé i modus 35) Jaký graf používáme u jedorozměrých četostí. - sloupcový 36) Základí míry variability - absolutí: rozptyl, směrodatá odchylka, variačí rozpětí, prům. odchylka - relativí: variačí koeficiet, relativí průměrá odchylka 37) Rozptyl - aritmetický průměr čtverců idividuálích odchylek jedotlivých hodot zaku od aritmetických průměrů - edostatek jedotky jsou druhou mociou původích jedotek 38) Směrodatá odchylka v souboru výběrových průměrů - měří abs. Variabilitu - je uvedea ve stejých měrých jedotkách jako zkoumaý stat. zak; sodm.s a - prostá: Sodm. z((sum(xi-x)a )/) - vážeá: Sodm. z((sum(xi-x)a *i)/(sum.i)) - iformuje o promělivosti jedotlivých hodot zaku kolem výběr. aritm. průměru 39) Variačí rozpětí - jedoduchá míra adaptability - pouze odchylky mezi sebou - orietačí 4) Relativí ukazatele variability. - variačí koeficiet, relativí průměrá odchylka 4) K čemu slouží variačí koeficiet? Jaká je jeho předost? - variačí koeficiet je zákl. mírou relativí variability - může se použít i tehdy pokud se zaky liší svou úroví, což je výhoda - počítá se jako podíl směrodaté odchylky a průměru 4) Jak se změí variačí koeficiet, přičteme-li ke všem hodotám souboru stejou kostatu? Směrodatá odchylka v čitateli zůstae stejá a průměr ve jmeovateli se zvětší tuto kostatu > variačí koeficiet se síží - 38 -

43) Lze vždy vypočítat variačí koeficiet souboru dat? Názor zdůvoděte. Ne. Variačí koeficiet se počítá jako podíl směr. odchylky a průměru > je-li apř. průměr ulový, Variačí koeficiet vypočítat elze. 44) Kvatil - je hodota, která rozděluje soubor hodot a dvě části 45) Kvartil - dělí soubor po 5% 46) Rozdíl mezi charakteristikami šikmosti a špičatosti (3) - charakteristika šikmosti (esouměrosti) ukazuje, jak soubor vypadá, stupeň kocetrace malých a velkých hodot v souboru - charakteristika špičatosti - ukazuje, jak jsou hodoty ahloučey kolem průměru 47) Výzam výběrového šetřeí v praxi (3) - pořizujeme výběrový soubor, aby ám poskytl iformace o celém souboru - hlavím edostatkem je, že jsou zatížey výběrovou chybou 48) Výhody úplého zjišťováí oproti eúplému výběrovému zjišťováí - úplé při práci se základím souborem, ákladé, zdlouhavé, občas emožé - eúplé při práci s výběrovým souborem, výběrový soubor musí být dobrým reprezetatem 49) Vysvětlete pojmy oblastí a vícestupňový áhodý výběr - vícestupňový - výběr provádíme a více stupích (města školy fakulty ročíky studeti) - oblastí - dvoustupňový výběr; v. stupi vybíráme oblast a ve. stupi vybíráme z oblasti jedotku 5) Kvótí výběr - v čem spočívá - typ mechaického výběru při áhodém výběru 5) Jaké záte techiky pořízeí áhodého výběru? - losováí opora výběru výběr zastoupíme lístky - tabulky áhodých čísel geerátor áhodých čísel - mechaický výběr systematické, každá -tá jedotka v áhodě uspořádaé poslouposti speciálí výběr 5) Existuje rozdíl mezi staoveím itervalu u vraceí a bez vraceí? - s vraceím jedotku po výběru vracíme zpět - bez vraceí rozsah ZS se zmešuje, pravděpodobost vybráí se zvětšuje - u velkých souborů zbytečé zbytečé pracovat s vraceím 53) Jaký test k ověřováí áhodosti výběrového souboru? (3) - dle prezetace z vše testy áhodosti slouží k ověřeí zda jsou áhodá čísla skutečě áhodá (frekvečí test, test autokorelace) měl by to být ale také zamékový test a spearmaův koeficiet (bez záruky) 54) Metoda základího masivu - kdy se soubor skládá z ěkolika velkých a moha malých jedotek - zjišťováí provádíme a velkých jedotkách 55) Záměrý výběr - začá míra subjektivity toho, kdo vybírá - vybere ty, o kterých si myslí, že dobře zastoupí soubor, ty blízké průměru, elze vyvodit chyba - 39 -

56) Děleí (druhy) áhodého výběru - s vraceím, bez vraceí - s estejou pravděpodobostí vybráí - prostý se stejými pravděpodobostmi 57) Náhodý jev - jev, který může astat ebo eastae v závislosti a áhodě a je výsledkem áhodého pokusu (charakterizuje výsledek áhodého pokusu kvalitativě) 58) Náhodý pokus - realizace podmíek a vlivů, z ichž ěkteré jsou zámé a jié áhodé 59) Jev jistý, áhodý, emožý - jev jistý - takový, který vždy astae při každém provedeí áhodého pokusu - jev áhodý - jevy, které v závislosti a áhodě mohou, ale emusí při uskutečňováí daého komplexu podmíek astat - jev emožý - áhodý jev, který eastae při žádém provedeí áhodého pokusu 6) Klasické a statistické defiice pravděpodobosti - klasická - může li určitý pokus vykázat koečý počet růzých výsledků, které jsou stejě možé a jestliže m těchto výsledků má za ásledek astoupeí jevu A, kdežto zbylých -m vylučuje: potom P(A)m/ - statistická - spojea s pojmem relativí četosti; s rostoucím počtem pokusů se relativí četost stabilizuje a přibližuje se k určitému kostrukčímu číslu. P(A) lim při ku ekoeču * M/N 6) Matematická charakteristika pravděpodobosti > - Podle geometrické defiice je pravděpodobost jevu A určea jako, kde S je > obsah plochy představující všechy možé výsledky áhodého pokusu a ω je obsah > plochy, která představuje výsledky, při ichž dojde k výskytu jevu A. Také > geometrická defiice vychází z předpokladu, že všechy výsledky áhodého pokusu > jsou stejě pravděpodobé. 6) Rozdíl mezi áhodou veličiou a áhodým jevem () - áhodý jev takový jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat; charakterizuje výsledek áhodého pokusu kvalitativě (slově) - áhodá veličia libovolá kvatitativí charakteristika áhodého pokusu; proměá, která abývá kokrétích hodot, či hodot z růzých itervalů v závislosti a áhodě 63) Záko rozděleí áhodé veličiy - pravidlo, které každé hodotě, ebo možiě hodot z každého itervalu přiřazuje pravděpodobost, že áhodá veličia ebude této hodoty, ebo hodoty z tohoto itervalu - teto záko může být vyjádře růzou formou: jako řada rozděleí pravděpodobostí (grafem je polygo, diskrétí veličiy) distribučí fce (uiverzálí záko rozděleí, diskrétí i áhodé veličiy) hustota pravděpodobosti (spojité áhodé veličiy) 64) Druhy rozděleí áhodých veliči - spojité (ormálí, expoeciálí, chí-kvadratické,studetovo t-rozděleí, F-rozděleí, rovoměré rozděleí) - espojité - diskrétí (Alterativí, Biomické, Poissoovo, Hypergeometrické, Geometrické) - 4 -

65) Charakterizujte ormálí rozděleí - áhodá veličia se řídí ormálím rozděleím, je-li její středí hodota µ a rozptyl - grafem hustoty pravděpodobosti je Gaussova křivka - speciálím případem ormálího rozděleí je ormovaé ormálí rozděleí 66) Biomické rozděleí je (možosti) () - ejdůležitější typ rozděleí diskrétí áhodé veličiy - rozděleím áhodé veličiy, která představuje počet výskytů jevu A při ezávislých pokusech, přičemž pravděpodobost výskytu jevu A je v každém pokusu kostatí 67) Jaký je vztah biomického a Poissoova rozděleí? - má-li áhodá veličia X biomické rozděleí takové, že počet pokusů je dostatečě veliké (ad 3), pravděpodobost výskytu sledovaého jevu v jedom pokuse pod, a koečé číslo, je možo toto rozděleí aproximovat Poissoovým rozděleím 68) Pravidlo tří sigma - i když áhodá veličia X, která má ormálí rozděleí, může abývat hodot z itervalu od (-, ), je téměř emožé, aby se pozorovaé hodoty této veličiy odchylovaly od středí hodoty o více ež 3 sigma 69) Co vyjadřuje záko velkých čísel? - se zvyšováím počtu áhodých pokusů dochází k přibližováí se empirické charakteristiky popisující výsledky těchto pokusů k charakteristice teoretické 7) Co vyjadřuje cetrálí limití věta? - vyjadřuje kovergeci pravděpodobostích rozděleí k ormálímu rozděleí při dostatečě velkém rozsahu souboru. 7) Co je ormovaá áhodá veličia, jaké má charakteristiky a jaký má výzam? - má ormálí rozděleí se středí hodotou a rozptylem - výzam je ve výpočtu distribučí fukce, která se z ormálího rozděleí počítá obtížě 7) V čem spočívá z pohledu teorie pravděpodobosti průik jevů A,B a sjedoceí jevů A,B - průik jevu A,B - spočívá v současé realizaci jak jevu A, tak jevu B - sjedoceí jevů A,B - spočívá v astoupeí alespoň jedoho z jevů a ebo B 73) Je možé, aby existovaly áhodé jevy, že pravděpodobost jejich průiku je větší ež pravděpodobost jejich sjedoceí? - Ne. Protože pravd. průiku může být max. rová pravděp. sjedoceí, když možiy splývají ebo je meší ebo možiy emají průik. 74) Při výpočtu pravděpodobosti projiti třemi zkouškami, z ichž každá má svou pravděpodobost úspěchu používáme: a) sčítáí b) ásobeí c) rozdíl 75) Podmíky pro sčítáí pravděpodobostí a vzorec - jsou-li jevy A a B slučitelé, potom pravděpodobosti jejich sjedoceí se rová součtu pravděpodobostí jedotlivých jevů zmešeému o pravděpodobost jejich průiků - v případě eslučitelých jevů je průik těchto jevů jev emožý - 4 -

76) Co jsou kvalitativí zaky, jak se dělí, příklady - kvalitativí zaky jsou zaky sloví, získaé z aket, dotazíků - dělíme a zaky alterativí - 77) Jak ověříte ezávislost dvou kvalitativích zaků? Kotigečí tabulkou 78) Jakým způsobem můžete zjistit, jestli existuje závislost mezi dvěma kvalitativími zaky a jakým v případě kvatitativích zaků? - závislost mezi kvalitativími zaky ověřujeme kotigečí tabulkou a testem chikvadrát. - závislost mezi kvatitativími zaky měříme klasicky pomocí regresí a korelačí aalýzy, celkový F-test, Test t pro jedotlivé parametry a koeficiety - u kvalitativího a kvatitativího zaku se používá jedofaktorová aalýza rozptylu 79) Koeficiet asociace slouží k: - vyjádřeí těsosti alterativích zaků 8) Jak určíme ejvhodější typ fukce při měřeí závislosti dvou kvatitativích zaků - zkušeost, logika, emp. metoda-korelačí pole - zkoušet počítat - zpětě vybrat te s ejvyšším korelačím charakterem 8) Jaké jsou hlaví úlohy při měřeí závislosti kvatitativích zaků - vystihout průběh závislosti závisle proměé a ezávisle proměé, tak abychom mohli provádět odhady závisle proměé a základě daých hodot ezávisle proměé - změřit sílu závislosti, abychom mohli posoudit její sílu, itezitu a abychom mohli zároveň posoudit přesost odhadů z bodu -. úkol - regrese,. úkol korelace 8) Teoretický soubor výběrových průměrů - ze základího souboru vybereme všechy teoreticky možé VS, těch je ekoečě moho; v každém výběrovém souboru si vypočítáme výběrový průměr, všechy tyto průměry ám vytvoří teoretický soubor výběrových průměrů 83) Statistická idukce - ejprve pořídíme výběrový soubor, a základě VS si spočítáme výběrové charakteristiky, a základě výběrových charakteristik odhadujeme charakteristiky ZS 84) Jaké záme odhady (3) - bodový jedo kokrétí číslo, které vybereme z VS, aby ám ahradilo ZS - itervalový staoveí itervalu, ve kterém ta ezámá charakteristika bude ležet, a určitou pravděpodobostí 85) Co je bodový odhad? - bodový jedo kokrétí číslo, které vybereme z VS, aby ám ahradilo ZS 86) Jaké záte vlastosti bodových odhadů a co vyjadřují, jaké jsou a ě kladey požadavky? - ezkresleost, estraost odhadu (středí hodota výběrové statistiky odhadovaé charakteristice) - kozistece (odhad se s rostoucím rozsahem výběru blíží odhadovaé charakteristice základího souboru) - vydatost (co ejmeší rozptyl) - postačujícost (mimo í eexistuje žádá jiá statistika poskytující další doplňující iformace o odhadovaé charakteristice základího souboru) - 4 -

87) Proč musí být bodový odhad v základím souboru vydatý - můžeme použít více charakteristik odhadu, za ejvydatější je ta, která má ejmeší rozptyl 88) Jak spolu souvisí přesost odhadu a spolehlivost odhadu? - čím širší iterval spolehlivosti, tím ale meší přesost - spolehlivost pravděpodobost, se kterou bude odhadovaá charakteristika ležet v tom vymezeém itervalu; maximálí chyba, které se při odhadu s daou spolehlivostí můžeme dopustit 89) Co zameá, že odhad je vychýleý? Záte ěkteré vychýleé odhady? - E(g) - G je tzv. zkresleí eboli vychýleí - takový odhad vede k systematickému adhodocováí či podhodocováí odhadovaé charakteristiky ZS 9) Přípustá chyba u itervalového odhadu a k čemu jí používáme - chyba, které se při odhadu můžeme dopustit, aby hodota padla do itervalu - přesost itervalového odhadu je charakterizováa přípustou chybou odhadu delta, která představuje poloviu délky itervalu spolehlivosti 9) Přesost odhadu: () - pravděpodobost, s jakou se charakteristika achází v itervalu - vyeseme kritickou hodotu příslušého rozděleí - max chyba, které se při odhadu s daou spolehlivostí dopustíme vyjádřea hodotou směrodaté odchylky souboru výběrových prům. - ai jeda správě 9) Jaké záte metody pro získáí odhadů parametrů regresích fukcí lieárích v parametrech? Napište pricip metod. - požadavek kompezace kladé a záporé odchylky empirických hodot od hodot vyrovaých a metoda ejmeších čtverců (aby součet čtverců popsaých odchylek byl miimálí) 93) Jaké záte metody pro získáí odhadů parametrů regresích fukcí elieárích v parametrech? - pro fukce elieárí v parametrech používáme liearizující trasformaci - pak použijeme metodu ejmeších čtverců, parciálí derivace, dále dostaeme soustavu ormálích rovic a akoec pomoci Cramerova pravidla (determiaty) vyjádříme b, b,... 94) U kterých z uvedeých regresích fukcí lze k odhadu parametrů použít metodu ejmeších čtverců: přímka, parabola, expoeciála? Názor vysvětlete. - u přímky a paraboly, protože jsou lieárí v parametrech a rozdíl od expoeciály, která eí - tam je utá lieárí trasformace. 95) Pojmy: (3) a) alterativí hypotéza popírá platost ulové hypotézy b) testovací kritérium míra esouhlasu výsledků pokusu s testovaou hypotézou (odpovídají-li data ulové hypotéze-testovací kritérium je rovo ule; čím více se výběrové hodoty blíží k alterativí hypotéze, tím roste i testovací kritérium) c) hladia výzamosti pravděpodobost chyby. druhu; udává výši rizika, s jakým se H zamítá, i když platí 96) Alterativí hypotéza - popírá platost ulové hypotézy - přijímáme ji jestliže jsme ulovou hypotézu zamítli jako esprávou - 43 -