Datamining a AA (Above Average) kvantifikátor

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Datamining a AA (Above Average) kvantifikátor"

Transkript

1 Dtmining AA (Above Averge) kvntifikátor Jn Burin Lbortory of Intelligent Systems, Fculty of Informtics nd Sttistics, University of Economics, W. Churchill Sq. 4, Prgue, Czech Republic, Abstrkt. N zákldě frekvencí ze čtyřpolní kontingenční tbulky je definován AA kvntifikátor implementovný v GUHA proceduře 4ftMiner, která je součástí nlytického systému LISp-Miner. Je uveden motivční příkld. Dále je diskutován prvděpodobnostní interpretce AA kvntifikátoru. Nkonec jsou shrnuty vlstnosti AA kvntifikátoru možnosti jejich využití. 1 Úvod. Cíle obsh příspěvku. Jedním ze způsobů dobývání znlostí z dtbází je vyhledávání důležitých vzthů, které se týkjí vzthů dvou Booleovských tributů (čsto to jsou konjunkce literálů) derivovných z nlyzovné dtbáze. Mezi dvěm konjunkcemi literálů vytvořených z ktegorií tributů tbulky relční dtbáze, mohou existovt zjímvé vzthy (sociční prvidl), které je možno zkoumt n zákldě tk zvné čtyřpolní kontingenční tbulky (dále jen čtyřpolní tbulky). První skupinu literálů nzvěme ntecedent(zkráceně budeme oznčovt jko ϕ),druhou sukcedent (zkráceně budeme oznčovt jko ψ). čtyřpolní tbulk má v tkovém přípdě podobu: ψ ψ ϕ b ϕ c d Tbulk 1. čtyřpolní tbulk ϕ ψ Ve čtyřpolní tbulce reprezentuje počet (frekvenci) všech přípdů (záznmů), kdy je splněn jk ntecedent tk sukcedent. b je počet všech přípdů kdy je splněn ntecedent není splněn sukcedent tk dále. Zobecněný kvntifikátor odráží nějkou chrkteristiku vzthu mezi ntecedentem sukcedentem vypočítnou n zákldě frekvencí ze čtyřpolní tbulky vnějších prmetrů. Jedním z velmi prktických sndno interpretovtelných zobecněných kvntifikátorů je tkzvný AA kvntifikátor (Above Averge kvntifikátor). Tento příspěvek pojednává o motivci pro jeho zvedení, jeho interpretci vlstnostech. AA kvntifikátor byl implementován v proceduře 4ft-Miner (součást dtminingového systému LISp-Miner [7]), který prcuje n zákldě metody GUHA [4].

2 2 Motivce pro zvedení AA kvntidikátoru Asociční prvidl používná k nlýze dt procedurou 4ftMiner odrážejí souvislosti v dtech, le mohou být šptně interpretovtelná vzhledem k reálně existujícím vzthům ve světě. Vypovídcí schopnost socičních prvidel může být deformovná strukturou dt. Jedním z probémů při interpretci socičních prvidel může být, že ktegorie tributů mohou mít zcel nerovnoměrné zstoupení. Jko příkld vezměme dt zkoumná npř. v [6]. Jednlo se o medicínská dt (konkrétně dtbáze hypertoniků v rámci projektu EuroMISE [8]), kde záznmy v tbulce dtbáze předstvovl vyšetření tributy hodnoty sledovných chrkteristik vyšetření, mimo jiné tké měsíc ve kterém bylo vyšetření provedeno. Dejme tomu, že ntecedent bude předstvovt npříkld tlk pcient sukcedent měsíc vyšetření. Počet kontrol v jednotlivých měsících (sukcedent) znčně kolísá. Pk le bude npříkld vysoký tlk (stejně jko jiné hodnoty tlku) velmi zřídk zstoupen v měsících, kdy je počet kontrol mizivý (typicky letní měsíce - pcienti i lékři jsou n dovolených pod.). Jk by dopdl výsledek nlýzy pokud bychom použili jeden z klsických vzthů implemetovných v proceduře 4ftMiner ( vůbec ve všech GUHA procedurách), tk zvnou fundovnou implikci [4]? Definice 1. Mezi ntecedentem sukcedentem je vzth fundovnimplikce p,s (formule ϕ p,s ψ pltí) tehdy jen tehdy pokud pro 0 < p 1 s > 0 pltí +b p s. Prmetr s umožňuje zohlednit strukturu dt jen velmi hrubě. Proto od něj nyní odhlédneme. Pokud použijeme fundovnou implikci k nlýze dt, získáme spíše hypotézy (sociční prvidl) týkjící se souvislosti vysokého tlku s měsíci ve kterých bylo zznmenáno větší procento celkového počtu vyšetření. Konkrétně pro hodnotu p=0.1 bychom při průměrném rozložení počtu vyšetření n měsíc očekávli že bude nlezen vzth mezi vysokým tlkem 11. měsícem, ve kterém bylo zznmenáno 12, 68% procent všech vyšetření, méně už bychom to čekli u 12.měsíce ve kterém bylo zznmenáno 7, 71% procent všech vyšetření. A to už nemluvíme o letních měsících, kdy je procento všech zznmenných vyšetření menší než jedno procento. Nejvíce vyšetření s extrémní hodnotou bude nejspíše v tom období, kdy je nejvíce vyšetření obecně. Tedy smotný počet vyšetření s vysokou hodnotou tlku v jistém měsíci, nic neříká o tom, zd pcienti v tomto období skutečně mjí vyšší sklon mít vysoký tlk. Důvod je v tom, že fundovná implikce nezohledňuje podíl frekvence přípdů, kdy je pltný sukcedent (+c) k celkovému počtu vyšetření (+b+c+d). Pokud bychom chtěli generovt všechny pltné hypotézy (sociční prvidl) pro jistým způsobem prmetrizovnou skupinu tributů v ntecedentu sukcedentu (tk jk to umí pomocí tzv koeficientů npř. procedur 4ftTsk), pk

3 bychom pro smysluplnou nlýzu závislosti vysokého tlku pcientů v jistém měsíci, museli nlýzu provádět zvlášť pro všechny různé ktegorie sukcedentu (měsíce), pokždé s příslušným prmetrem p, který by odpovídl podílu počtu vyšetření v příslušném měsíci (+c) n celkovém počtu vyšetření (+b+c+d). Poznmenejme ještě, že pokud bychom změnili ntecedent sukcedent, situce se nezmění. Obecně může být tribut (či tributy) s více nerovnoměrně rozloženými hodnotmi jk v sukcedentu tk v ntecedentu. Vlivu nerovnoměrného rozložení hodnot nás zbví vhodně ndefinovný zobecněný kvntifikátor. Jedním z tkových kvntifikátorů je AA kvntifikátor. N rozdíl od kvntifikátorů, které provádějí operce ekvivlentní sttistickým testům (jko je F test či χ 2 test) je AA kvntifikátor výpočetně mnohem jednodušší. 3 AA kvntifikátor AA kvntifikátor reprezentuje tento fkt: Procento objektů které splňují ϕ i ψ z objektů které splňují ψ, je spoň (1 + p) krát větší než průměrné procento (procento objektů které splňují ϕ ze všech objektů v nlyzovné mtici dt). Definice 2. Pro kždou čtyřpolní tbulku, b, c, d pltí mezi ntecedentem sukcedentem vzth dný kvntifikátorem Above Averge tehdy pouze tehdy když: zároveň + b > 0 + c > 0 ( + b + c + d) ( + b) ( + c) (1+p) Prmetr p je definován v intervlu ( 1; + ). Poznámk 1: Výrz n levé strně nerovnice zmenšený o 1 nzýváme Averge difference. Poznámk 2: AA kvntifikátor je symetrický - je možno vzájemně změnit symboly b c. Vyjdřuje tedy i fkt: Procento objektů které splňují (mjí tribut) ψ i ϕ z objektů které splňují ϕ, je spoň (1 + p) krát větší než průměrné procento (procento objektů které splňují ψ ze všech objektů v nlyzovné mtici dt). Poznámk 3: V součsné verzi procedury 4ftMiner je možno prmetr p zdt pouze v intervlu (0; + ). Pro záporné hodnoty prmetru p není již název Above verge relevntní, neboť jsou generován i prvidl, pro něž procento objektů které splňují (mjí tribut) ψ i ϕ z objektů které splňují ϕ, je nižší než průměrné procento, le stále vyšší než procento dné prmetrem p. Poznámk 4: Obdobně jko AA kvntifikátor je definován k němu opčný BA kvntifikátor (Below Averge), který se liší znménkem nerovnosti v definici. Poznámk 5: V [6] je definován AA kvntifikátor pomocí tzv. sociovné fukkce. Její použití všk vyžduje zvedení tzv. 4FT klkulu viz npř [2], ten zde všk vzhledem k rozshu příspěvku nepoužijeme.

4 4 Prvděpodobnostní interpretce AA kvntifikátoru Obdobu AA kvntifikátoru definovl jko tk zvnou zjímvost (interestingness) Kodrtoff [5]. Kodrtoff zkouml různé chrkteristiky socičních prvidel n zákldě vzthů mezi prvděpodobnostmi podmíněnými prvděpodobnostmi sukcedentu (S) ntecedentu (A). K těmto vzthům se poté pokoušel nlézt odpovídjící lgebrický výrz sestvený z frekvencí obsžených ve čtyřpolní tbulce. Pro názornější ilustrci uveďme různé prvděpodobnosti týkjící se ntecedentu sukcedentu vyjádřené pomocí lgebrických výrzů sestvených z frekvencí obsžených ve čtyřpolní tbulce. P (A S) = + b + c + d + b P (A) = + b + c + d + c P (S) = + b + c + d P (S A) = + b P (A S) = + c Zjímvost (interestingness) reprezentuje tento vzth: P (A S) ( + b + c + d) = P (A) P (S) ( + b) ( + c) Vzth n prvé strně rovnice je pouze jink formulovný vzth z definice AA kvntifikátoru. Kodrtoff neuvádí, i když to z výše uvedeného vyplývá, že jeho zjímvost můžeme vyjádřit z pomocí podmíněných prvděpodobností tké jko: P (A S) P (A) = P (S A) P (S) Kodrtoff tké nezkoumá žádné dlší vlstnosti tohoto vzthu relevntní pro metodu GUHA. Prvděpodobnostní vyjádření je všk velmi prktické pro pochopení reálného upltnění AA kvntifikátoru. Pokud by veličiny, které předstvuje ntecedent sukcedent byly nvzájem zcel nezávislé, pk by A tedy P (A S) = P (A) P (S) P (A S) ( + b + c + d) = = 1 P (A) P (S) ( + b) ( + c) Zjímvost popisuje míru vzájemné závislosti ntecedentu sukcedentu. Hodnot zjímvosti vyšší než 1 znmená vzájemnou závislost ntecedentu sukcedentu v tom smyslu, že tyto mjí sklon vyskytovt se v jednom záznmu čstěji,

5 než při vzájemné nezávislosti (tedy ntecedent sukcedent se nvzájem přithují ). Nopk zjímvost menší než 1 znmená vzájemnou závislost ntecedentu sukcedentu v tom smyslu, že tyto mjí sklon vyskytovt se v jednozm záznmu méně čsto než při vzájemné nezávislosti (tedy ntecedent sukcedent se nvzájem odpuzují ). Pokud vztáhneme tuto prvděpodobnostní interpretci k prmetru p AA kvntifikátoru, tk jk jsme ho definovli v předchozí kpitole, pk npříkld: Hypotézy nlezené pro p=0.5 dávjí do vzthu ty ntecedenty sukcedenty, které jsou splněny zároveň v nejméně o 50% více záznmench, než by tomu bylo při jejich vzájmené nezávislosti. 5 Vlstnosti AA kvntifikátoru V [4] jsou definovány vlstnosti symetričnosti socičnosti zobecněných kvntifikátorů (třídy kvntifikátorů). V [6] jsou tyto vlstnosti definovány pomocí tzv. TPC (Truth preservtion condition). Ve [2] je pk definován F-vlstnost. Definice 3. Zobecněný kvntifikátor ptří do třídy socičních kvntifikátorů, jestliže pro kždé dvě čtyřpolní tbulky, b, c, d, b, c, d pltí: Pltí-li vzth dný kvntifikátorem pro čtyřpolní tbulku, b, c, d zároveň = b = c c = b d = d pk pltí tento vzth i pro čtyřpolní tbulku, b, c, d Definice 4. Zobecněný kvntifikátor ptří do třídy socičních kvntifikátorů, jestliže pro kždé dvě čtyřpolní tbulky, b, c, d, b, c, d pltí: Pltí-li vzth dný kvntifikátorem pro čtyřpolní tbulku, b, c, d zároveň b b c c d d pk pltí tento vzth i pro čtyřpolní tbulku, b, c, d Definice 5. Zobecněný kvntifikátor ptří do třídy kvntifikátorů s vlstností F, jestliže pro kždou čtyřpolní tbulku, b, c, d pltí: - Pltí-li vzth dný kvntifikátorem pro čtyřpolní tbulku, b, c, d zároveň b c 1 0, pk pltí i pro čtyřpolní tbulku, b + 1, c 1, d. - Pltí-li vzth dný kvntifikátorem pro čtyřpolní tbulku, b, c, d zároveň c b 1 0, pk pltí i pro čtyřpolní tbulku, b 1, c + 1, d. V [6] jsou dokázány tyto vlstnosti AA kvntifikátoru (respektive AA kvntifikátor ptří do těchto tříd kvntifikátorů): Vět 1. Vlstnosti AA kvntifikátoru: 1. AA kvntifikátor je symetrický. 2. AA kvntifikátor není sociční. 3. AA kvntifikátor má vlstnost F, ž n výjimku, kdy: Averge difference = 0 = 0 (b = 1 c = 1)

6 Poznmenejme, že mnoho dříve používných prktických kvntifikátorů ptřil do třídy socičních kvntifikátorů. Npříkld kvntifikátory implikční, dvojitě implikční, ekvivlenční td. viz npř. [2]. Je zjímvé, že některé z ekvivlenčních kvntifikátorů (npř. kvntifikátor prostého vychýlení Fisherův) ptří stejně jko AA kvntifikátor do třídy kvntifikátorů s vlstností F. 6 Závěr AA kvntifikátor byl implementován v GUHA proceduře 4ftMiner, která je součástí systému LispMiner. V rámci tohto systému je v součsnosti využíván npříkld při nlýzách medicínských dt v rámci projektu EuroMISE či nlýzách doprvních nehod (projekt Trffic). Zjištěné vlstnosti AA kvntifikátoru bude možno využít při hledání nových (třeb i složitějších - sttistické testy) kvntifikátorů vhodných pro implementci do systému pro dtmining n bázi hledání socičních prvidel. Vlstnosti AA kvntifikátoru byly použity ke zkoumání možností optimlizce nlytického softwre (npříkld systému LISp-Miner), npř. pomocí předpočítání tzv. tbulek kritických frekvencí [6]. English nottion: The AA quntifier implemetnted in GUHA procedure 4ftTsk (prt of nlyticl system LISp-Miner is defined.) A motivtion exmple illustrte its use. Then the probbilistic interprettion of AA quntifier is discussed. Finlly the properies of AA quntifier re resumed. Reference 1. Brchmn T. - Annd Y.: The Process of Knowledge Discovery in Dtbses. In Fyd, U. M. er l.: Asvnces in Knowledge Discovery in nd dt mining. AAAI Press/ The MIT Press, 1996, s Ruch, J.: Příspěvek k logickým zákldům KDD, hbilitiční práce, VŠE, Prh Ruch, J.: Clsses of Four Fold Tble Quntifiers. In Principles of Dt Mining nd Knowledge Discovery. Red. Zytkow, J - Quffou, M. Berlin, Springer Verlg 1998, pp Hájek, P., Hvránek T.: Mechnising Hypothesis Formtion - Mthemticl Foundtions for Generl Theory. Berlin - Heidelberg - New York, Springer-Verlg, Kodrtoff, I. :Compring mchine lerning nd knowwledge discovery in dtbses. On: Lecture Notes from Mchine Lerning nd Applictions, ACAI99, Chni, Vol Burin J.: Guh dtmining, od prxe k teorii zse zpět. Diplomová práce, VŠE, Prh Systém LISp-Miner, URL Evropské centrum pro medicínskou informtiku, sttistiku epidemiologii - Krdio, URL

Dobývání znalostí z databází (MI-KDD) Přednáška číslo 4 Asociační pravidla

Dobývání znalostí z databází (MI-KDD) Přednáška číslo 4 Asociační pravidla Dobývání znlostí z dtbází (MI-KDD) Přednášk číslo 4 Asociční prvidl (c) prof. RNDr. Jn Ruch, CSc. KIZI, Fkult informtiky sttistiky VŠE zimní semestr 2011/2012 Evropský sociální fond Prh & EU: Investujeme

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ Brnislv Lcko VUT v Brně, Fkult strojního inženýrství, Ústv utomtizce informtiky, Technická 2, 616 69 Brno, lcko@ui.fme.vutbr.cz Abstrkt Příspěvek podává

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013,

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, EVROPSKÁ KOMISE V Bruselu dne 30.4.2013 C(2013) 2420 finl NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, kterým se mění nřízení (ES) č. 809/2004, pokud jde o poždvky n zveřejňování

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

Psychologická metodologie. NMgr. obor Psychologie

Psychologická metodologie. NMgr. obor Psychologie Pržská vysoká škol psychosociálních studií, s.r.o. Temtické okruhy ke státní mgisterské zkoušce Psychologická metodologie NMgr. oor Psychologie 1 Vědecká teorie vědecká metod Vědecké vysvětlení, vědecký

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

SEMINÁŘ I Teorie absolutních a komparativních výhod

SEMINÁŘ I Teorie absolutních a komparativních výhod PODKLDY K SEMINÁŘŮM ŘEŠENÉ PŘÍKLDY SEMINÁŘ I eorie bsolutních komprtivních výhod Zákldní principy teorie komprtivních výhod eorie komprtivních výhod ve své klsické podobě odvozuje motivci k obchodu z rozdílných

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

Virtuální svět genetiky 1

Virtuální svět genetiky 1 Chromozomy obshují mnoho genů pokud nejsou rozděleny crossing-overem, pk lely přítomné n mnoh lokusech kždého homologního chromozomu segregují jko jednotk během gmetogeneze. Rekombinntní gmety jsou důsledkem

Více

Cílem tohoto textu je shrnout teorii do jediného celku. Text také nabízí oporu v oblastech, které jsou

Cílem tohoto textu je shrnout teorii do jediného celku. Text také nabízí oporu v oblastech, které jsou MATMATIKA (NJN) PRO KRAJINÁŘ A NÁBYTKÁŘ Robert Mřík 26. říjn 2012 KAT. MATMATIKY FAKULTA LSNICKÁ A DŘVAŘSKÁ MNDLOVA UNIVRZITA V BRNĚ -mil ddress: mrik@mendelu.cz URL: user.mendelu.cz/mrik ABSTRAKT. Předkládný

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

II. termodynamický zákon a entropie

II. termodynamický zákon a entropie Přednášk 5 II. termodynmický zákon entropie he lw tht entropy lwys increses holds, I think, the supreme position mong the lws of Nture. If someone points out to you tht your pet theory of the universe

Více

MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinaci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR

MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinaci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR ŘÍJEN 2014 MINISTERSTVO PRO MÍSTNÍ ROZVOJ Odbor řízení

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

Gaussovská prvočísla

Gaussovská prvočísla Středoškolská odborná činnost 2005/2006 Obor 01 mtemtik mtemtická informtik Gussovská rvočísl Autor: Jkub Oršl Gymnázium Brno, tř. Kt. Jroše 14, 658 70 Brno, 4.A Konzultnt ráce: Mgr. Viktor Ježek (Gymnázium

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí.

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí. 10. Nebezpečné dotykové npětí zásdy volby ochrn proti němu, ochrn živých částí. Z hledisk ochrny před nebezpečným npětím rozeznáváme živé neživé části elektrického zřízení. Živá část je pod npětím i v

Více

teorie elektronických obvodů Jiří Petržela zpětná vazba, stabilita a oscilace

teorie elektronických obvodů Jiří Petržela zpětná vazba, stabilita a oscilace Jiří Petržel zpětná vzb, stbilit oscilce zpětná vzb, stbilit oscilce zpětnou vzbou (ZV) přivádíme záměrněčást výstupního signálu zpět n vstup ZV zásdně ovlivňuje prkticky všechny vlstnosti dného zpojení

Více

Podmínky externí spolupráce

Podmínky externí spolupráce Podmínky externí spolupráce mezi tlumočnicko překldtelskou genturou Grbmüller Jzykový servis předstvující sdružení dvou fyzických osob podniktelů: Mrek Grbmüller, IČO: 14901820, DIČ: CZ6512231154, místo

Více

DOBÝVÁNÍ ZNALOSTÍ Z DATABÁZÍ PŘÍKLADY APLIKACÍ V KARDIOLOGICKÝCH DATECH Jan Rauch

DOBÝVÁNÍ ZNALOSTÍ Z DATABÁZÍ PŘÍKLADY APLIKACÍ V KARDIOLOGICKÝCH DATECH Jan Rauch DOBÝVÁNÍ ZNALOSTÍ Z DATABÁZÍ PŘÍKLADY APLIKACÍ V KARDIOLOGICKÝCH DATECH Jan Rauch Anotace: Příspěvek obsahuje základní informace o dobývání znalostí jakožto důležité disciplíně informatiky a ukazuje příklady

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

3.4.3 Množiny bodů dané vlastnosti I

3.4.3 Množiny bodů dané vlastnosti I 3.4.3 Množiny odů dné vlstnosti I Předpoldy: 3401 Něteé z těchto množin už známe. J je definován užnice ( ; )? Množin všech odů oviny, teé mjí od středu vzdálenost. Předchozí vět znmená dvě věci: Vzdálenost

Více

Příručka k portálu. Katalog sociálních služeb v Ústeckém kraji. socialnisluzby.kr-ustecky.cz

Příručka k portálu. Katalog sociálních služeb v Ústeckém kraji. socialnisluzby.kr-ustecky.cz Příručk k portálu Ktlog sociálních služeb v Ústeckém krji socilnisluzby.kr-ustecky.cz Uživtelská příručk k portálu socilnisluzby.kr-ustecky.cz 0 BrusTech s.r.o. Všechn práv vyhrzen. Žádná část této publikce

Více

Příprava žáků k přijímacím zkouškám z matematiky na střední školu. Preparing students for entrance exams in mathematics at high school

Příprava žáků k přijímacím zkouškám z matematiky na střední školu. Preparing students for entrance exams in mathematics at high school Technická univerzit v Liberci FAKULTA PŘÍRODOVĚDNĚHUMANITNÍ A PEDAGOGICKÁ Ktedr: Studijní progrm: Studijní obor: Ktedr mtemtiky didktiky mtemtiky N750 Učitelství pro zákldní školy Učitelství fyziky pro.

Více

Regulace f v propojených soustavách

Regulace f v propojených soustavách Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny

Více

PÍSEMNÁ ZPRÁVA ZADAVATELE. "Poradenství a vzdělávání při zavádění moderních metod řízení pro. Město Klimkovice

PÍSEMNÁ ZPRÁVA ZADAVATELE. Poradenství a vzdělávání při zavádění moderních metod řízení pro. Město Klimkovice PÍSEMNÁ ZPRÁVA ZADAVATELE pro zjednodušené podlimitní řízení n služby v rámci projektu Hospodárné odpovědné město Klimkovice, reg. č. CZ.1.04/4.1.01/89.00121, který bude finncován ze zdrojů EU "Pordenství

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

visual identity guidelines Česká verze

visual identity guidelines Česká verze visul identity guidelines Česká verze Osh 01 Filosofie stylu 02 Logo 03 Firemní rvy 04 Firemní písmo 05 Vrice log 06 Komince rev Filosofie stylu Filozofie společnosti Sun Mrketing vychází ze síly Slunce,

Více

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004.

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004. STÁLÁ UŽITNÁ ZTÍŽENÍ ČSN EN 1991-1-1 (Eurokód 1): Ztížení konstrukcí Objemové tíhy, vlstní tíh užitná ztížení pozemních stveb. Prh : ČNI, 004. 1. Stálá ztížení stálé (pevné) ztížení stvebních prvků zhrnuje

Více

Ke schválení technické způsobilosti vozidla je nutné doložit: Musí být doložen PROTOKOL O TECHNICKÉ KONTROLE? ANO NE 10)

Ke schválení technické způsobilosti vozidla je nutné doložit: Musí být doložen PROTOKOL O TECHNICKÉ KONTROLE? ANO NE 10) ÚTAV INIČNÍ A MĚTKÉ DPRAVY.s., Prh 4,Chodovec, Türkov 1001,PČ 149 00 člen skupiny DEKRA www.usmd.cz,/ Přehled zákldních vrint pltných pro dovoz jednotlivých vozidel dle zákon č.56/2001b. ve znění zákon

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla)

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla) KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 23TVVM hoogenizce (sěšovcí prvidl) Hoogenizce Stvební teriály sou z hledisk zstoupení doinntních složek několikfázové systéy: Dvoufázové trice, vzduch (póry)

Více

Základy vyšší matematiky(nejen) pro arboristy. Robert Mařík

Základy vyšší matematiky(nejen) pro arboristy. Robert Mařík Zákldy vyšší mtemtiky(nejen) pro rboristy Robert Mřík 2.září2014 Ústv mtemtiky lesnická dřevřská fkult Mendelov univerzit v Brně E-mil ddress: mrik@mendelu.cz URL: user.mendelu.cz/mrik Podpořeno projektem

Více

grafický manuál květen 2004 verze 1.0

grafický manuál květen 2004 verze 1.0 květen 2004 verze 1.0 grfický mnuál Úvodní slovo Tento dokument slouží jko mnuál pro používání log Fondu soudržnosti. Součástí mnuálu je i zákldní grfický design pro tištěné elektronické mteriály sloužící

Více

Český jazyk a literatura

Český jazyk a literatura Český jzyk litertur Chrkteristik předmětu Předmět je rozdělen n tři disciplíny literární výchovu, jzykovou výchovu ční slohovou výchovu, které tvoří svébytné celky, le zároveň jsou ve výuce čsto propojovány.

Více

NAVRHOVÁNÍ BETONOVÝCH MOSTŮ PODLE EUROKÓDU 2 ČÁST 2 MOSTY Z PŘEDPJATÉHO BETONU

NAVRHOVÁNÍ BETONOVÝCH MOSTŮ PODLE EUROKÓDU 2 ČÁST 2 MOSTY Z PŘEDPJATÉHO BETONU POZVÁNKA A ZÁVAZNÁ PŘIHLÁŠKA DOPORUČENO PRO AUTORIZOVANÉ OSOBY SLEVY: AO ČKAIT 10 %, ČBS 20 %, AO+ČBS 30 % PŘI ÚČASTI NA 5. NEBO 6. BĚHU ŠKOLENÍ EC2-1 DALŠÍ SLEVA 5 % Ktedrou betonových zděných konstrukcí

Více

Konvence Integrovaného dopravního systému Libereckého kraje (IDOL) Účastníci Konvence:

Konvence Integrovaného dopravního systému Libereckého kraje (IDOL) Účastníci Konvence: Konvence Integrovného doprvního systému Libereckého krje (IDOL) Účstníci Konvence: KORID LK, spol. s r.o. Liberecký krj Město Česká Líp Město Jblonec nd Nisou Sttutární město Liberec Město Turnov České

Více

Hilbertův prostor. Kapitola 5. 5.1 Základní vlastnosti

Hilbertův prostor. Kapitola 5. 5.1 Základní vlastnosti Kpitol 5 Hilbertův prostor 5.1 Zákldní vlstnosti Historická poznámk 5.1.1. Prostor X se sklárním součinem je strukturou n lineárnímprostorus nejsilnějšími xiomy.jetonormovnýlineárníprostor,vněmžje norm

Více

Věstník MINISTERSTVA ZDRAVOTNICTVÍ ČESKÉ REPUBLIKY OBSAH: 1. Oznámení o termínu konání zkoušky o odborné způsobilosti k výkonu odborného

Věstník MINISTERSTVA ZDRAVOTNICTVÍ ČESKÉ REPUBLIKY OBSAH: 1. Oznámení o termínu konání zkoušky o odborné způsobilosti k výkonu odborného Věstník Ročník 2009 MINISTERSTVA ZDRAVOTNICTVÍ ČESKÉ REPUBLIKY Částk 3 Vydáno: 20. KVĚTNA 2009 Cen: 101 Kč OBSAH: 1. Oznámení o termínu konání zkoušky o odborné způsobilosti k výkonu odborného dohledu

Více

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy Fzikální kbinet GmKT Gmnázium J. Vrchlického, Kltov stženo z http:kbinet.zik.net Optické přístroje Subjektivní optické přístroje - vtvářejí zánlivý (neskutečný) obrz, který pozorujeme okem (subjektivně)

Více

Stanovení disociační konstanty acidobazického indikátoru. = a

Stanovení disociační konstanty acidobazického indikátoru. = a Stnovení disociční konstnty cidobzického indikátoru Teorie: Slbé kyseliny nebo báze disociují ve vodných roztocích jen omezeně; kvntittivní mírou je hodnot disociční konstnty. Disociční rekci příslušející

Více

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 5. Konstruke trojúhelníků Konstruke trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 1. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit

Více

Zhoubný novotvar ledviny mimo pánvičku v ČR

Zhoubný novotvar ledviny mimo pánvičku v ČR Aktuální informce Ústvu zdrvotnických informcí sttistiky České repuliky Prh 8.1.2004 1 Zhouný novotvr ledviny mimo pánvičku v ČR Počet hlášených onemocnění zhouným novotvrem ledviny mimo pánvičku (dg.

Více

1. Vznik zkratů. Základní pojmy.

1. Vznik zkratů. Základní pojmy. . znik zkrtů. ákldní pojmy. E k elektrizční soustv, zkrtový proud. krt: ptří do ktegorie příčných poruch, je prudká hvrijní změn v E, je nejrozšířenější poruchou v E, při zkrtu vznikjí přechodné jevy v

Více

ALGEBRA, ROVNICE A NEROVNICE

ALGEBRA, ROVNICE A NEROVNICE ALGEBRA, ROVNICE A NEROVNICE Gymnázium Jiřího Wolker v Prostějově Výukové mteriály z mtemtiky pro nižší gymnázi Autoři projektu Student n prhu 1. století - využití ICT ve vyučování mtemtiky n gymnáziu

Více

Studijní materiál PASCAL

Studijní materiál PASCAL Obsh Studijní mteriál PASCAL /76 Obsh Obsh Algoritmus 5 Vlstnosti lgoritmu 5 Metod návrhu lgoritmu 5 3 Rekurzivní lgoritmy 5 4 Překldč jeho struktur 6 4 Druhy překldčů 6 4 Hlvní části překldče 6 Jzyk Pscl

Více

S M L O U V A O S M L O U VĚ BUDOUCÍ. Níže uvedeného dne, měsíce a roku byla uzavřena mezi těmito smluvními stranami: obchodní společnost se sídlem:

S M L O U V A O S M L O U VĚ BUDOUCÍ. Níže uvedeného dne, měsíce a roku byla uzavřena mezi těmito smluvními stranami: obchodní společnost se sídlem: Níže uvedeného dne, měsíce roku byl uzvřen mezi těmito smluvními strnmi: obchodní společnost se sídlem: IČ: DIČ: zpsná zstoupen (dále jen jko budoucí strn prodávjící ) v obchodním rejstříku vedeném, oddíl,

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA PEDAGOGICKÁ Ktedr sociálních studií speciální pedgogiky Studijní progrm: Studijní oor: Kód ooru: Sociální práce Sociální prcovník 7502R022 Název klářské práce: NÁHRADNÍ

Více

NAŘÍZENÍ EVROPSKÉHO PARLAMENTU A RADY (ES)

NAŘÍZENÍ EVROPSKÉHO PARLAMENTU A RADY (ES) NAŘÍZENÍ EVROPSKÉHO PARLAMENTU A RADY (ES) č. 178/2002 ze dne 28. ledn 2002, kterým se stnoví obecné zásdy poždvky potrvinového práv, zřizuje se Evropský úřd pro bezpečnost potrvin stnoví postupy týkjící

Více

Národní centrum výzkumu polárních oblastí

Národní centrum výzkumu polárních oblastí Národní centrum výzkumu polárních oblstí Dohod o spolupráci při výzkumu polárních oblstí Země Msrykov univerzit Žerotínovo nám. 9, 601 77 Brno, IČ 00216224, zstoupená rektorem Prof. PhDr. Petrem Filou,

Více

Úvod 1. Pojetí canisterapie 1.1 Zvířata lidem 1.2 Vznik canisterapie ve světě 1.3 Rozvoj canisterapie v ČR 1.4 Metody a formy canisterapie

Úvod 1. Pojetí canisterapie 1.1 Zvířata lidem 1.2 Vznik canisterapie ve světě 1.3 Rozvoj canisterapie v ČR 1.4 Metody a formy canisterapie Obsh Úvod 1. Pojetí cnisterpie 1.1 Zvířt lidem 1.2 Vznik cnisterpie ve světě 1.3 Rozvoj cnisterpie v ČR 1.4 Metody formy cnisterpie 1. Shrnutí 2. Zákldní terminologie indikce cnisterpie v sociální práci

Více

Úvod do politiky soudržnosti EU pro období 2014-2020

Úvod do politiky soudržnosti EU pro období 2014-2020 Úvod do politiky EU pro období 2014-2020 Politik Červen 2014 Co je politik? Politik je hlvní investiční politik EU Cílí n všechny měst v Evropské unii. Jejím cílem je podpor vytváření prcovních míst, konkurenceschopnosti

Více

Molekulární genetika II. Ústav biologie a lékařské genetiky 1.LF UK a VFN, Praha

Molekulární genetika II. Ústav biologie a lékařské genetiky 1.LF UK a VFN, Praha Molekulární genetik Ústv biologie lékřské genetiky.lf UK VFN, Prh Polymorfismy lidské DN vyu ívné ve vzebné nlýze, p ímé nep ímé dignostice Mikrostelity (syn. krátké tndemové repetice) STR short tndem

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šblony Mendelov střední škol, Nový Jičín NÁZEV MATERIÁLU: Trojúhelník zákldní pozntky Autor: Mgr. Břetislv Mcek Rok vydání: 2014 Tento projekt je spolufinncován

Více

Kapitola 1. Formální jazyky. 1.1 Formální abeceda a jazyk. Cíle kapitoly: Cíle této části: Klíčová slova: abeceda, slovo, jazyk, operace na jazycích

Kapitola 1. Formální jazyky. 1.1 Formální abeceda a jazyk. Cíle kapitoly: Cíle této části: Klíčová slova: abeceda, slovo, jazyk, operace na jazycích Kpitol 1 Formální jzyky Cíle kpitoly: Po prostudování kpitoly máte plně rozumět pojmům jko(formální) beced, slovo, jzyk, operce n slovech jzycích; máte zvládt práci s těmito pojmy n prktických příkldech.

Více

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ Níže uvedeného dne, měsíce roku uzvřeli: KOPPA, v.o.s., se sídlem Mozrtov 679/21, 460 01 Liberec, ustnovená prvomocným Usnesením č.j. KSUL 44 INS 5060/2014-A-13, ze dne 04. dubn 2014, insolvenčním správcem

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

SPS SPRÁVA NEMOVITOSTÍ

SPS SPRÁVA NEMOVITOSTÍ SMLOUVA O REZERVACI POZEMKU A SMLOUVA O BUDOUCÍ SMLOUVĚ O DÍLO Níže uvedeného dne, měsíce roku uzvřeli: 1. EURO DEVELOPMENT JESENICE, s.r.o., IČ 282 44 451, se sídlem Ječná 550/1, Prh 2, PSČ 120 00, zpsná

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

PŘÍBALOVÁ INFORMACE: INFORMACE PRO UŽIVATELE. Betahistin Mylan 8 mg Betahistin Mylan 16 mg tablety (betahistini dihydrochloridum)

PŘÍBALOVÁ INFORMACE: INFORMACE PRO UŽIVATELE. Betahistin Mylan 8 mg Betahistin Mylan 16 mg tablety (betahistini dihydrochloridum) Sp.zn. sukls56597/2012, sukls56641/2012 PŘÍBALOVÁ INFORMACE: INFORMACE PRO UŽIVATELE Bethistin Myln 8 mg tblety (bethistini dihydrochloridum) Přečtěte si pozorně celou příblovou informci dříve, než zčnete

Více

Monitorování zbytkové vlhkosti do -90 C td

Monitorování zbytkové vlhkosti do -90 C td Budoucnost zvzuje Monitorování zbytkové vlhkosti do -90 C td Nový senzor, odolný proti kondenzci s technologií sol-gel Nejvyšší poždvky n tlkový vzduch Monitorování zbytkové vlhkosti předchází poškození

Více

Stavební firma. Díky nám si postavíte svůj svět. 1.D Klára Koldovská Šárka Baronová Lucie Pancová My Anh Bui

Stavební firma. Díky nám si postavíte svůj svět. 1.D Klára Koldovská Šárka Baronová Lucie Pancová My Anh Bui Stvební firm Díky nám si postvíte svůj svět. 1.D Klár Koldovská Šárk Bronová Lucie Pncová My Anh Bui Obsh 1) Úvod 2) Přesvědčení bnky 3) Obchodní jméno, chrkteristik zákzník, propgce 4) Seznm mjetku 5)

Více

E V R O P S K Á Ú M L U V A O K R A J I NĚ

E V R O P S K Á Ú M L U V A O K R A J I NĚ E V R O P S K Á Ú M L U V A O K R A J I NĚ Sdělení Ministerstv zhrničníh věí č. 13/2005 S.m.s. Ministerstvo zhrničníh věí sděluje, že dne 20. říjn 2000 yl ve Florenii přijt Evropská úmluv o krjině. Jménem

Více

Porovnání výsledků analytických metod

Porovnání výsledků analytických metod Metdický lit 1 EURCHEM-ČR 212 Editr: Zbyněk Plzák (plzk@iic.c.cz) Prvnání výledků nlytických metd Chrkterizce výknnti nlytické měřící metdy je jedním z důležitých znků nlytickéh měřicíh ytému, zejmén pr

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

Vážené dámy, vážení pánové,

Vážené dámy, vážení pánové, 2013 2011 ÚVODNÍ SLOVO Dr. Pvel Doležl ředitel Zlté koruny Vážené dámy, vážení pánové, devátý loni oslvil ročník Zltá soutěže korun opět deset potvrdil, let že letošním Zltá korun ročníkem má tk n českém

Více

5. Učební osnovy. 5. 1 Vzdělávací oblast Jazyk a jazyková komunikace

5. Učební osnovy. 5. 1 Vzdělávací oblast Jazyk a jazyková komunikace 5. Učební osnovy 5. 1 Vzdělávcí oblst Jzyk jzyková komunikce 5. 1. 1 Chrkteristik vzdělávcí oblsti Vzdělávcí oblst Jzyk jzyková komunikce je relizován v povinných vyučovcích předmětech český jzyk litertur,

Více

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26 Zákld mtemtik Číselé oor ČÍSELNÉ OBORY 0 Některé pojm z mtemtické logik 0 Výroková logik 0 Moži vzth mezi imi Možiové operce Grfické zázorěí moži Číselé oor Čísl ázv jejich chrkteristik Chrkteristik číselých

Více

NAŘÍZENÍ EVROPSKÉHO PARLAMENTU A RADY (ES) č. 853/2004. ze dne 29. dubna 2004,

NAŘÍZENÍ EVROPSKÉHO PARLAMENTU A RADY (ES) č. 853/2004. ze dne 29. dubna 2004, NAŘÍZENÍ EVROPSKÉHO PARLAMENTU A RADY (ES) č. 853/2004 ze dne 29. dubn 2004, kterým se stnoví specifické hygienické předpisy pro potrviny živočišného původu REGULATION (EC) No 853/2004 OF THE EUROPEAN

Více

Smlouva o partnerství s finančním příspěvkem uzavřená podle 1746 odst. 2 zákona č. 89/2012 Sb., občanský zákoník

Smlouva o partnerství s finančním příspěvkem uzavřená podle 1746 odst. 2 zákona č. 89/2012 Sb., občanský zákoník Smlouv o prtnerství s finnčním příspěvkem uzvřená podle 1746 odst. 2 zákon č. 89/2012 Sb., občnský zákoník Článek I Smluvní strny PROFIMEDIA s.r.o. sídlo: tříd Spojenců 550/18, 74601 Opv - Předměstí zpsná

Více

Využití shlukové analýzy a metody hlavních komponent při identifikaci faktorů ovlivňující přijetí IFRS pro SME

Využití shlukové analýzy a metody hlavních komponent při identifikaci faktorů ovlivňující přijetí IFRS pro SME Trendy ekonomiky mngementu / Trends Economics nd Mngement Využití shlukové nlýzy metody hlvních komponent při identifikci fktorů ovlivňující přijetí IFRS pro SME The Use of Cluster Anlysis nd Principl

Více

Věta (princip vnořených intervalů). Jestliže pro uzavřené intervaly I n (n N) platí I 1 I 2 I 3, pak

Věta (princip vnořených intervalů). Jestliže pro uzavřené intervaly I n (n N) platí I 1 I 2 I 3, pak Reálná čísl N přirozená čísl: {,, 3, } Z celá čísl: {, ±, ±, ±3, } Q rcionální čísl: { b : Z, b N} R reálná čísl C komplení čísl: { + jy :, y R}, j R \ Q ircionální čísl, π, e, ) Tvrzení Mezi kždými dvěm

Více

2004R0853 CS 28.10.2008 004.001 1

2004R0853 CS 28.10.2008 004.001 1 2004R0853 CS 28.10.2008 004.001 1 Tento dokument je třeb brát jko dokumentční nástroj instituce nenesou jkoukoli odpovědnost z jeho obsh B NAŘÍZENÍ EVROPSKÉHO PARLAMENTU A RADY (ES) č. 853/2004 ze dne

Více

DOTAZNÍK. (Stav k 31. březnu v 24 hodin) KRUH SČÍTANIA OBYVATELSTVÍ BYTŮ. Datum narozeni. ženatý/vdaná. vdovec/vdova. rozvedený/rozvedená

DOTAZNÍK. (Stav k 31. březnu v 24 hodin) KRUH SČÍTANIA OBYVATELSTVÍ BYTŮ. Datum narozeni. ženatý/vdaná. vdovec/vdova. rozvedený/rozvedená CHORVÁTSKA REPUBLIKA STÁTNÍ STATISTICKÝ ÚŘÁD DOTAZNÍK (Stv k 31. březnu v 4 hodin) Formulář P-1 Všechny údje v tomto formuláři jsou úředním tjemstvím budou použité jenom n sttistické účely. 1. Příjmení

Více

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ Níže uvedeného dne, měsíce roku uzvřeli: se sídlem: Koterovská 633/29, 326 00 Plzeň, ustnovený prvomocným Usnesením č.j. KSPL 54 INS 378/2012-A-19 ze dne 29.3.2012, insolvenčním správcem dlužník:. prvomocným

Více

ČÁST 2 Hlavy A, B a C JAR-FCL 3 IEM FCL 3, A, B & C PŘÍRUČKA CIVILNÍHO LETECKÉHO LÉKAŘSTVÍ JAA

ČÁST 2 Hlavy A, B a C JAR-FCL 3 IEM FCL 3, A, B & C PŘÍRUČKA CIVILNÍHO LETECKÉHO LÉKAŘSTVÍ JAA ČÁST 2 Hlvy A, B C JAR-FCL 3 IEM FCL 3, A, B & C PŘÍRUČKA CIVILNÍHO LETECKÉHO LÉKAŘSTVÍ JAA KAPITOLA 1 VŠEOBECNĚ - KONCEPCE ZDRAVOTNÍ ZPŮSOBILOSTI K LÉTÁNÍ, LETECKO LÉKAŘSKÉ VYŠETŘENÍ, KONCEPCE HODNOCENÍ

Více

Stabilita atomového jádra. Radioaktivita

Stabilita atomového jádra. Radioaktivita Stbilit tomového jádr Rdioktivit Proton Kldný náboj.67 0-7 kg Stbilní Atomové jádro Protony & Neutrony Neutron Bez náboje.67 0-7 kg Dlouhodobě stbilní jen v jádře Struktur jádr A Z N A nukleonové číslo

Více

5(*,21È/1Ë 9='ċ/È9$&Ë 67ě(',6.2 2%/$671Ë 6720$72/2*,&.e.2025< 9 2/2028&, 1$%Ë'.$ 9='ċ/È9$&Ë&+ $.&Ë 2015

5(*,21È/1Ë 9='ċ/È9$&Ë 67ě(',6.2 2%/$671Ë 6720$72/2*,&.e.2025< 9 2/2028&, 1$%Ë'.$ 9='ċ/È9$&Ë&+ $.&Ë 2015 2015 www.stom.cz 1. pololetí: 1. 1. - 30. 6. 2015 PZL 10: OŠETŘENÍ RIZIKOVÉHO PACIENTA, FOKÁLNÍ INFEKCE, ZÁKLADY FARMAKOLOGIE V PRAXI ZUBNÍHO LÉKAŘE MUDr. Vldimír Ščigel, Ph.D., MBA Termín: 16. 1. 2015

Více

Referenční příručka pro instalační techniky

Referenční příručka pro instalační techniky Referenční příručk pro instlční techniky Tepelné čerpdlo země/vod Dikin Altherm Referenční příručk pro instlční techniky Tepelné čerpdlo země/vod Dikin Altherm češtin Osh Osh 1 Všeoecná ezpečnostní optření

Více

ZAHRADA SLEDOVÁNÍ REAKCÍ POMOCÍ SYNCHROTRONOVÉHO ZÁŘENÍ JAKO JEDINEČNÝ ZDROJ PŘESNÝCH ENERGETICKÝCH ÚDAJŮ O REAKCÍCH V PLYNNÉ FÁZI

ZAHRADA SLEDOVÁNÍ REAKCÍ POMOCÍ SYNCHROTRONOVÉHO ZÁŘENÍ JAKO JEDINEČNÝ ZDROJ PŘESNÝCH ENERGETICKÝCH ÚDAJŮ O REAKCÍCH V PLYNNÉ FÁZI ZAHRADA SLEDOVÁNÍ REAKCÍ POMOCÍ SYNCHROTRONOVÉHO ZÁŘENÍ JAKO JEDINEČNÝ ZDROJ PŘESNÝCH ENERGETICKÝCH ÚDAJŮ O REAKCÍCH V PLYNNÉ FÁZI JANA ROITHOVÁ,b DETLEF SCHRÖDER b Univerzit Krlov v Prze, Přírodovědecká

Více

Odpověď. konkurenci domácnosti firmy stát a. makroekonomie mikroekonomie mezinárodní ekonomie. Co? Jak? Pro koho? Proč? d

Odpověď. konkurenci domácnosti firmy stát a. makroekonomie mikroekonomie mezinárodní ekonomie. Co? Jak? Pro koho? Proč? d Přijímcí řízení kdemický rok 2012/2013 Kompletní znění testových otázek ekonomický přehled 1 Koš Znění otázky Odpověď Odpověď Odpověď Odpověď Správná ) ) c) d) odpověď 1. 1 Mezi ekonomické sujekty trhu

Více

Veganství máme v rodině Příběhy českých veganských rodin

Veganství máme v rodině Příběhy českých veganských rodin Vegnství máme v rodině Příběhy českých vegnských rodin Úvod Obsh V roce 2013 se v Brně zčly prvidelně setkávt vegnské rodiny. Smyslem těchto setkání byl výměn zkušeností informcí mezi rodiči (těmi, kteří

Více

NAŘÍZENÍ EVROPSKÉHO PARLAMENTU A RADY (ES) č. 853/2004 ze dne 29. dubna 2004 stanovující zvláštní hygienické předpisy pro potraviny živočišného původu

NAŘÍZENÍ EVROPSKÉHO PARLAMENTU A RADY (ES) č. 853/2004 ze dne 29. dubna 2004 stanovující zvláštní hygienické předpisy pro potraviny živočišného původu nřízení (ES) č. 853/2004 NAŘÍZENÍ EVROPSKÉHO PARLAMENTU A RADY (ES) č. 853/2004 ze dne 29. dubn 2004 stnovující zvláštní hygienické předpisy pro potrviny živočišného původu (Úřední věstník Evropské unie

Více

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e M t i c e v e s t ř e d o š k o l s k é m t e m t i c e P t r i k K v e c k ý M e d e l o v o g y m á z i u m v O p v ě S t u d i j í m t e r i á l - M t i c e v e s t ř e d o š k o l s k é m t e m t i

Více

GIS v památkové péči Historická geografie Začínáme s ArcGIS Online. informace pro uživatele software Esri a ENVI

GIS v památkové péči Historická geografie Začínáme s ArcGIS Online. informace pro uživatele software Esri a ENVI GIS v pmátkové péči Historická geogrfie Zčínáme s ArcGIS Online informce pro uživtele softwre Esri ENVI 2 20 13 Nskočte do ArcGIS Online S progrmem Jumpstrt pro ArcGIS Online se sndno rychle stnete správcem

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE

MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE Rd měst Kopřivnice PŘÍLOHA č. 1 k č. j.: 57545/2012/KnD ČÍSLA USNESENÍ: 1883-1895 ZPRACOVATEL: Dniel Knpková Usnesení z 63. schůze Rdy měst Kopřivnice ze dne 27.11.2012

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

01-09.7 10.14.CZ Zpětné ventily a zpětné uzavíratelné ventily ZV 226 a ZV 236

01-09.7 10.14.CZ Zpětné ventily a zpětné uzavíratelné ventily ZV 226 a ZV 236 01-09.7 10.14.CZ Zpětné ventily zpětné uzvírtelné ventily ZV 226 ZV 26-1- ZV 226 ZV 26 Zpětné ventily zpětné uzvírtelné ventily 15 ž 200, PN 16, 25 Popis Zpětné ventily ZV 2x6 jsou smočinné uzávěry s vynikjícími

Více

Základní pravidla pro psaní

Základní pravidla pro psaní Zákldní prvidl pro psní 1. Zákldní principy Je nutné volit typ písm který je vhodný pro příslušný druh dokumentu. Celý dokument by měl být pokud možno sáen jednoho typu popř. jedné rodiny písm nebo lespoň

Více

smlouvu o složení finanční částky do advokátní úschovy Níže uvedeného dne, měsíce a roku uzavřeli

smlouvu o složení finanční částky do advokátní úschovy Níže uvedeného dne, měsíce a roku uzavřeli Níže uvedeného dne, měsíce roku uzvřeli 1. Zdeněk Berntík, nr. 14.5.1954 Jrmil Berntíková, nr. 30.12.1956 ob bytem Stroveská 270/87, Ostrv-Proskovice ob jko Smluvní strn 1 2. Tělovýchovná jednot Petřvld

Více

Vydala Nadace na ochranu zvířat. Projekt Pes ve městě je realizován s finančním přispěním hlavního města prahy a mč praha 4.

Vydala Nadace na ochranu zvířat. Projekt Pes ve městě je realizován s finančním přispěním hlavního města prahy a mč praha 4. ydl Ndce n ochrnu zvířt. Projekt Pes ve městě je relizován s finnčním přispěním hlvního měst prhy mč prh 4. Obsh: Destero soužití lidí psů Než si pořídíte ps neb důležité úvhy předem....................

Více

Město Třinec Strategický plán města Třince pro období 2014-2020

Město Třinec Strategický plán města Třince pro období 2014-2020 Strtegický plán měst Třince pro období 20142020 Tr inec fjne mı sto pro z ivot Leden 2014 Obsh Vize rozvoje měst... 4 I Oborová koncepce Doprv... 6 1 Stručná nlýz oblsti Doprvy... 7 1.1 Interpretce problémového

Více

SCIENTIFIC REFLECTION OF NEW TRENDS IN MANAGEMENT

SCIENTIFIC REFLECTION OF NEW TRENDS IN MANAGEMENT POLICEJNÍ AKADEMIE ČESKÉ REPUBLIKY V PRAZE AKADÉMIA POLICAJNÉHO ZBORU V BRATISLAVE pořádjí ČTVRTOU VIRTUÁLNÍ VĚDECKOU KONFERENCI s mezinárodní účstí SCIENTIFIC REFLECTION OF NEW TRENDS IN MANAGEMENT PRAHA

Více

ZATÍŽENÍ KRUHOVÝCH ŠACHET PROSTOROVÝM ZEMNÍM TLAKEM

ZATÍŽENÍ KRUHOVÝCH ŠACHET PROSTOROVÝM ZEMNÍM TLAKEM ZATÍŽENÍ KRUHOVÝCH ŠACHET PROSTOROVÝM ZEMNÍM TLAKEM Ing. Michl Sedláček, Ph.D. ko-k s.r.o., Thákurov 7, Prh 6 Sptil erth pressure on circulr shft The pper present method for estimtion sptil erth pressure

Více