Materiály ke 12. přednášce z předmětu KME/MECHB



Podobné dokumenty
Statika soustavy těles.

Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky.

5. Prutové soustavy /příhradové nosníky/

Ráda bych ve své práci představila počítání prutových soustav. Jedná se o poměrně rozsáhlé téma,

SOU plynárenské Pardubice Mechanika - Statika - příhradové konstrukce

p + m = 2 s = = 12 Konstrukce je staticky určitá a protože u staticky určitých konstrukcí nedochází ke změně polohy je i tvarově určitá.

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví

PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Příhradové konstrukce

graficky - užití Cremonova obrazce Zpracovala: Ing. Miroslava Tringelová

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm

6. Statika rovnováha vázaného tělesa

Střední škola automobilní Ústí nad Orlicí

4.6.3 Příhradové konstrukce

Autor: Vladimír Švehla

Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím

2.9.2 PRŮSEČNÁ METODA

Podklady k 1. cvičení z předmětu KME / MECH2

4. Statika základní pojmy a základy rovnováhy sil

Kontrolní otázky pro průběžné studium a pro přípravu ke zkoušce ze statiky. Základní pojmy

Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury.

Složené soustavy. Úloha: Sestavení statického schématu, tj. modelu pro statický výpočet (např.výpočet reakcí)

Téma 7 Rovinný kloubový příhradový nosník

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky

4.6 Složené soustavy

Přednáška 1 Obecná deformační metoda, podstata DM

Předpoklady: konstrukce je idealizována jako soustava bodů a tuhých těles (v prostoru) nebo bodů a tuhých desek (v rovině) konstrukce je v rovnováze

Zadání semestrální práce z předmětu Mechanika 2

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

s01. Základy statiky nutné pro PP

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.

Mechanika tuhého tělesa

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů)

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ

Dynamika vázaných soustav těles

Těleso na podporách. asi 1,5 hodiny. Základy mechaniky, 4. přednáška

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Podmínky k získání zápočtu

STATIKA. Vyšetřování reakcí soustav. Úloha jednoduchá. Ústav mechaniky a materiálů K618

Statika. fn,n+1 F = N n,n+1

KONSTRUKCE POZEMNÍCH STAVEB

Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1).

BO004 KOVOVÉ KONSTRUKCE I

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

Dynamika soustav hmotných bodů

Zjednodušená deformační metoda (2):

Princip virtuálních prací (PVP)

Petr Kabele

P řed m lu va 11. P o u žitá sym b o lik a 13. I. Z á k la d y s ta v e b n í m e c h a n ik y - s ta tik y

2.5 Rovnováha rovinné soustavy sil

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D.

Diskrétní řešení vzpěru prutu

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

Statika tuhého tělesa Statika soustav těles

trojkloubový nosník bez táhla a s

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady

Petr Kopelec. Elektronická cvičebnice. Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/ Tvorba elektronických učebnic

Geometricky nelineární analýza příhradových konstrukcí

Statika tuhého tělesa Statika soustav těles. Petr Šidlof

Betonové konstrukce (S) Přednáška 3

Cvičení 7 (Matematická teorie pružnosti)

Úvod do soustav sil. 1. Axiom o rovnováze sil F 1 F 2. tuhém tělese na stejném paprsku jsou v rovnováze. Axiomy statiky. Statika 1. M. Vokáč.

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,

3.4.2 Rovnováha Rovnováha u centrální rovinné silové soustavy nastává v případě, že výsledná síla nahrazující soustavu je rovna nule. Tedy. Obr.17.

9.2. Zkrácená lineární rovnice s konstantními koeficienty

BO04 KOVOVÉ KONSTRUKCE I

TAH-TLAK. Autoři: F. Plánička, M. Zajíček, V. Adámek R A F=0 R A = F=1500N. (1) 0.59

4. Napjatost v bodě tělesa

3. Obecný rovinný pohyb tělesa

Moment síly výpočet

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

Statika soustavy těles v rovině

Obchodní akademie, Hotelová škola a Střední odborná škola, Turnov, Zborovská 519, příspěvková organizace,

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony

ANALYTICKÁ GEOMETRIE V ROVINĚ

Stavební mechanika 2 (K132SM02)

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8

Momenty setrvačnosti a deviační momenty

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

3. kapitola. Průběhy vnitřních sil na lomeném nosníku. Janek Faltýnek SI J (43) Teoretická část: Příkladová část: Stavební mechanika 2

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

PRŮŘEZOVÉ CHARAKTERISTIKY

6. Vektorový počet Studijní text. 6. Vektorový počet

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.

Ing. Oldřich Šámal. Technická mechanika. kinematika

Styčníkovou metodou vyřešte síly v prutech u soustavy na obrázku.

2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3.

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

Statika 1. Úvod & Soustavy sil. Miroslav Vokáč 22. února ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč.

Napětí v ohybu: Výpočet rozměrů nosníků zatížených spojitým zatížením.

Transkript:

Materiály ke 12. přednášce z předmětu KME/MECH Zpracoval: Ing. Jan Vimmr, Ph.D. Prutové soustavy Prutové soustavy představují speciální soustavy těles, které se uplatňují při navrhování velkorozměrových nosných konstrukcí v mostním a pozemním stavitelství. Umožňují ekonomickou konstrukci např. mostů, jeřábů, stožárů a střešních konstrukcí. Prutová soustava je tvořena pruty(štíhlá tělesa), které jsou spojeny svými konci ve styčnících. Podle počtu prutů spojených ve styčníku rozlišujeme styčníky dvojné, trojné a vícenásobné. Teoreticky definovaná prutová soustava představující mechanický(výpočtový) model prutové soustavy, je složena z nehmotných nezatížených binárních členů se dvěma rotačními vazbami, obr. 1, navzájem spojených svými konci ve styčnících, které považujeme za ideální klouby. Vnější zatížení takovéto soustavy je pouze styčníkové, t.j. akční síly působí na soustavu ve styčnících. Tyto vlastnosti mechanického modelu prutové soustavy zaručují, že jednotlivé pruty soustavy přenášejí pouze síly, jejichž nositelky leží na spojnici středů čepů rotačních vazeb. Pokud jsou pruty přímé, přenášejí tzv. osové síly, které vyvozují vprutechtahnebotlak. Uvolníme-li prutovou vazbu mezi styčníky a přenášející tah, vznikne v prutu pár vnitřníchsil,kteréstyčníky aksoběpřitahují,obr.1.kdybybylprutnamáhánna tlak,budouvnitřnísílyvprutustyčníky aodsebeodtlačovat,obr.2. tah tlak Obr. 1. Obr. 2. Podle prostorového uspořádání prutů dělíme mechanické modely prutových soustav na rovinné a prostorové. Výklad dále omezíme pouze na rovinné prutové soustavy. by bylo vyhověno požadavkům teoreticky definované prutové soustavy, musí se pruty navrhovat dostatečně tuhé. Na následujících obrázcích jsou znázorněny příklady mechanických modelů rovinných prutových soustav. Prutová konstrukce mostu je na obr. 3, mechanický model prutové konstrukce střechy je na obr. 4, model příhradového trojkloubového nosníkuhalyjenaobr.5,prutovákonstrukcestožárujenaobr.6amechanickýmodel prutové konstrukce jeřábu je na obr. 7. Pruty budeme označovat čísly a jednotlivé styčníky velkými písmeny, obr. 3. Základní rám budeme podle zvyklostí značit číslicí 1. C E 4 5 J 3 9 10 11 12 6 1 2 D 8 H 7 Obr. 3.

Obr. 4. Obr. 5. Obr. 6. Obr. 7. Praktické provedení prutových konstrukcí se od teoretického předpokladu především liší ve způsobu připojování prutů, neboť se neprovádí ideálními klouby. Skutečné spojení prutů, resp. konstrukční provedení styčníků může být kloubové, nýtované(šroubované) nebo svařované, obr. 8. Kloubové provedení se prakticky používá velmi zřídka a navíc nelze u něj vyloučit tření. Skutečné spojení prutů musí být provedeno tak, aby se osy všech spojených prutů protínaly v jednom bodě, obr. 8. Praxe ukázala, že při splnění tohoto požadavku a za předpokladu dostatečně dlouhých prutů můžeme skutečné spoje(nýtovaná a svařovaná spojení) modelovat jako ideální(hladké) klouby. 00 11 00 11 Obr. 8. Rovinná prutová soustava je staticky určitá, je-li počet neznámých silových veličin soustavy roven počtu rovnovážných rovnic, z nichž je možné tyto veličiny vypočítat. U prutové soustavy jsou neznámými veličinami síly v jednotlivých prutech a složky vnějších reakcí. Počet rovnovážných rovnic se rovná dvojnásobnému počtu styčníků, protože síly působící na uvolněný styčník představují rovinnou soustavu sil o společném působišti, pro kterou píšeme dvě složkové silové podmínky rovnováhy. Odsud vyplývá, že nutná podmínka statické určitosti rovinných prutových soustav je n=2s p σ=0, (1)

kde sjepočetstyčníků, pjepočetprutůsoustavy, σjepočetneznámýchsložekvnějších reakcí a n vyjadřuje počet stupňů volnosti rovinné prutové soustavy, který může být rovněž určen podle známé vazbové rovnice n=3(m 1) 2(r+ p+v) 1o, (2) kde mvyjadřujepočetvšechtělessoustavyvčetněrámu, r, p, va označívtomtopořadípočet rovinných KD rotačních, posuvných, valivých a obecných. Poněvadž u staticky určitých prutových soustav nedochází ke změně poloh jejích jednotlivých členů, tvar soustavy se nemění. Říkáme, že staticky určité prutové soustavy jsou i tvarově určité. plikací podmínky (1) se přesvědčíme, že např. mechanický model prutové konstrukce mostu znázorněný na obr.3jestatickyitvarověurčitáprutovásoustava.vtomtopřípadějepočetstyčníků s=7, početprutů p=11apočetneznámýchsložekvnějšíchreakcí σ=3.dosazenímdopodmínky (1)dostáváme n=2 7 11 3=0.Připosuzovánístatickéurčitostiprutovésoustavy mohou nastat výjimkové případy v důsledku zvláštního geometrického uspořádání prutů, kdy soustava splňuje podmínku statické určitosti(1), ale ve skutečnosti je celá pohyblivá, anebo může vykonávat jistý vymezený pohyb. Výjimkový případ nastává, když determinant soustavy rovnovážných rovnic, které sestavíme pro uvolněné styčníky prutové soustavy, se bude rovnat nule. V takovém případě vyjdou výpočtem některé síly v prutech, případně vnější reakce, nekonečně veliké. Vyjde-li ze vztahu(1) n > 0, je prutová soustava pohyblivá a tudíž tvarově neurčitá. Počet rovnovážných rovnic je v takovém případě větší než počet neznámých. Příkladem jedenkrát tvarově neurčité(n = 1) rovinné prutové soustavy je soustava znázorněná na obr. 9. Tato prutová soustava je pohyblivá, neboť ve střední části této příhradové konstrukce chybí prut(příčka), který by zajistil její tvarovou určitost. V případě, že n < 0, je prutová soustava sice tvarově určitá, ale vnitřně je staticky neurčitá. Znamená to, že počet neznámých silových veličin je větší, než je počet rovnovážných rovnic. Chybějící rovnice je nutno sestavit ve formě deformačních podmínek, což je úloha nauky o pružnosti a pevnosti. Příkladem tvarově určité, ale jedenkrát vnitřně staticky neurčité(n = 1) rovinné prutové soustavy je soustava znázorněná na obr. 10. V této prutové soustavě je zřejmě nadbytečný jeden z prutů. Obr. 9. Obr. 10. Statické řešení rovinných prutových soustav Cílem statického řešení rovinných prutových soustav je vyšetření vnějších reakcí v uložení prutové soustavy a stanovení velikosti a smyslu sil přenášených jednotlivými pruty při působení daných akčních sil. Prutové soustavy budeme řešit převážně analyticky. Obecnou metodou statického řešení rovinných prutových soustav je styčníková metoda (metoda rovnováhy styčníků). Podstata metody spočívá v uvolnění jednotlivých styčníků me-

chanického modelu prutové soustavy a v analytickém nebo grafickém řešení rovnováhy sil, které působí na každý uvolněný styčník. Při analytickém řešení předpokládáme, že všechny pruty mechanického modelu prutové soustavy jsou namáhány na tah a podle toho volíme směry všech neznámých sil přenášených pruty. V každém uvolněném styčníku prutové soustavy působí rovinná soustava sil o společném působišti, a proto pro každý uvolněný styčník napíšeme dvě složkové silové podmínky rovnováhy, tzv. styčníkové rovnovážné rovnice. Pro s styčníků mechanického modelu rovinné prutové soustavy dostáváme soustavu 2s lineárních algebraických rovnic pro 2s neznámých, která má až na výjimkové případy nenulový determinant,atudížjejednoznačněřešitelná.protožepodle(1)platí2s=p+σ,jemezitěmito 2s neznámými p sil přenášených pruty a σ vnějších reakcí. Postup při analytickém řešení prutových soustav styčníkovou metodou si ukážete na cvičení. Chceme-li určit síly jen v některých prutech rovinné prutové soustavy, použijeme průsečnou metodu. Princip průsečné metody spočívá v následující úvaze. Je-li v rovnováze celá prutová soustava, musí být v rovnováze i její části vzniklé rozdělením soustavy myšlenýmřezem.toznamená,ževrovnovázemusíbýtsílyvpřerušenýchprutech,akčnísílya vnější reakce působící na každou oddělenou část prutové soustavy. Tyto síly tvoří obecnou rovinnou soustavu sil, pro kterou píšeme tři podmínky rovnováhy, z nichž alespoň jedna musí být momentová. Síly v přerušených prutech mohou tedy představovat právě tři neznámé veličiny. Z uvedeného plyne, že průsečnou metodu lze použít u prutových soustav, které můžeme ve zvoleném místě rozdělit myšleným řezem na dvě části přerušením tří prutů, které neprocházejí jedním bodem. Použití průsečné metody si rovněž ukážete na cvičení. K uvedeným metodám analytického řešení prutových soustav lze poznamenat, že styčníková metoda je univerzální, vhodná pro řešení libovolné staticky určité prutové soustavy. Průsečnou metodu lze použít k rychlému výpočtu sil ve zvolených prutech nebo ke kontrole předchozího řešení tam, kde lze prutovou soustavu rozdělit vhodným myšleným řezem na dvě části. Příklad: Mechanický model rovinné prutové konstrukce jeřábu, obr. 11, je zatížen tíhou břemene zavěšeného na laně, které je přehozeno přes kladku o poloměru r. Určete vnější reakce v uložení prutové konstrukce jeřábu a osové síly v jednotlivých prutech. Dáno: =400N; a=1,5m; b=0,9m; r=0,3m Řešení: Označme jednotlivé styčníky prutové konstrukce jeřábu písmeny P a očíslujme všechnyprutyčísly2 14podleobr.11.Základnírámznačímečíslicí1. b 3 a a a H γ K γ α C 11 7 D E 12 4 13 14 5 6 γ P r α S 2 C S3 S 11 S3 S 11 S H 4 S 4 S 12 S 12 S 13 K S 13 S 14 S 14 S 5 S 5 D S 7 S 7 E S 6 S 6 P P y P x a 2 10 8 β 9 β R x S 2 S 10 S 10 S 8 S 8 +y 1 2a R y S 9 S 9 N +M +x Obr. 11. Obr. 12.

Vzhledemktomu,želanojeuchycenokestyčníku C,budevtomtostyčníkupůsobit vnější tahová síla, obr. 12, kterou je lano napínáno. Nezapomeňte proto na tuto sílu! Uvolněnímkladkyurčímevelikostisložek P x a P y síly Ppůsobícívestyčníku P,kterávyjadřuje účinek prutové soustavy na kladku. α α. r P y P P x Napíšeme dvě složkové silové podmínky rovnováhy do směrůos xay F ix =0: P x cos α=0, (3) i i F iy =0: P y sin α=0, (4) zekterýchplyne,že P x = cos αap y = (1+sinα).Všimnětesi,žemomentovápodmínkarovnováhy, r r=0,napsanánejvýhodnějikbodu Pnepřinášívtomtopřípadě samozřejmě nic nového. Je splněna automaticky. Pro zatím neurčený úhel α podle obr. 11 platí sin α= r 3a ( r ) α=arcsin. (5) 3a Účineksíly Pkladkynaprutovoukonstrukcijeřábujepotompodleprincipuakceareakce opačný,obr.12.toznamená,žesíla Ppředstavujevýslednicisilvlaně.Mechanickýmodel prutovékonstrukcejeřábujetedyzatíženstyčníkovýmisilami, P x = cos αap y = (1+sinα)působícímivestyčnících Ca Ppodleobr.12.Uvolněnímprutovésoustavyod základníhorámu1získámetřisložkyvnějšíchreakcí R x, R y a N,kterézakreslímedo obr.12.vazba jerotačníauloženíprutovésoustavyvbodě považujemezaobecnou KD. Dále zkontrolujeme statickou určitost zadané rovinné prutové soustavy. Dosazením do podmínky(1)dostáváme,že n=2 8 13 3=0,neboťvnašempřípaděplatí,žepočet styčníků s=8,početprutůsoustavy p=13apočetneznámýchsložekvnějšíchreakcí, kteréjsmedostaliuvolněnímprutovésoustavyodrámu,je σ=3.prutovásoustavamá 0 volnosti,jetedystatickyatvarověurčitáatudížjestatickyřešitelná.tvarověurčitá prutová konstrukce jeřábu představuje tzv. prutové těleso staticky určitě uložené k základnímu rámu. Počet stupňů volnosti rovinné prutové soustavy můžeme rovněž určit pomocí vztahu(2).jehoaplikacíopětzjistíme,že n=3(14 1) 2(19+0+0) 1=0.Uvědomte sivšak,ževestyčníku musímepočítattřirotačníkd(jednuprospojeníprutů2a10, jednupropřipojeníprutu9kekdspojujícípruty2a10ajednupropřipojenítěchtodvou KDspojujícíchpruty2,10a9kzákladnímurámu1),vestyčníku musímepočítatjednu rotačníkd,kteráspojujepruty8a9,ajednuobecnoukd,kterápřipojujerotačníkd spojujícípruty8a9kzákladnímurámu.podobněvestyčnících C, Ha Epočítámepodvou rotačníchkd,vestyčníku DpočítámepětrotačníchKD,vestyčníku KtřirotačníKDave styčníku P počítáme jednu rotační KD. Cílem statického řešení mechanického modelu rovinné prutové soustavy, obr. 12, je v souladusezadánímvyšetřitvnějšíreakcevevazbách aaurčitosovésílyvjednotlivých prutech. Použijeme styčníkovou metodu. Jednotlivé styčníky uvolníme přímo v obrázku mechanického modelu prutové konstrukce jeřábu s tím, že ve všech prutech předpokládáme tahové namáhání, obr. 12. Pro každý uvolněný styčník napíšeme dvě složkové silové podmínkyrovnováhydoosy xay.

styčník: S 9 + S 10 cos β R x =0 (6) S 2 + S 10 sin β R y =0 (7) styčník: S 9 S 8 cosβ=0 (8) N + S 8 sin β=0 (9) styčníkc: S 11 + S 3 cos γ+ cos α=0 (10) S 3 sin γ S 2 + sin α=0 (11) styčníkd: S 7 + S 13 cos γ S 11 + S 8 cos β S 10 cos β=0 (12) S 12 + S 13 sin γ S 8 sin β S 10 sin β=0 (13) styčníke: S 6 S 7 =0 (14) S 14 =0 (15) styčníkh: S 4 S 3 cos γ=0 (16) S 12 S 3 sin γ=0 (17) styčníkk: S 5 cos γ S 4 S 13 cos γ=0 (18) S 5 sin γ S 14 S 13 sin γ=0 (19) styčníkp: P x S 6 S 5 cosγ=0 (20) P y + S 5 sin γ=0 (21) Zrovnice(15)plyne,žeprut14teoretickynepřenášížádnouosovousílu(S 14 =0).Tento prutalemusívsoustavěbýtsohledemnajejítvarovouurčitost.podmínkyrovnováhy(6) (14) a(16) (21) představují soustavu 15 lineárních algebraických rovnic pro 15 neznámých (R x, R y, N, S 2, S 3, S 4, S 5, S 6, S 7, S 8, S 9, S 10, S 11, S 12, S 13 ).Vtěchtorovnicíchještě vystupují pomocné úhly β a γ, které vypočteme ze zadaných geometrických parametrů prutové soustavy. Podle obr. 11 platí tanβ=1 β=45, tanγ= b ( ) b γ=arctan. (22) a a Postupným řešením této soustavy rovnic bychom dostali hledané složky vnějších reakcí a osovésílyvprutech.vnašempřípadějetotořešenívelmipracnéaprotosohledemna výpočetní techniku použijeme s výhodou maticový počet. Soustavu lineárních algebraických rovnic(6) (14)a(16) (21)zapíšemematicověvetvaru Matice popisuje geometrické uspořádání dané prutové soustavy x=b. (23) = 1 0 0 0 0 0 0 0 0 0 1 cos β 0 0 0 0 1 0 1 0 0 0 0 0 0 0 sin β 0 0 0 0 0 0 0 0 0 0 0 0 cos β 1 0 0 0 0 0 0 1 0 0 0 0 0 0 sin β 0 0 0 0 0 0 0 0 0 cos γ 0 0 0 0 0 0 0 1 0 0 0 0 0 1 sin γ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 cos β 0 cos β 1 0 cos γ 0 0 0 0 0 0 0 0 0 sin β 0 sin β 0 1 sin γ 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 cos γ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 sin γ 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 cos γ 0 0 0 0 0 0 0 cos γ 0 0 0 0 0 0 sin γ 0 0 0 0 0 0 0 sin γ 0 0 0 0 0 0 cos γ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 sin γ 0 0 0 0 0 0 0 0,

x je vektor neznámých vnějších reakcí a osových sil v prutech x=[r x, R y, N, S 2, S 3, S 4, S 5, S 6, S 7, S 8, S 9, S 10, S 11, S 12, S 13 ] T abjevektorpravýchstran b=[0,0,0,0, cos α, sin α,0,0,0,0,0,0,0, P x, P y ] T. Řádkovýmiúpravamiselzepřesvědčit,žematicemáhodnost h()=15.toznamená,že soustavarovnic(23)májedinéřešeníx= 1 b,kteréurčímepomocívýpočtovéhosystému MTL. Získanévýsledky: R x =0N, R y =240N, N =640N, S 2 =880N, S 3 =1658,6N,. S 4 = 1422,2N, S 5 = 829,3N, S6 = 1110,2N, S 7 = 1110,2N, S 8 = 905,1N,.. S 9 =640N, S 10 = 905,1N, S 11 = 1821,3N, S 12 = 853,3N, S13 = 829,3N,kde R = Rx 2 + R2 y =240N.Protoževýpočtemvyšlyosovésílyvprutech S 6, S 7, S 8, S 10, S 11, S 12 a S 13 záporně,jejejichskutečnýsmyslopačnýnežjsmepředpokládalianamáhání těchto prutů je tudíž tlakové. Kontrolařešení: Neznámésložkyvnějšíchreakcí R a N vevazbách amechanického modelurovinnéprutovékonstrukcejeřábu,obr.11,představujítřineznáméveličiny(r x, R y a N ),obr.12,kterémůžemetakévypočítatzpodmínekprorovnováhuakčníchsila vnějších reakcí na uvolněném prutovém tělese od základního rámu 1. Podle obr. 12 můžeme proobecnourovinnousoustavuakčníchsil(, P x, P y )aneznámýchsložekvnějšíchreakcí (R x, R y, N )napsattřipodmínkyrovnováhy dvěsložkovésilovédosměrůos xaya jednu momentovou k bodu F ix =0: R x P x + cos α=0 (24) i F iy =0: R y P y + N + sin α=0 (25) i M i =0:2aN acos α+ap x 3aP y =0 (26) i Lzesesnadnopřesvědčit,žerovnice(24) (26)jsoulineárníkombinacírovnic(6) (14)a (16) (21). Tyto rovnice tudíž nedávají žádnou novou informaci o zadané prutové soustavě, ale můžeme je použít ke kontrole složek vnějších reakcí vypočtených řešením soustavy rovnic(23). Pokud vyřešíme soustavu rovnic(24) (26) dostaneme pro neznámé složky vnějších reakcí: R x = cos α P x =0N...plynezpodmínky(24)podosazeníza P x, N = 1(cos α P 2 x+3p y )= 3 (1+sinα)=640N...plynezpodmínky(26)podosazení 2 za P x a P y, R y = sin α P y +N = 1 (1+3sinα)=240N...plynezpodmínky(25)podosazení 2 za P y a N. Vidíme, že jsme dostali stejné hodnoty jako řešením soustavy rovnic(23).