Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu

Podobné dokumenty
JEDNOTKY. E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt

Dynamika vázaných soustav těles

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

Dynamika soustav hmotných bodů

2. Kinematika bodu a tělesa

Seriál II.II Vektory. Výfučtení: Vektory

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D.

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

4. Statika základní pojmy a základy rovnováhy sil

Úvod do analytické mechaniky

1 Rozdělení mechaniky a její náplň

MECHANIKA TUHÉHO TĚLESA

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

Střední škola automobilní Ústí nad Orlicí

1 Veličiny charakterizující geometrii ploch

10. cvičení z Matematické analýzy 2

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka.

Momenty setrvačnosti a deviační momenty

Veličiny charakterizující geometrii ploch

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení

Příklady z teoretické mechaniky pro domácí počítání

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm

Matematická analýza III.

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

ANALYTICKÁ GEOMETRIE V ROVINĚ

ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

6. MECHANIKA TUHÉHO TĚLESA

Elementární křivky a plochy

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky

Modelování a simulace

Parametrická rovnice přímky v rovině

1 Tuhé těleso a jeho pohyb

Veletrh nápadů učitelů fyziky. Gravitační katapult

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU

PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE

Dvojné a trojné integrály příklad 3. x 2 y dx dy,

Mechanika tuhého tělesa

Goniometrické rovnice

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

PRUŽNOST A PEVNOST 2 V PŘÍKLADECH

5. Statika poloha střediska sil

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy

Kreslení elipsy Andrej Podzimek 22. prosince 2005

Vyřešením pohybových rovnic s těmito počátečními podmínkami dostáváme trajektorii. x = v 0 t cos α (1) y = h + v 0 t sin α 1 2 gt2 (2)

F - Mechanika tuhého tělesa

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Asymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

M - Příprava na 3. čtvrtletní písemnou práci

ELEKTRICKÉ STROJE - POHONY

obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2].

Fakulta elektrotechnická. Fyzikální modely ve Virtual Reality Toolboxu

Analytická geometrie kvadratických útvarů v rovině

3. kapitola. Průběhy vnitřních sil na lomeném nosníku. Janek Faltýnek SI J (43) Teoretická část: Příkladová část: Stavební mechanika 2

6.3 Momenty setrvačnosti a deviační momenty rovinných obrazců. yda. 1) I y, I z > 0. 2) I y, I z závisí na vzdálenosti plochy od osy II I I I I

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Počty testových úloh

Obecný Hookeův zákon a rovinná napjatost

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +,

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

Derivace goniometrických funkcí

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí

Modelování blízkého pole soustavy dipólů

Lineární funkce, rovnice a nerovnice

55. ročník matematické olympiády

7 Lineární elasticita

Dynamika robotických systémů

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2

1. Teoretická mechanika

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)

Cyklografie. Cyklický průmět bodu

Transkript:

Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu Václav Čibera 12. února 2009 1 Motivace Na obrázku 1 máme znázorněný mechanický systém, který může představovat například součástku nějakého stroje. Abychom stroj mohli lépe ovládat, předpovídat jeho chování, sestrojit ho atp..., potřebujeme znát, jak se tento mechanický systém - součástka chová v každém okamžiku při změnách polohy a rychlosti jednotlivých součástí. Obrázek 1: Obrázek popisovaného mechanismu Pro náš konkrétní příklad předpokládáme následující možné chování mechanického systému: 1

prezentace KMA/MM-Matematické modelování 2 Tyč a kotouč jsou spolu v trvalém kontaktu, v místě jejich dotyku se tyč pohybuje bez tření. Tyč může konat pouze otáčivý pohyb podle osy otáčení umístěné v jednom z jejich konců, otáčení uvažujeme bez tření. Kotouč se po rovině pohybuje bez prokluzu, kotouč se pohybuje pouze v takovém intervalu, aby z něj tyč nespadla a aby ji nepřevalil. viz obrázky 2 a 3. Obrázek 2: Maximální možný posun kotouče doleva Obrázek 3: Maximální možný posun kotouče doprava, tyč nespadne

prezentace KMA/MM-Matematické modelování 3 2 Matematický model Řešení našeho problému docílíme tak, že sestrojíme pohybovou rovnost systému, ze které si můžeme posléze dopočítat potřebná data a celkově analyzovat chování uváděného mechanického systému - součástky. Jedním z nejpoužívanějších a nejefiktivnějších nástrojů pro sestrojení pohybové rovnosti mechanického systému jsou Lagrangeovy rovnosti II. druhu. (Lagrangeovy rovnice II. druhu) 1 2.1 Lagrangeovy rovnosti II. druhu Cesta odvození Lagrangeových rovnic II. druhu je velice zdlouhavá. Proto zde akorát uvedu, že jsou odvozeny pomocí D Alembertova principu, Lagrangeových rovností I. druhu a Centrální Lagrangeovy rovnosti. Konkrétní tvar Lagrangeových rovností II. druhu:, kde L je tzv. Lagrangeova funkce ve tvaru: d dt ( L q ) L k q = 0 (1) k L = E k E p (2), kde E k je kinetická energie mechanismu, v tomto případě součet energií získané vlivem rotačních a posuvných pohybů jednotlivých součástí mechanismu. E p je potenciální energie, v tomto případě součet potenciálních energií jednotlivých součástí mechanismu. Symbol q k zde neznačí mocninu q, ale naznačuje, že se jedná zobecněné souřadnice. Lagrangeovy rovnosti II. druhu ve tvaru (1) jsou obecně soustavou k diferenciálních rovností, kde k je počet proměných(souřadnic). Z uvedených rovností (1) a (2) vyplývá, že potřebujeme: a) Sestrojit Lagrangeovu funkci (2), tj. určit E k a E p. b) Umístit mechanismus do nějakého souřadnicového systému, ve kterém budeme schopni pro jednotlivé komponenty mechanismu zavést souřadnice. 1 zmiňuji zde slovo rovnice schválně, protože v literatuře převládá název Lagrangeovy rovnice

prezentace KMA/MM-Matematické modelování 4 2.2 Zachycení mechanismu do souřadnic, popis systému Abychom mohli mechanismus analyzovat za pomocí matematiky,musíme mechanický systém vhodně zachytit do nějakého souřadnicového systému. Zvolení souřadnicového systému víceméně záleží na řešiteli a závisí na vhodnosti pro konkrétní příklad. Pro zachycení tohoto modelu jsem zvolil kartézský systém. Zachycení modelu do souřadnicového systému je zobrazeno na obrázku 4. Obrázek 4: Obrázek popisovaného mechanismu m 1... hmotnost kotouče R... poloměr kotouče ϕ 1... úhel pootočení kotouče x 1... x-sová souřadnice středu kotouče [x 1, R]... souřadnice středu kotouče, střed je zároveň těžistě kotouče l... délka tyče ϕ 2... úhel pootočení tyče m 2... hmotnost tyče T [x T ; y T ]... souřadnice těžistě tyče,je uprostřed tyče

prezentace KMA/MM-Matematické modelování 5 2.3 Sestrojení Lagrangeovy funkce L = E k E p (2) K sestrojení Lagrangeovy funkce potřebujeme znát kinetickou energii E k a potenciánlní energii E p jednotlivých komponent mechanismu. Vyjádření pro kinetickou energii získáme ze skutečnosti, že E k = pohybová energie tělesa + rotační energie tělesa. E k = 1 2 m x 2 + 1 2 I ϕ 2 (3), kde I je moment setrvačnosti. Momenty setvačnoti pro běžné tvary těles jsou lehce k nalezní v literatuře. Moment setrvačnosti kotouče : I 1 = 1 2 m 1R 2 (4) Moment setrvačnosti tyče, jejíž osa otáčení prochází jedním z konců tyče: I 2 = 1 3 m 2l 2 (5) Pro náš případ bude mít celková kinetická energie všech součástí následující tvar: E k = pohybová energie kotouče + rotační energie kotouče + rotační energie tyče = E k = 1 2 m 1x 2 1 + 1 2 I 1ϕ 2 1 + 1 2 I 2ϕ 2 2 (6) Po dosazení (4) a (5) dostaneme vztah: E k = 1 2 m 1 x 2 1 + 1 4 m 1R 2 ϕ 2 1 + 1 6 m 2l 2 ϕ 2 2 (7) Vyjádření potenciální energie E p je v našem případě jednoduché. Jediné těleso, které mění v našem mechanismu potenciální energii je je tyč. Těžiště tyče se může podle zadání pohybovat pouze v intervalu < 1 2 R, l > na ose 2 y, kde krajní hodnoty intervalu představují nulovou resp. maximální hladinu potenciální energie. Lagrangeova funkce má tedy tvar: E p = m 2 g l 2 sinϕ 2 m 2 g 1 2 R (8) L = E k E p = 1 2 m 1 x 2 1 + 1 4 m 1R 2 ϕ 2 1 + 1 6 m 2l 2 ϕ 2 2 m 2g l 2 sinϕ 2 +m 2 g 1 2 R (9)

prezentace KMA/MM-Matematické modelování 6 2.4 Vazby, systém s jedním stupněm volnosti Jak již bylo výše uvedeno výraz (1) představuje soustavu k diferenciálních rovností. V našem případě si můžeme situaci zjednodušit a získat pouze jednu rovnici. Uvažovaný mechanický systém je systém s jedním stupněm volnosti. Jednoduše řečeno: pokud hnu s jakoukoli součástí systému, hnu i s ostatními součástmi systému, nebo ještě jinak : pokud změním jednu souřadnici v systému, změní se mi i v jisté závislosti ostatní souřadnice v sytému. Jako výchozí souřadnici si zvolíme například souřadnici ϕ 1, pomocí této souřadnice si vyjádříme všechny ostatní souřadnice ve vztahu (9), tj. x 1, ϕ 2. Zároveň si určíme i jejich derivace podle času. Je zřejmé, že platí: x 1 = Rϕ 1 (10) x 1 = Rϕ 1 (11) Vazbu mezi ϕ 1 a ϕ 2 určíme z geometrických vztahů zobrazených na obr. 5. Obrázek 5: Odvození vazby mezi ϕ 1 a ϕ 2 Z obr. 5 se dá vyčíst, že:

prezentace KMA/MM-Matematické modelování 7 tg ϕ 2 2 = R R + Rϕ 1 (12) R ϕ 2 = 2 arctan( ) (13) R + Rϕ 1 ϕ 2 = 2R 2 2R 2 + 2R 2 ϕ 1 + ϕ 2 1. ϕ 1 (14) 2.5 Sestavení pohybové rovnosti pomocí Lagrangeových rovností II. druhu V předešlé části jsme si všechny souřadnice vyjádřily pomocí jediné souřadnice ϕ 1. Lagrangeovu funkci ve tvaru (9) nyní po dozasezení vztahů (11) a (14) můžeme vyjádřit ve tvaru : L = 1 2 m 1R 2 ϕ 2 1 + 1 4 m 1R 2 ϕ 2 1 + 1 6 m 2l 2 ( Po zjednodušení: 2R 2 2R 2 + 2R 2 ϕ 1 + ϕ 2 1 ) 2. ϕ 2 1 m 2 g l R sin[2 arctan( )] + m 2 g 1 2 R + Rϕ 1 2 R (15) L = [ 3 4 m 1R 2 + 1 6 m 2l 2 2R 2 ( ) 2 ]. ϕ 2 2R 2 + 2R 2 ϕ 1 + ϕ 2 1 m 2g[ l R sin{2 arctan( )} 1 1 2 R + Rϕ 1 2 R] (16) Nyní už potřebujeme pouze vyjádřit d dt ( L q ) a L z rovnosti (1), tj. z k q k d rovnosti dt ( L q ) L = 0, kde k q k q k = q 1 = ϕ 1 = ϕ 1 (t) Raději zopakujme, že se nejedná o mocniny q, ale o označení souřadnice. L = [ 3 ϕ 1 2 m 1R 2 1 3 m 2l 2 2R 2 ( ) 2 ]. ϕ 2R 2 + 2R 2 ϕ 1 + ϕ 2 1 (17) 1 d dt ( L ) = [ 3 ϕ 1 2 m 1R 2 1 3 m 2l 2 2R 2 ( ) 2 ]. ϕ 2R 2 + 2R 2 ϕ 1 + ϕ 2 1 +[ 8 m 2 l 2 R 4 (2R 2 + 2ϕ 1 ) ]. 1 3 (2R 2 + 2R 2 ϕ 1 + ϕ 2 1 )3 (18) ϕ 2 1 L = 4 ϕ 1 3 m 2l 2 R 4 (2R 2 + 2ϕ 1 ) (2R 2 + 2R 2 ϕ 1 + ϕ +m 2g l 2 1 )3 2 2R 2 cos{2 arctan( R R+Rϕ 1 )} 2R 2 + 2R 2 ϕ 1 + ϕ 2 1 (19)

prezentace KMA/MM-Matematické modelování 8 Nyní už máme vše připraveno. Stačí pouze dosadit výrazy (18) a (19) do výchozí rovnosti (1): [ 3 2 m 1R 2 1 3 m 2l 2 2R 2 ( ) 2 ]. ϕ 2R 2 + 2R 2 ϕ 1 + ϕ 2 1 +[ 8 m 2 l 2 R 4 (2R 2 + 2ϕ 1 ) ]. ϕ 2 1 3 (2R 2 + 2R 2 ϕ 1 + ϕ 2 1 + 1 )3 + 4 3 m 2l 2 R 4 (2R 2 + 2ϕ 1 ) (2R 2 + 2R 2 ϕ 1 + ϕ 2 1 )3 m 2g l 2 2R 2 cos{2 arctan( R R+Rϕ 1 )} 2R 2 + 2R 2 ϕ 1 + ϕ 2 1 = 0 (20) Nebo v přehlednější formě: a(ϕ 1 ). ϕ 1 + b(ϕ 1 ). ϕ 2 1 + c(ϕ 1) = 0 (21) Rovnost (20), resp. (21) ještě můžeme doplnit okrajovými podmínkami pro ϕ 1, které by závisely na zvolení hodnot l, R. 2.6 Závěr Sestavili jsme pohybovou rovnost (20), kterou vyřešíme v matlabu, nebo odneseme na KMA. Ze sestavené rovnosti je vidět, že i zdánlivě jednoduchý mechanismus popisuje poměrně složitá diferenciální rovnice II. řádu. Řešením dosažené rovnosti je fce ϕ 1 (t), která popisuje polohu tělesa v daném prostředí. Parametr t může představovat čas. 2.7 Použitá literatura Teoretická mechanika; Rosenberg, Josef; Plzeň 2003 Děkuji za pozornost