Ekonomická formulace. Matematický model



Podobné dokumenty
Simplexové tabulky z minule. (KMI ZF JU) Lineární programování EMM a OA O6 1 / 25

Parametrické programování

1. července 2010

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.

4EK213 Lineární modely. 4. Simplexová metoda - závěr

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

4EK213 LINEÁRNÍ MODELY

Metody lineární optimalizace Simplexová metoda. Distribuční úlohy

12. Lineární programování

4EK213 LINEÁRNÍ MODELY

4EK213 Lineární modely. 5. Dualita v úlohách LP

4EK212 Kvantitativní management. 2. Lineární programování

Obecná úloha lineárního programování

4EK201 Matematické modelování. 2. Lineární programování

Lineární programování

Vícekriteriální programování příklad

6 Simplexová metoda: Principy

4EK311 Operační výzkum. 3. Optimalizační software a stabilita řešení úloh LP

4EK213 Lineární modely. 12. Dopravní problém výchozí řešení

Teorie her a ekonomické rozhodování. 2. Maticové hry

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

13. Lineární programování

3. ANTAGONISTICKÉ HRY

4EK311 Operační výzkum. 2. Lineární programování

Systémové modelování. Ekonomicko matematické metody I. Lineární programování

Příklady modelů lineárního programování

4EK213 Lineární modely. 10. Celočíselné programování

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008

Konvexní množiny Formulace úloh lineárního programování. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

ANTAGONISTICKE HRY 172

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Výběr báze. u n. a 1 u 1

7. přednáška Systémová analýza a modelování. Přiřazovací problém

IB112 Základy matematiky

Základy matematiky pro FEK

OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA [ MOPV ] METODY OPERAČNÍHO VÝZKUMU

Problém lineární komplementarity a kvadratické programování

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

0.1 Úvod do lineární algebry

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR

1 Řešení soustav lineárních rovnic

skladbu obou směsí ( v tunách komponenty na 1 tunu směsi):

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Soustavy linea rnı ch rovnic

FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Systematická tvorba jízdního řádu 2. cvičení

0.1 Úvod do lineární algebry

5. Lokální, vázané a globální extrémy

1 Determinanty a inverzní matice

(Cramerovo pravidlo, determinanty, inverzní matice)

1.Modifikace simplexové metody

Přiřazovací problém. Přednáška č. 7

Katedra matematiky OPERAČNÍ VÝZKUM Mgr. Andrea Kubišová

4EK212 Kvantitativní management. 1. Úvod do kvantitativního managementu a LP

1 Duální simplexová metoda

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

Cvičení z Numerických metod I - 12.týden

vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).

Obr. P1.1 Zadání úlohy v MS Excel

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování.

Úlohy nejmenších čtverců

1. Úloha o optimálnom výrobnom pláne (optimálne využitie výrobných faktorov)

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

2 Spojité modely rozhodování

Rovnice přímky vypsané příklady. Parametrické vyjádření přímky

Soustavy lineárních rovnic

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel

Matematická analýza III.

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Soustavy lineárních rovnic

M - Příprava na 1. zápočtový test - třída 3SA

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

Operační výzkum. Přiřazovací problém.

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo

11. Skalární součin a ortogonalita p. 1/16

Báze a dimenze vektorových prostorů

Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy

RNDr. Sousedíková Radmila, Ph.D.

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

4EK213 LINEÁRNÍ MODELY

4EK311 Operační výzkum. 4. Distribuční úlohy LP část 1

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

7 Konvexní množiny. min c T x. při splnění tzv. podmínek přípustnosti, tj. x = vyhovuje podmínkám: A x = b a x i 0 pro každé i n.

M - Příprava na pololetní písemku č. 1

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

f ( x) = 5x 1 + 8x 2 MAX, 3x x ,

7. Důležité pojmy ve vektorových prostorech

Nerovnice, grafy, monotonie a spojitost

DIPLOMOVÁ PRÁCE. Petra Váchová Lineární programování ve výuce na střední

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

Funkce a lineární funkce pro studijní obory

D 11 D D n1. D 12 D D n2. D 1n D 2n... D nn

Matematika B101MA1, B101MA2

Vlastní číslo, vektor

Matice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami.

Transkript:

Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest oříškových a deset karamelových bonbónů a do druhé deset čokoládových, šest oříškových a pět karamelových. Firma má vykalkulováno, že na každém kusu první bonboniéry vydělá 30 Kč a na druhé 45 Kč. Jaký je optimální výrobní program firmy, pokud chce maximalizovat zisk? Matematický model max 30x 1 + 45x 2 za podmínek 2x 1 + 10x 2 60 6x 1 + 6x 2 60 10x 1 + 5x 2 85 x 1, x 2 0, celočíselné (KMI ZF JU) Lineární programování EMM a OA O6 1 / 22

Řešení úlohy LP pomocí simplexové metody Přídatné proměnné Abychom mohli úlohu LP řešit pomocí tzv. simplexové metody, potřebujeme omezující podmínky převést do tvaru rovnic. Toho docílíme přidáním tzv. přídatných proměnných. Příklad bonboniéry 2x 1 + 10x 2 + d 3 = 60 6x 1 + 6x 2 + d 4 = 60 10x 1 + 5x 2 + d 5 = 85 x 1, x 2, d 3, d 4, d 5 0, celočíselné Přídatné proměnné mají jednoznačnou ekonomickou interpretaci, vyjadřují zbytek jednotlivých surovin (v našem případě jednotlivých druhů bonbónů). (KMI ZF JU) Lineární programování EMM a OA O6 2 / 22

Vzpomínka na první semestr na ZF Metody řešení soustavy lineárních rovnic přepis do rozšířené matice soustavy 2 10 1 0 0 60 6 6 0 1 0 60 10 5 0 0 1 85 Jedno řešení je vidět z letadla. A to x = (0, 0, 60, 60, 85). Nic se nevyrábí, vše nám zbývá. To asi ekonomy nepotěší. (KMI ZF JU) Lineární programování EMM a OA O6 3 / 22

Co s tím? Kolik má tato úloha řešení a jak je získat? V tomto případě je řešením úlohy vektorový prostor dimenze 2 (5 proměnných, 3 lineárně nezávislé rovnice, 5 3 = 2). Umíme řešit z MATEA. Jenže, které z těch všech řešení je optimální??? Základní věta LP: Má-li úloha LP optimální řešení, pak alespoň jedno ze základních řešení je optimální. Základní řešení Základním řešením v našem příkladě je každé řešení, které má alespoň dvě nulové složky (tj., v grafu, leží na průniku dvou přímek). (Obecně počet proměnných (včetně přídatných) - počet lineárně nezávislých omezujících podmínek, tj. dimenze prostoru řešení.) (KMI ZF JU) Lineární programování EMM a OA O6 4 / 22

No a? To znamená, že řešení, která stačí porovnávat není až tolik... A jak je vydolovat? Když si všimneme, jak jsme získali první (někdy též výchozí) řešení (a to bylo základní), stačilo nám, aby v matici soustavy byla skryta jednotková matice. A co z toho? Když si vymyslíme, že bychom rádi jednotkovou matici například v prvních třech sloupcích, tak to přece umíme! Gaussova Jordanova eliminace je hračka. Jen se může stát, že nám na pravé straně vypadnou záporná čísla, a tak získáme nepřípustné řešení (podmínka nezápornosti). Pan Dantzing vymyslel, jak postupovat, aby se to nestalo simplexová metoda. (KMI ZF JU) Lineární programování EMM a OA O6 5 / 22

Simplexová metoda (tzv. jednofázová) Algoritmus Najdu jedno základní přípustné řešení. Test optimality, není-li řešení optimální, najdu jiné základní přípustné řešení. Test optimality Dle poslední řádky simplexové tabulky (resp. řádky s cenovými koeficienty). Pro maximalizační (resp. minimalizační), úlohy nesmí tato řádka obsahovat žádné záporné (resp. kladné) číslo. Pokud ho obsahuje, musíme hledat jiné základní řešení. Vybereme tzv. klíčový sloupec jako minimum (resp. maximum) z koeficientů v řádku s cenovými koeficienty. A tzv. klíčový řádek podle minimální hodnoty b i a ij, kde j je index klíčového sloupce. Tím jsme získali tzv. vstupující a vystupující proměnnou. Tj. označili jsme si sloupec na jehož místo se budeme snažit eliminací dostat jednotkový vektor s jednotkou na pozici klíčového prvku (leží v klíčovém řádku i(kmi sloupci). ZF JU) Lineární programování EMM a OA O6 6 / 22

Simplexová metoda Porovnejme s grafickým řešením. (KMI ZF JU) Lineární programování EMM a OA O6 7 / 22

Bonboniéry grafické řešení (KMI ZF JU) Lineární programování EMM a OA O6 8 / 22

Porovnejme s grafickým řešením. (KMI ZF JU) Lineární programování EMM a OA O6 9 / 22

Co že nám to vyšlo? Tj. pro maximální zisk máme vyrábět pět prvních bonboniér a pět druhých bonboniér, přitom nám zbude deset karamelových bonbónů a náš zisk bude 375Kč. (KMI ZF JU) Lineární programování EMM a OA O6 10 / 22

Proč bylo před názvem Simplexová metoda slovo jednofázová? Měli jsme štěstí Prvním bodem postupu při simplexové metodě je najít nějaké základní přípustné řešení. V našem konkrétním případě jsme měli štěstí, jedno jsme viděli hned z tabulky. Ovšem, pokud bychom měli příklad jako na cvičení (krmné směsi), už by byla situace jiná. Příklad zadání Předpokládejme, že máme dvě potraviny - chléb a sýr. Obě potraviny obsahují dva výživné faktory - kalorie a bílkoviny (vyjádřené v gramech). Spec. víme, že jedna libra chleba obsahuje 1000 kalorií a 25 gramů bílkovin a jedna libra sýra obsahuje 2000 kalorií a 100 gramů bílkovin. Žádoucí obsah kalorií a bílkovin ve stravě, kterou máme připravit, činní nejméně 3000 kalorií a 100 gramů bílkovin. Tržní ceny jsou 6 pencí za libru chleba a 18 pencí za libru sýra. Jaké máme zvolit optimální složení stravy, abychom co nejvíce ušetřili? (KMI ZF JU) Lineární programování EMM a OA O6 11 / 22

Příklad matematický model za podmínek min 6x 1 + 18x 2 (kalorie) 1000x 1 + 2000x 2 3000 (bílkoviny) 25x 1 + 100x 2 100 x 1, x 2 0 Model doplněný o doplňkové proměnné za podmínek min 6x 1 + 18x 2 (kalorie) 1000x 1 + 2000x 2 d 1 = 3000 (bílkoviny) 25x 1 + 100x 2 d 2 = 100 x 1, x 2, d 1, d 2 0 Odtud nelze rovnou získat základní přípustné řešení. Proto si musíme pomoci ještě tzv. umělými proměnnými zn. u i. (KMI ZF JU) Lineární programování EMM a OA O6 12 / 22

Model k simplexové metodě za podmínek min 6x 1 + 18x 2 (kalorie) 1000x 1 + 2000x 2 d 1 + u 1 = 3000 (bílkoviny) 25x 1 + 100x 2 d 2 + u 2 = 100 x 1, x 2, d 1, d 2, u 1, u 2 0 A v první fázi výpočtu se musíme zbavit umělých proměnných, čímž získáme, bude-li to možné, výchozí přípustné základní řešení našeho problému. (KMI ZF JU) Lineární programování EMM a OA O6 13 / 22

Postoptimalizační analýza Někdy se nespokojíme s tím, že víme, kolik přesně čeho máme vyrábět, abychom optimalizovali hodnotu účelové funkce. Zajímá nás, např. zda neexistuje ještě jiné možné řešení při stejné hodnotě účelové funkce, či zda by bylo výhodné přikoupit nějakou surovinu (a za jakou cenu) nebo naopak, zda nějakou surovinu nekupovat v takovém množství jako teď. V případě, že nám u výrobního problému vyjde, že se nevyplatí nějaký výrobek vyrábět, ptáme se proč. Jak by bylo ztrátové tento výrobek vyrábět nebo o kolik musíme zvýšit zisk z něho, abychom ho mohli vyrábět bezeztrátově. Odpovědi na tyto otázky poskytuje tzv. postoptimalizační analýza. (KMI ZF JU) Lineární programování EMM a OA O6 14 / 22

Něco lze vyčíst ihned ze simplexové tabulky Duální ceny a redukované náklady Redukované náklady se vztahují k základním proměnným a duální ceny, nebo-li stínové ceny, k přídatným proměnným. Čteme je v poslední řádce výsledné simplexové tabulky. K čemu jsou? Udávají nám, o kolik se změní hodnota účelové funkce s každou jednotkou zařazenou do výroby (v rámci tzv. intervalu stability). (Všimněme si, jak se měnila hodnota účelové funkce při přepočtu simplexové tabulky v závislosti na cenovém koeficientu v klíčovém sloupci a počtu nově zařazených jednotek do výroby.) (KMI ZF JU) Lineární programování EMM a OA O6 15 / 22

Ilustrace na bonboniérách s cenovými koeficienty (30, 30) (KMI ZF JU) Lineární programování EMM a OA O6 16 / 22

Porovnejme s grafickým řešením. (KMI ZF JU) Lineární programování EMM a OA O6 17 / 22

Všimněme si, že u třetí přídatné proměnné je cenový koeficient 0, přesto že tato proměnná není základní. To znamená, budu-li chtít z ní udělat základní, tzv. zařadit ji do výroby, hodnota účelové funkce se nezmění. Po přepočtu dostaneme následující simplexovou tabulku. (KMI ZF JU) Lineární programování EMM a OA O6 18 / 22

Hadí oči Zapišme si výsledek poslední simplexové tabulky proměnná hodnota duální hodnota x 1 5 0 x 2 5 0 d 1 0 0 d 2 0 5 d 3 10 0 U proměnné d 3 nám vznikly tzv. hadí oči. To nám indukuje existenci více řešení. Poznámka: Přepíšete-li stejným způsobem výsledky optimalizace s cenovými koeficienty (45, 30), hadí oči se neobjeví, úloha měla pouze jedno řešení. (KMI ZF JU) Lineární programování EMM a OA O6 19 / 22

Duální ceny a redukované náklady podrobněji Ze struktury simplexové tabulky je zřejmé, že minimálně jedna z hodnot (skutečná či duální) u každé proměnné je rovna nule. (Buď je proměnná tzv. bazická, pak má nulovou duální hodnotu nebo je nebazická, pak je nulová a její duální hodnota může být libovolná.) Jsou-li nulové obě, pak je to znakem existence více řešení. Poznámka Z tohoto pravidla existují nějaké spec. výjimky, na které možná narazíme a možná ne:) (KMI ZF JU) Lineární programování EMM a OA O6 20 / 22

Intervaly stability Duální ceny nám udávají, o kolik se z každou jednotkou, o kterou změníme příslušné omezení, změní hodnota účelové funkce (za předpokladu, že všechny ostatní podmínky úlohy se nezmění). Např. duální cena ke karamelovým bonbónům je 0, tzn. jednotková změna v počtu karamelových bonbónů, které máme k dispozici, nezmění hodnotu účelové funkce. Při současné struktuře výroby nám zbývá 10ks, takže pokud jich budu mít více či (max. o 10 méně), na zisku se to nepodepíše. Ale už to nemusí platit, budu-li jich mít méně než 75 (=85 10). Je zřejmé, že pokud bychom neměli žádný karamelový bonbón, neměli bychom ani žádný zisk, tudíž při změně o 85 už duální cena neplatí. A právě interval, ve kterém platí duální cena, se nazývá intervalem stability. Podobně je to i s intervaly stability pro redukované náklady. (KMI ZF JU) Lineární programování EMM a OA O6 21 / 22

Jak získám intervaly stability? Pokud řešíme úlohu pomocí nějaké alespoň trochu chytrého software, pak intervaly stability jsou součástí výstupu řešení úlohy. Intervaly stability můžeme také dopočítat z výsledné simplexové tabulky. K tomu si stačí uvědomit strukturu této tabulky. (KMI ZF JU) Lineární programování EMM a OA O6 22 / 22