Jaký je mechanismus snižování nerovných šancí na vzdělání podle sociálního původu?

Rozměr: px
Začít zobrazení ze stránky:

Download "Jaký je mechanismus snižování nerovných šancí na vzdělání podle sociálního původu?"

Transkript

1 DISKUSE Jký je mechnismus snižování nerovných šncí n vzdělání podle sociálního původu? Petr Mtějů jeho tým Sociologie vzdělání strtifikce v Sociologickém ústvu Akdemie věd České repuliky, v.v.i., ptří k jedněm z nejlepších českých sociologů. Dokzují to nejen reprezentcí nší sociologie n zhrničních konferencích vědeckých setkáních, le tké prvidelnými pulikcemi v Sociologickém čsopise / Czech Sociologicl Review. Jejich výpovědi o české společnosti jsou vědecky ojektivní, empiricky podložené hodnotově neutrální. Text, který české sociologické oci v tomto čísle Sociologického čsopisu předložili, vyočuje z tohoto rámce. Interpretce nlyzovných dt v textu přeshuje změření hodnotově neutrální sociologie přiližuje se ngžovné sociologii. V úvodu závěru to utoři smi zdůrzňují, když rgumentují pro těsnější sepětí mezi sociologickým poznáním optřeními veřejných (sociálních) politik. Anlýz je změřen n holndský český vzdělávcí systém. Autoři ukzují, že nerovnosti v přístupu k vysokoškolskému vzdělání jsou v České repulice vyšší než v Nizozemsku. Oě země se liší způsoem finncování vysokoškolského studi. U nás se z studium nepltí, v Nizozemsku no. V přípdě České repuliky utoři hovoří o nepřímé finnční podpoře vysokoškolsky studujících, v přípdě Nizozemsk o přímé podpoře, jež je výsledkem vysokoškolských reforem z roku V závěru stti čteme: Pokud jde o roli reformy finnční pomoci studentům, nlýz ukázl, že nvzdory postupně rostoucí výši školného, zejmén v roce 1986, trend snižování nerovností v přístupu k terciárnímu vzdělání pokrčovl i u mldších věkových skupin Nizozemců, kteří zhájili vysokoškolské studium po reformách po roce 1986, yli tk touto reformou ovlivněni. Ačkoli zde nelze rgumentovt kuzlitou, je vliv reformy finncování studentů zvedené v roce 1986 v dtech z Nizozemsko zřetelný (s tohoto čísl). Z hledisk rovnosti šncí n vysokoškolské vzdělání je holndský vysokoškolský systém prezentován jko efektivnější než systém český. V závěru k tomu utoři dodávjí, že z tohoto úhlu pohledu y text měl přispět k diskusi o úloze systému finncování finnční pomoci studentům jejich vlivu n nerovnosti v šncích n dosžení vysokoškolského vzdělání v České repulice (s tohoto čísl). V tomto komentáři se neudu zývt typem nlyzovných dt, konkrétními výpočetními technikmi, nlytickými postupy sttistickými opercemi. Změřím se pouze n prezentovné závěry. Podle nich finnční spoluúčst vysokoškoláků n studiu jejich přímá finnční podpor je efektivnější systém než jejich nepřímá podpor, protože snižuje sociální nerovnosti v přístupu ke vzdělání (Nizozemsko versus Česká repulik). To čtu jko hlvní poselství textu. Je-li toto řečeno přijmeme-li, že tomu tkto skutečně je, musí ýt ovšem tké řečeno, jk tkový mechnismus funguje. Proč školné n vysokých školách přímá podpor studujících snižuje sociální strtifikci ve vzdělání? Jk se v tkovém Sociologický ústv AV ČR, v.v.i., Prh

2 Sociologický čsopis/czech Sociologicl Review, 2009, Vol. 45, No. 5 systému snižují socioekonomické nerovnosti v přístupu ke vzdělání? A to v textu chyí. Přitom y to utoři měli říci jsně, zřetelně explicitně, protože v sociálně strtifikčním výzkumu yl ž doposud efekt školného n nerovné šnce n vzdělání popisován spíše odlišně. O co jde? Sociologové prcují s koncepty vzdělnostních nerovností třídních nerovností ve vzdělání. První koncept slouží výzkumníkům k popisu rozdílů mezi jednotlivými vzdělnostními stupni, jichž lidé ve společnostech doshují. Sociologové jej využívjí jko nástroj při explncích sociálních fenoménů. V nlýzách ukzují, jk se vzdělnostní stupně v jednotlivých společnostech odlišují jk se tyto odlišnosti promítjí do kždodenního jednání lidí. Druhý koncept rámuje nerovnosti spojené s rodinou původu, v níž děti vyrůstjí, s ohledem n vzdělání, které získávjí. Jedná se o ekvivlent nerovných šncí n vzdělání vzhledem k sociální třídě původu. Již od 50. let 20. století empirická zjištění ukzují, že ne všichni potomci mjí stejné šnce n dosžení stejného vzdělání. V žádné zemi neyl ztím etlován tkový vzdělávcí systém, y v jeho rámci měli potomci rodičů z různých sociálních tříd stejné šnce n stejné vzdělání. V některých vzdělávcích soustvách jsou tyto šnce vyšší, v jiných nižší, nicméně ve všech zemích nerovné šnce n vzdělání stále existují [Shvit, Blossfeld 1993; Bowles, Gintis, Groves 2005; Shvit, Arum, Gmorn 2007]. Klsickým řešením, jk snížit třídní nerovnosti v doshování vzdělání, je otevírání vzdělávcího systému. Jinými slovy řečeno: dát šnci studovt co největšímu počtu mldých lidí. Od 60. let 20. století je toto řešení plikováno ve většině zemí zápdní Evropy. Počet studujících mldých lidí s dokončenými vyššími stupni vzdělání roste. Neznmená to ovšem, že se tké snižují nerovné šnce n vzdělání podle sociálního původu. V roce 1993 Adrin Rftery Michel Hout pulikovli mezikohortní nlýzu irské společnosti z hledisk vývoje nerovných šncí n vzdělání formulovli teorii mximálně udržovné nerovnosti (Mximlly Mintined Inequlity MMI). 1 Oecnou pointu této teorie ilustruje grf 1. Předstvme si, že n ose X máme čs n ose Y podíl vysokoškoláků ve vyrné zemi. Pokud ychom nezohledňovli sociální původ (sociální třídu rodičů) stále větší podíl mldých lidí y mohl studovt vysokou školu, měli ychom v grfu pouze jednu křivku, která y rostl z jeho levého dolního rohu směrem k jeho prvému hornímu rohu. Když zohledníme sociální původ (rozdělíme npříkld společnost do třech sociálních tříd), dostneme tři rostoucí křivky. Vzdálenosti mezi nimi (prmetry v grfu 1) pk ukzují velikost nerovných šncí n vysokoškolské vzdělání podle sociálního původu potomků. Tyto prmetry jsou empirickým oshem konceptu třídních nerovností ve vzdělání pro výzkum sociální strtifikce sociologie vzdělání jsou mnohem důležitější než smotné křivky růstu neo poklesu podílu vysokoškoláků v populci. Podle teorie MMI smotný růst podílu studujících ještě nemusí vést ke snížení šncí n vzdělání podle sociálního původu. Je-li vzrůstjící podíl studujících stejný vzhle- 1 Argumenty pro širší pltnost této teorie srov. v Shvit, Blossfeld [1993]. 1034

3 Tomáš Ktrňák: Jký je mechnismus snižování nerovných šncí n vzdělání? Grf 1. Stilit třídních nerovností ve vzdělání čs Grf 2. Snižování třídních nerovností ve vzdělání čs Grf 3. Zvyšování třídních nerovností ve vzdělání Zdroj: utor. čs 1035

4 Sociologický čsopis/czech Sociologicl Review, 2009, Vol. 45, No. 5 dem ke všem sociálním třídám, reltivní šnce n dosžení stejného vzdělání se mezi nimi v čse nemění (velikost prmetrů i zůstává stejná). Nerovné šnce n vzdělání se sníží ž tehdy, kdy je počet studujících z nejvyšších sociálních tříd kompletní (téměř všichni potomci z těchto tříd doshují těch nejvyšších stupňů vzdělání) ve vzdělávcích stupních je stále volná kpcit [Rftery, Hout 1993]. Jk lze tedy snížit nerovnost v šncích n vzdělání podle sociálního původu, když expnze vzdělávcího systému k tomu nemusí nutně vést? Pokud vyjdeme z předpokldu, že rozdíly mezi sociálními třídmi jsou především v ekonomické rovině, řešením je redukce těchto rozdílů. Roert Erikson [1996] n příkldu Švédsk nedávno ukázl, že oslování ekonomických třídních diferencí osluje nerovné šnce n vzdělání podle sociálního původu. V letech 20. století se ekonomické třídní diference ve švédské společnosti snižovly díky progresivnímu zdnění redistriucím v rámci sociálního státu (přídvky n děti, nejrůznější peněžní dávky mteriální pomoc rodinám nižších sociálních tříd). Cílem ylo vyrovnt ekonomické podmínky dětí z rozdílných sociálních prostředí. Společně s tím yly zrušeny veškeré popltky spojené se středním vysokoškolským studiem. Strvu ve školách zdrvotní péči pro žáky zčl hrdit švédský stát. Učenice výukové mteriály pro žáky zákldních střední škol zčly ýt dostupné zdrm. Zkrátk v posledních desetiletích 20. století yl ve švédské společnosti zveden tková optření, jejichž cílem ylo rozpojit vzu mezi vzdělnostními šncemi potomků ekonomickými zdroji jejich rodin původu [Breen 1997]. Tím se nejen snížily nerovné šnce n vzdělání podle sociálního původu, jk ukzuje grf 2 (prmetry se snížily křivky se k soě v čse přiližují), le tké vzrostl sociální fluidit švédské společnosti [k tomu srov. Jonsson 2004; Breen, Jonsson 2007]. Oslil vz mezi sociálním původem (sociální třídou rodičů) změstnneckou pozicí potomk (jeho/její sociální třídou). Švédská společnost se stl rovnostářštější, sprvedlivější s ohledem n sociální původ méně sociálně determinující než jiné zápdoevropské země. Řešení, které nvrhují utoři pulikovné stti ke snížení nerovných šncí n vzdělání podle sociálního původu, je zcel opčné než řešení plikovné ve švédské společnosti. Zvedením školného n vysokých školách v České repulice (ť už v jkékoliv podoě) ychom podle švédského řešení posílili vzu mezi výchozím sociálním prostředím šncemi n vysokoškolské vzdělání. Vzdělnostní šnce potomků y se stly závislejšími n ekonomických zdrojích rodin původu sociální třídě rodičů. Efektem tohoto kroku y yl růst nerovných šncí n vzdělání (grf 3). Tím neříkám, že y český vysokoškolský systém neměl ýt reformován, ť už směrem k vyšší, neo nižší přímé finnční účsti studujících. Pouze konsttuji, že ve světle švédského řešení není jsné, jk zvedení školného přímé finnční podpory studujících ude oslovt nerovnosti v šncích n vysokoškolské vzdělání v České repulice. Nemám důvod nevěřit předloženému tvrzení utorů stti, že tomu tk ude. Nerozumím všk mechnismu tohoto řešení. Domnívám se, že je potře jej ojsnit. Doufám tedy, že způso oslování nerovných šncí n vzdělání podle sociálního původu ude pro tento dtelský 1036

5 Tomáš Ktrňák: Jký je mechnismus snižování nerovných šncí n vzdělání? tým výzvou i v dlších letech. Doufám tké, že ude připrven stť, ť už teoreticky, neo empiricky orientovná, v níž se tito utoři (neo kdokoliv jiný) změří n mechnismus snižování šncí n vysokoškolské vzdělání pomocí finnční spoluúčsti studujících ojsní jej. Byl-li totiž popsán empirická fkt ukázáno, že školné přímá podpor studujících n vysokých školách v Nizozemsku snižuje nerovné šnce n vzdělání podle sociálního původu, je nezytné ojsnit, jk y se zvedením tkového systému snížily nerovné šnce n vzdělání v České repulice. Tuto explnci v předložení stti postrádám. A do té doy, než ude hotov, ude pro mě přesvědčivější švédský způso snižování nerovných šncí n vzdělání podle sociálního původu. Tomáš Ktrňák Litertur Bowles, S., H. Gintis, M. O. Groves (ed.) Unequl Chnces: Fmily Bckgroud nd Economic Success. Princeton, N.J.: Princeton University Press. Breen, R Inequlity, Economic Growth nd Socil Moility. British Journl of Sociology 48 (3): Breen, R., J. O. Jonsson Explining Chnge in Socil Fluidity: Eductionl Equliztion nd Eductionl Expnsion in Twentieth-Century Sweden. Americn Journl of Sociology 112 (6): Erikson, R Explining Chnge in Eductionl Inequlity: Economic Security nd School Reforms. Pp in R. Erikson, J. O. Jonsson (eds.). Cn Eduction Be Equlized? Boulder, CO: Westview Press. Jonsson, J. O Equlity t Hlf? Socil Moility in Sweden, Pp in R. Breen, R. Luijkx (eds.). Socil Moility in Europe. Oxford: Oxford University Press. Rftery, A. E., M. Hout Mximlly Mintined Inequlity: Expnsion, Reform, nd Opportunity in Irish Eduction, Sociology of Eduction 66 (1): Shvit, Y., H. P. Blossfeld Persistent Inequlity. Chnging Eductionl Attinment in Thirteen Countries. Boulder, CO, Sn Frncisco, Oxford: Westview Press. Shvit, Y., R. Arum, A. Gmorn Strtifiction in Higher Eduction: A Comprtive Study. Stnford: Stnford University Press. 1037

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306 7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu

Více

Digitální učební materiál

Digitální učební materiál Digitální učení mteriál Číslo projektu CZ.1.07/1.5.00/34.080 Název projektu Zkvlitnění výuky prostřednictvím ICT Číslo název šlony klíčové ktivity III/ Inovce zkvlitnění výuky prostřednictvím ICT Příjemce

Více

Lineární nerovnice a jejich soustavy

Lineární nerovnice a jejich soustavy teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice

Více

2.7.7 Obsah rovnoběžníku

2.7.7 Obsah rovnoběžníku 77 Osh rovnoěžníku Předpokldy: 00707 Osh (znčk S): kolik míst útvr zujímá, počet čtverečků 1 x 1, které se do něj vejdou, kolik koerce udeme muset koupit, ychom pokryli podlhu, Př 1: Urči osh čtverce o

Více

2.8.5 Lineární nerovnice s parametrem

2.8.5 Lineární nerovnice s parametrem 2.8.5 Lineární nerovnice s prmetrem Předpokldy: 2208, 2802 Pedgogická poznámk: Pokud v tom necháte studenty vykoupt (což je, zdá se, jediné rozumné řešení) zere tto látk tk jednu půl vyučovcí hodiny (první

Více

Zkoušky povlaků řezných nástrojů ze slinutého karbidu při frézování ocelí

Zkoušky povlaků řezných nástrojů ze slinutého karbidu při frézování ocelí Zkoušky povlků řezných nástrojů ze slinutého kridu při frézování ocelí Ing. Pvel Zemn Ph.D. 1), Ing. Ondřej Zindulk 2) 1) VCSVTT, ČVUT v Prze, Horská 3, 12800 Prh 2, tel: 605205923, p.zemn@rcmt.cvut.cz

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

Větu o spojitosti a jejich užití

Větu o spojitosti a jejich užití 0..7 Větu o spojitosti jejich užití Předpokldy: 706, 78, 006 Pedgogická poznámk: Při proírání této hodiny je tře mít n pměti, že všechny věty, které studentům sdělujete z jejich pohledu neuvěřitelně složitě

Více

Úmrtnost v Česku a vybraných evropských krajinách

Úmrtnost v Česku a vybraných evropských krajinách Úmrtnost v Česku vybrných evropských krjinách Bohdn Lind Univerzit Prdubice, ústv mtemtiky Vývoj úmrtnosti v ČR v letech 197 1999 podle nejčstějších příčin V České republice zemřelo v roce 1999 19 768

Více

Národní centrum výzkumu polárních oblastí

Národní centrum výzkumu polárních oblastí Národní centrum výzkumu polárních oblstí Dohod o spolupráci při výzkumu polárních oblstí Země Msrykov univerzit Žerotínovo nám. 9, 601 77 Brno, IČ 00216224, zstoupená rektorem Prof. PhDr. Petrem Filou,

Více

( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady:

( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady: 4.4. Sinová vět II Předpokldy 44 Kde se stl hy? Námi nlezené řešení je správné, le nenšli jsme druhé hy ve hvíli, kdy jsme z hodnoty sin β určovli úhel β. β je úhel z intervlu ( ;π ). Jk je vidět z jednotkové

Více

Od diferenciace k diverzifikaci: test teorií MMI a EMI v českém středním vzdělávání. Tomáš Katrňák Natalie Simonová Laura Fónadová

Od diferenciace k diverzifikaci: test teorií MMI a EMI v českém středním vzdělávání. Tomáš Katrňák Natalie Simonová Laura Fónadová Od diferenciace k diverzifikaci: test teorií MMI a EMI v českém středním vzdělávání Tomáš Katrňák Natalie Simonová Laura Fónadová Cíl analýzy Ukázat, zda rozšiřující se dostupnost maturitního vzdělání

Více

Psychologická metodologie. NMgr. obor Psychologie

Psychologická metodologie. NMgr. obor Psychologie Pržská vysoká škol psychosociálních studií, s.r.o. Temtické okruhy ke státní mgisterské zkoušce Psychologická metodologie NMgr. oor Psychologie 1 Vědecká teorie vědecká metod Vědecké vysvětlení, vědecký

Více

Zhoubný novotvar ledviny mimo pánvičku v ČR

Zhoubný novotvar ledviny mimo pánvičku v ČR Aktuální informce Ústvu zdrvotnických informcí sttistiky České repuliky Prh 8.1.2004 1 Zhouný novotvr ledviny mimo pánvičku v ČR Počet hlášených onemocnění zhouným novotvrem ledviny mimo pánvičku (dg.

Více

Minimalizace automatů. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 28. března / 31

Minimalizace automatů. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 28. března / 31 Minimlizce utomtů M. Kot, Z. Sw (VŠB-TU Ostrv) Úvod do teoretické informtiky 28. řezn 2007 1/ 31 Ekvivlence utomtů 1 2 3 1 2 3 1 2 Všechny 3 utomty přijímjí jzyk všech slov se sudým počtem -ček Nejvýhodnějšíjepronásposledníznich-mánejméněstvů

Více

Integrály definované za těchto předpokladů nazýváme vlastní integrály.

Integrály definované za těchto předpokladů nazýváme vlastní integrály. Mtemtik II.5. Nevlstní integrály.5. Nevlstní integrály Cíle V této kpitole poněkud rozšíříme definii Riemnnov určitého integrálu i n přípdy, kdy je integrční oor neohrničený (tj. (, >,

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

Křivkový integrál prvního druhu verze 1.0

Křivkový integrál prvního druhu verze 1.0 Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm

Více

7.5.8 Středová rovnice elipsy

7.5.8 Středová rovnice elipsy 758 Středová rovnice elips Předpokld: 7501, 7507 Př 1: Vrchol elips leží v odech A[ 1;1], [ 3;1], [ 1;5], [ 1; 3] elips souřdnice jejích ohnisek Urči prmetr Zdné souřdnice už n první pohled vpdjí podezřele,

Více

Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami:

Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami: Truhlář Michl 3 005 Lbortorní práce č 6 Úloh č 5 p 99,8kP Měření odporu, indukčnosti vzájemné indukčnosti můstkovými metodmi: Úkol: Whetstoneovým mostem změřte hodnoty odporů dvou rezistorů, jejich sériového

Více

Definice limit I

Definice limit I 08 Definice limit I Předpokld: 006 Pedgogická poznámk: N úvod je třeb upozornit, že tto hodin je ze strn studentů snd nejvíce sbotovnou látkou z celé studium (podle rekcí 4B009) Jejich ochot brát n vědomí

Více

Komuniké. předsedy Nejvyššího kontrolního úřadu Slovenské republiky. prezidenta Účetního dvora Slovinské republiky

Komuniké. předsedy Nejvyššího kontrolního úřadu Slovenské republiky. prezidenta Účetního dvora Slovinské republiky Komuniké předsedy Nejvyššího kontrolního úřdu Slovenské republiky prezident Účetního dvor Slovinské republiky prezident Nejvyššího kontrolního úřdu, Česká republik prezident rkouského Účetního dvor o výsledcích

Více

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

( a) Okolí bodu

( a) Okolí bodu 0..5 Okolí bodu Předpokldy: 40 Pedgogická poznámk: Hodin zjevně překrčuje možnosti většiny studentů v 45 minutách. Myslím, že nemá cenu přethovt do dlší hodiny, příkldy s redukovnými okolími nejsou nutné,

Více

visual identity guidelines Česká verze

visual identity guidelines Česká verze visul identity guidelines Česká verze Osh 01 Filosofie stylu 02 Logo 03 Firemní rvy 04 Firemní písmo 05 Vrice log 06 Komince rev Filosofie stylu Filozofie společnosti Sun Mrketing vychází ze síly Slunce,

Více

3.2. LOGARITMICKÁ FUNKCE

3.2. LOGARITMICKÁ FUNKCE .. LOGARITMICKÁ FUNKCE V této kpitole se dovíte: jk je definován ritmická funkce (ritmus) jké má ákldní vlstnosti; důležité vorce pro práci s ritmickou funkcí; co nmená ritmovt odritmovt výr. Klíčová slov

Více

DUM č. 11 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla

DUM č. 11 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla projekt GML Brno Docens DUM č. v sdě M- Příprv k mturitě PZ geometrie, nltická geometrie, nlýz, komlení čísl 4. Autor: Mgd Krejčová Dtum: 3.8.3 Ročník: mturitní ročník Anotce DUMu: Anltická geometrie v

Více

4. cvičení z Matematiky 2

4. cvičení z Matematiky 2 4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

Hlavní body - magnetismus

Hlavní body - magnetismus Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického

Více

Dotace na podporu aktivit v oblasti sportu a tělovýchovy

Dotace na podporu aktivit v oblasti sportu a tělovýchovy Dotční progrm n podporu ktivit v olsti sportu tělovýchovy dětí mládeže ze Sportovního fondu Městského ovodu Lierec Vrtislvice nd Nisou n rok 2016 Dotce n podporu ktivit v olsti sportu tělovýchovy Účel

Více

SPEKTRÁLNÍ CHARAKTERISTIKY DOPADAJÍCÍ SLUNEČNÍ RADIACE NA LOKALITĚ BÍLÝ KŘÍŽ

SPEKTRÁLNÍ CHARAKTERISTIKY DOPADAJÍCÍ SLUNEČNÍ RADIACE NA LOKALITĚ BÍLÝ KŘÍŽ Rožnovský, J., Litschmnn, T. (ed): Seminář Mikroklim porostů, rno, 26. řezn 2003, SPEKTRÁLNÍ CHRKTERISTIKY DOPDJÍCÍ SLUNEČNÍ RDICE N LOKLITĚ ÍLÝ KŘÍŽ Mrtin Nvrátil 1, Vldimír Špund 2 1 Ktedr fyziky, Ostrvská

Více

( ) ( ) Pythagorova věta, Euklidovy věty II. γ = 90, je-li dáno: c = 10, c = 6. Předpoklady: 3205

( ) ( ) Pythagorova věta, Euklidovy věty II. γ = 90, je-li dáno: c = 10, c = 6. Předpoklady: 3205 3..6 Pythgoro ět, Euklidoy ěty II Předpokldy: 305 V kždém proúhlém trojúhelníku s oděsnmi, přeponou pltí: =, =, =, kde je ýšk n přeponu, jsou úseky přepony přilehlé ke strnám,. Kždou z předhozíh ět je

Více

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících.

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících. 4.4. Sinová vět Předpokldy Trigonometrie řešení úloh o trojúhelnííh. Prktiké využití změřování měření vzdáleností, tringulční síť Tringulční síť je prolém měřit vzdálenosti dvou odů v krjině změříme velmi

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

Konstrukce na základě výpočtu I

Konstrukce na základě výpočtu I ..11 Konstrukce n zákldě výpočtu I Předpokldy: Pedgogická poznámk: Původně yl látk rozepsnou do dvou hodin, v první ylo kromě dělení úseček zřzen i čtvrtá geometrická úměrná. Právě její prorání se nestíhlo,

Více

5.2.4 Kolmost přímek a rovin II

5.2.4 Kolmost přímek a rovin II 5..4 Kolmost přímek rovin II Předpokldy: 503 Př. 1: Zformuluj stereometrické věty nlogické k plnimetrické větě: ným bodem lze v rovině k dné přímce vést jedinou kolmici. Vět: ným bodem lze v prostoru k

Více

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

DERIVACE A INTEGRÁLY VE FYZICE

DERIVACE A INTEGRÁLY VE FYZICE DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická

Více

kritérium Návaznost na další dokumenty Dokument naplňující standard

kritérium Návaznost na další dokumenty Dokument naplňující standard 1. CÍLE A ZPŮSOBY ČINNOSTI POVĚŘENÉ OSOBY Dokument obshuje zákldní prohlášení středisk Služby pro pěstouny, do kterého se řdí: poslání, cílová skupin, cíle zásdy, v souldu s kterými je služb poskytován.

Více

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA PEDAGOGICKÁ Ktedr sociálních studií speciální pedgogiky Studijní progrm: Studijní oor: Kód ooru: Sociální práce Sociální prcovník 7502R022 Název klářské práce: NÁHRADNÍ

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

Hyperbola a přímka

Hyperbola a přímka 7.5.8 Hperol přímk Předpokld: 75, 75, 755, 756 N orázku je nkreslen hperol = se středem v počátku soustv souřdnic. Jká je vzájemná poloh této hperol přímk, která prochází počátkem soustv souřdnic? E B

Více

2.1 - ( ) ( ) (020201) [ ] [ ]

2.1 - ( ) ( ) (020201) [ ] [ ] - FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje. 4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost

Více

MATA Př 2. Složené výroky: Jsou dány výroky: a: Číslo 5 je prvočíslo. b: Číslo 5 je sudé. c: Číslo 5 je liché. d: Číslo 5 je záporné.

MATA Př 2. Složené výroky: Jsou dány výroky: a: Číslo 5 je prvočíslo. b: Číslo 5 je sudé. c: Číslo 5 je liché. d: Číslo 5 je záporné. MATA Př 2 Složené výroky: Jsou dány výroky: : Číslo 5 je prvočíslo. : Číslo 5 je sudé. c: Číslo 5 je liché. d: Číslo 5 je záporné. Konjunkce disjunkce Konjunkce liovolných výroků, je výrok, který vznikne

Více

4.4.3 Kosinová věta. Předpoklady:

4.4.3 Kosinová věta. Předpoklady: 443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

Závěrečná zpráva o výsledcích řešení projektu v rámci rozvojových program MŠMT na rok 2006

Závěrečná zpráva o výsledcích řešení projektu v rámci rozvojových program MŠMT na rok 2006 Závěrečná zpráv o výsledcích řešení projektu v rámci rozvojových progrm MŠMT n rok 2006 Fkult/Ústv: Univerzit Prdubice/rektorát Název projektu: Vytváření příležitostí k uspokojení zvyšování zájmu ndných

Více

JAN VÁLEK, PETR SLÁDEK Katedra fyziky, chemie a odborného vzdělávání, Pedagogická fakulta, Masarykova univerzita, Poříčí 7, Brno

JAN VÁLEK, PETR SLÁDEK Katedra fyziky, chemie a odborného vzdělávání, Pedagogická fakulta, Masarykova univerzita, Poříčí 7, Brno Veletrh nápdů učitelů fyziky 18 Fyzik cyklist JAN VÁLEK, PETR SLÁDEK Ktedr fyziky, chemie odorného vzdělávání, Pedgogická fkult, Msrykov univerzit, Poříčí 7, 603 00 Brno Astrkt Jízdní kolo spojuje mnoho

Více

Datamining a AA (Above Average) kvantifikátor

Datamining a AA (Above Average) kvantifikátor Dtmining AA (Above Averge) kvntifikátor Jn Burin Lbortory of Intelligent Systems, Fculty of Informtics nd Sttistics, University of Economics, W. Churchill Sq. 4, 13067 Prgue, Czech Republic, burinj@vse.cz

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25 56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Větvené mazací systémy a jejich proudové poměry tribologicko-hydraulické aspekty

Větvené mazací systémy a jejich proudové poměry tribologicko-hydraulické aspekty OBHAJOBA DISETAČNÍ PÁCE Větvené mzcí systémy jejich proudové poměry triologicko-hydrulické spekty PhD student: Ing. Antonín Dvořák Školitel: Doc. NDr. Ing. Josef Nevrlý, CSc. Ústv konstruování VUT- BNO

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázi zákldní vzdělávání Jroslv Švrček kolektiv Rámcový vzdělávcí progrm pro zákldní vzdělávání Vzdělávcí oblst: Mtemtik její plikce Temtický okruh: Nestndrdní plikční

Více

3.2.5 Pythagorova věta, Euklidovy věty I. α = = Předpoklady: 1107, 3204

3.2.5 Pythagorova věta, Euklidovy věty I. α = = Předpoklady: 1107, 3204 3..5 ythgoro ět, Euklidoy ěty I ředpokldy: 1107, 304 roúhlý trojúhelník = trojúhelník s nitřním úhlem 90 (s prým nitřním úhlem) prý úhel je z nitřníh úhlů nejětší (zýjíí d musí dát dohromdy tké 90 ) strn

Více

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

Tangens a kotangens

Tangens a kotangens 4.3.12 Tngens kotngens Předpokldy: 040311 Př. 1: Úhel, pod kterým je možné ze pozorovt vrhol věže ze vzdálenosti 19 m od její pty, yl změřen n 53 od vodorovné roviny. Jk je věž vysoká? h 53 19 m Z orázku

Více

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 7. března / 46

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 7. března / 46 Formální jzyky Z. Sw (VŠB-TUO) Úvod do teoretické informtiky 7. řezn 2012 1/ 46 Teorie formálních jzyků motivce Příkldy typů prolémů, při jejichž řešení se využívá pozntků z teorie formálních jzyků: Tvor

Více

Ulice Agentura sociální práce, o. s. Účetní závěrka za rok 2012

Ulice Agentura sociální práce, o. s. Účetní závěrka za rok 2012 Ulice Agentur sociální práce, o. s. Účetní závěrk z rok 2012 Osh: I. OBECNÉ INFORMACE... 2 1. POPIS ÚČETNÍ JEDNOTKY... 2 2. ZAMĚSTNANCI A OSOBNÍ NÁKLADY... 2 3. POSKYTNUTÉ PŮJČKY, ZÁRUKY ČI JINÁ PLNĚNÍ...

Více

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení.

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení. 4. Booleov lger Booleov lger yl nvržen v polovině 9. století mtemtikem Georgem Boolem, tehdy nikoliv k návrhu digitálníh ovodů, nýrž jko mtemtikou disiplínu k formuli logikého myšlení. Jko příkld použijeme

Více

Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav:

Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav: Truhlář Michl 7.. 005 Lbortorní práce č.8 Úloh č. 7 Měření prmetrů zobrzovcích soustv: T = ϕ = p = 3, C 7% 99,5kP Úkol: - Změřte ohniskovou vzdálenost tenké spojky přímou Besselovou metodou. - Změřte ohniskovou

Více

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci

Více

JEDNODUCHÝ INTEGRÁL příklady. pro vysoké školy

JEDNODUCHÝ INTEGRÁL příklady. pro vysoké školy JEDNODUCHÝ INTEGRÁL příkldy pro vysoké školy Bohemicus mthemticus doctor Pvel Novotný 0 Vzor citce: NOVOTNÝ, P. Jednoduchý integrál příkldy : pro vysoké školy. Bučovice : Nkldtelství Mrtin Stříž, 0. 6

Více

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu.

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu. Přednášk 1 Určitý integrál V této přednášce se budeme zbývt určitým integrálem. Eistuje několik definic určitého integrálu funkce jedné reálné proměnné. Jednotlivé integrály se liší v tom, jké funkce lze

Více

V = gap E zdz. ( 4.1A.1 ) f (z, ξ)dξ = g(z),

V = gap E zdz. ( 4.1A.1 ) f (z, ξ)dξ = g(z), 4.1 Drátový dipól Zákldní teorie V této kpitole se seznámíme s výpočtem prmetrů drátového dipólu pomocí momentové metody. Veškeré informce se snžíme co nejsrozumitelněji vysvětlit ve vrstvě A. Vrstvu B

Více

5.1.5 Základní vztahy mezi body, přímkami a rovinami

5.1.5 Základní vztahy mezi body, přímkami a rovinami 5.1.5 Zákldní vzthy mezi body, přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů přímk - jednorozměrná podmnožin prostoru (množin bodů), rovin - dvojrozměrná podmnožin prostoru (množin

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci Mtemtik 1A. PetrSlčJiříHozmn Fkult přírodovědně-humnitní pedgogická Technická univerzit v Liberci petr.slc@tul.cz jiri.hozmn@tul.cz 21.11.2016 Fkult přírodovědně-humnitní pedgogická TUL ZS 2016-2017 1/

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

Vlnová teorie. Ing. Bc. Michal Malík, Ing. Bc. Jiří Primas. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

Vlnová teorie. Ing. Bc. Michal Malík, Ing. Bc. Jiří Primas. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Ing. Bc. Michl Mlík, Ing. Bc. Jiří Prims ECHNICKÁ UNIVERZIA V LIBERCI Fkult mechtroniky, informtiky mezioborových studií ento mteriál vznikl v rámci projektu ESF CZ.1.7/../7.47, který je spolufinncován

Více

Výzkumná zpráva pro Lesy České republiky

Výzkumná zpráva pro Lesy České republiky Alrechtová kol: Výzkumná zpráv pro LČR, 2. etp 1 Výzkumná zpráv pro Lesy České repuliky Hodnocení vývoje zdrvotního stvu vyrných stnovišť v Krušnohoří od roku 1998 Etp II: 1) Anlýz mkroskopických mrkerů

Více

Konstrukce na základě výpočtu II

Konstrukce na základě výpočtu II 3.3.1 Konstruke n zákldě výpočtu II Předpokldy: 030311 Př. 1: Jsou dány úsečky o délkáh,,. Sestroj úsečku o déle =. Njdi oený postup, jk sestrojit ez měřítk poždovnou úsečku pro liovolné konkrétní délky

Více

63. ročník matematické olympiády III. kolo kategorie A. Ostrava, března 2014

63. ročník matematické olympiády III. kolo kategorie A. Ostrava, března 2014 63. ročník mtemtické olympiády III. kolo ktegorie Ostrv, 23. 26. řezn 204 MO . Nechť n je celé kldné číslo. Oznčme všechny jeho kldné dělitele d, d 2,..., d k tk, y pltilo d < d 2

Více

14. cvičení z Matematické analýzy 2

14. cvičení z Matematické analýzy 2 4. cvičení z temtické nlýzy 2 22. - 26. květn 27 4. Greenov vět) Použijte Greenovu větu k nlezení práce síly F x, y) 2xy, 4x 2 y 2 ) vykonné n částici podél křivky, která je hrnicí oblsti ohrničené křivkmi

Více

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013,

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, EVROPSKÁ KOMISE V Bruselu dne 30.4.2013 C(2013) 2420 finl NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, kterým se mění nřízení (ES) č. 809/2004, pokud jde o poždvky n zveřejňování

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

1.1.20 Sbírka na procvičení vztahů mezi veličinami popisujícími pohyb

1.1.20 Sbírka na procvičení vztahů mezi veličinami popisujícími pohyb 1.1.20 Sbírk n procvičení vzhů mezi veličinmi popisujícími pohyb Máme ři veličiny popisující pohyb dv vzhy, keré je spojují nvzájem. s v = Rychlos je změn dráhy z změnu čsu (rychlos říká, jk se v čse mění

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

Partner. Časov ý plán realiza ce Zřizovatel VCT MAS Partner. Časový plán realizace NIDV, CVLK, VCT,

Partner. Časov ý plán realiza ce Zřizovatel VCT MAS Partner. Časový plán realizace NIDV, CVLK, VCT, Aktivity spolupráce Cíl 1. Vyhovující mteriální podmínky, dlších subjektů poskytujících zájmové celoživotní vzdělávání Cíl ktivity, optření 1.6, 1.6.1 1.7, 1.7.1 Popis ktivity Spolupráce v zjištění bezbriérového

Více

M - Příprava na 3. zápočtový test pro třídu 2D

M - Příprava na 3. zápočtový test pro třídu 2D M - Příprv n. ápočtový test pro třídu D Autor: Mgr. Jromír JUŘEK Kopírování jkékoliv dlší využití výukového mteriálu je povoleno poue s uvedením odku n www.jrjurek.c. VARIACE 1 Tento dokument byl kompletně

Více

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia - - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin

Více

PÍSEMNÁ ZPRÁVA ZADAVATELE. "Poradenství a vzdělávání při zavádění moderních metod řízení pro. Město Klimkovice

PÍSEMNÁ ZPRÁVA ZADAVATELE. Poradenství a vzdělávání při zavádění moderních metod řízení pro. Město Klimkovice PÍSEMNÁ ZPRÁVA ZADAVATELE pro zjednodušené podlimitní řízení n služby v rámci projektu Hospodárné odpovědné město Klimkovice, reg. č. CZ.1.04/4.1.01/89.00121, který bude finncován ze zdrojů EU "Pordenství

Více

Nerovnosti a nerovnice

Nerovnosti a nerovnice Nerovnosti nerovnice Doc. RNDr. Leo Boček, CSc. Kurz vznikl v rámci projektu Rozvoj systému vzdělávcích příležitostí pro ndné žáky studenty v přírodních vědách mtemtice s využitím online prostředí, Operční

Více

Neurčité výrazy

Neurčité výrazy .. Neurčité výrzy Předpokldy: Př. : Vypočti ity: ) d) ) d) neeistuje,, Zjímvé. Získli jsme čtyři nprosto rozdílné výsledky, přestože přímým doszením do všech výrzů získáme to smé: výrz může při výpočtu

Více

Technická dokumentace Ing. Lukáš Procházka

Technická dokumentace Ing. Lukáš Procházka Tehniká dokumente ng Lukáš Proházk Tém: hlvní část dokumentu, orázky, tulky grfy 1) Osh hlvní části dokumentu ) Orázky, tulky grfy ) Vzore rovnie Hlvní část dokumentu Hlvní část dokumentu je řzen v následujíím

Více

8. cvičení z Matematiky 2

8. cvičení z Matematiky 2 8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,

Více

Řešte daný nosník: a = 2m, b = 2m, c = 1m, F 1 = 10kN, F 2 = 20kN

Řešte daný nosník: a = 2m, b = 2m, c = 1m, F 1 = 10kN, F 2 = 20kN Řešte dný nosník: m, m, m, F kn, F kn yhom nl kompletně slové účnky půsoíí n nosník, nejprve vyšetříme reke v uloženíh. ek určíme npříkld momentové podmínky rovnováhy k odu. F F F ( ) ( ) F( ) 8 ( ) 5

Více

Studijní materiály ke 4. cvičení z předmětu IZSE

Studijní materiály ke 4. cvičení z předmětu IZSE ZSE 8/9 Studijní mteriály ke 4 vičení z předmětu ZSE Předkládný studijní mteriál je určen primárně studentům kterým odpdlo vičení dne 4 9 (velikonoční pondělí) Ke studiu jej smozřejmě mohou využít i studenti

Více

FT46. Celonerezové plovákové odvaděče kondenzátu (DN15 až DN50)

FT46. Celonerezové plovákové odvaděče kondenzátu (DN15 až DN50) Místní předpisy mohou omezit použití výrobků. Výrobce si vyhrzuje právo změn uvedených údjů. Copyright 2016 TI-P143-01 ST Vydání 11 Celonerezové plovákové odvděče kondenzátu (DN15 ž ) 4.5 ž 21 br DN15

Více

Geometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometrie Mgr. Jrmil Zelená Gymnázium, SOŠ VOŠ Ledeč nd Sázvou Výpočty v prvoúhlém trojúhelníku VY_3_INOVACE_05_3_1_M Gymnázium, SOŠ VOŠ Ledeč nd Sázvou PRAVOÚHLÝ TROJÚHELNÍK 1 Pojmy oznčení:,.odvěsny

Více

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál)

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál) Integrální počet - IV. část (plikce n určitý vlstní integrál, nevlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednášk z AMA Michl Fusek (fusekmi@feec.vutbr.cz) / 4 Obsh

Více

8.1 Úvod. Definice: [MA1-18:P8.1] výpočet obsahu plochy pod grafem funkce. (nejdříve jen pro a < b ) a = x 0 < x 1 <... < x n = b.

8.1 Úvod. Definice: [MA1-18:P8.1] výpočet obsahu plochy pod grafem funkce. (nejdříve jen pro a < b ) a = x 0 < x 1 <... < x n = b. KPITOL 8: určitý itegrál Riemův itegrál [M-8:P8.] motivce: výpočet oshu plochy pod grfem fukce 8. Úvod ejdříve je pro < ) řekeme, že moži D, je děleím itervlu,, jestliže je koečá, D. Prvky děleí D {x,

Více