Poznámky k tématu Korelace a jednoduchá lineární regrese (Téma není ve skriptech)

Rozměr: px
Začít zobrazení ze stránky:

Download "Poznámky k tématu Korelace a jednoduchá lineární regrese (Téma není ve skriptech)"

Transkript

1 Pozámk k tématu Koelace a jedoduchá leáí egee (Téma eí ve kptech) Mějme data, ),...,(, ), kteá jou áhodým výběem z ějaké populace. Data ted pokládáme za ezávlé ealzace dvojce áhodých velč ( X, Y ). Půmě a měodaté odchlk dat jou x, a. x, Kovaace mez oběma velčam v oubou je defováa jako cov, ) = ( x x) ( ). = Rozptl (vaace) je kovaace velč e ebou amou. Kovaace záví a jedotkách, v jakých jou data vjádřea. Koelačí koefcet (též Peaoův koelačí koefcet) dotaeme z kovaace zomováím : cov, ) =. x Koelačí koefcet je bezozměý a abývá hodot od do +. (Neí defovaý, pokud ěkteá ze měodatých odchlek ve jmeovatel je ulová, tj. kdž jeda z velč je v oubou kotatí.) Hodot ebo + koelačí koefcet abývá pouze v případě, že všecha data (př zobazeí pomocí x-bodového gafu) leží přeě a přímce. (Zaméko koelačího koefcetu pak záví a tom, jetl přímka má kladý, ebo zápoý klo.) Koelačí koefcet je míou kocetace dat kolem přímk (kokétě kolem egeí přímk taoveé metodou ejmeších čtveců vz dále) ebo jým lov míou (leáí) závlot mez velčam. Příklad: Data (=) koelačím koefcetem,99; -,9; -,7; -,5; -,5; ; +,5; +,5; +,7; +,9; +,

2 V Excelu počítají Peaoův koelačí koefcet fukce CORREL a PEARON a také átoj Aalýza dat. Koelačí koefcet vpočteý z empckých dat je apoxmací (bodovým odhadem) ezámého koelačího koefcetu ρ mez týmž velčam v populac. Čato e tetuje ulová hpotéza H : ρ =, tj. hpotéza, že tudovaé velč jou tzv. ekoelovaé. (Ne zcela přeě e říká, že jou ezávlé. Nezávlé velč jou vžd také ekoelovaé, ale obáceě to platt emuí. Jemotm jako je ozdíl mez ezávlotí a ekoelovaotí e ovšem ebudeme podobě zabývat.) Podíváme e a oboutaý tet alteatví hpotéza je H A : ρ a ulová hpotéza e zamítá př velké kladé zápoé koelac. (Extují také jedotaé tet.) Tetová tattka má tva T =. Pokud tudovaé velč mají omálí ozděleí, má tetová tattka T za předpokladu platot ulové hpotéz tudetovo ozděleí t tup volot. Nulová hpotéza e poto a hladě výzamot α zamítá (tj. koelačí koefcet e pohláí za tattck výzamě odlšý od ), pokud abolutí hodota T překočí ktckou hodotu ( α / ) -kvatl ozděleí t. (Po α =, 5 e jedá o 97,5% kvatl, kteý e po velké blíží,9.) Příklad - hlad mléčé kel (v mg a ml) v kv matek a dětí: matka dítě Vchází =,95 a odtud T = 5,7. Ktcká hodota a hladě α =, 5 je,975-kvatl ozděleí t, tj.,78 (vpočte e apř. pomocí excelovké fukce TINV). Můžeme případě (apř. v Excelu pomocí fukce TDIT) vpočítat p-hodotu tetu (doažeou hladu výzamot) vchází p =,. Koelace mez hladou mléčé kel u matk a dítěte je ted a hladě 5 % ( %) tattck výzamě odlšá od ul (tučěj: koelace je tattck výzamá). Ve tattckých tabulkách e dají ajít také ktcké hodot přímo po př ůzém počtu dat ( e př použtí takových tabulek emuí přepočítávat a T). Tak po = e uvádí po ktcká hodota,8. (Koelace,95 v ašem příkladu tuto hac překačuje.) Po větší je ktcká hodota daleko žší, apř. po = 5 je koelace tattck výzamá a hladě 5 % jž př >,79. Tetováí, jetl koelace eí ulová, eí zdaleka jedá úloha o koelačích koefcetech, kteou umí tattka řešt dá e apř. tetovat ulová hpotéza, že koelace ρ je ova ějaké eulové kotatě ebo lze po ρ etojt kofdečí teval. Těmto dalším úloham e však zabývat ebudeme. Peaoův koelačí koefcet ěkd eí deálím átojem po všetřováí íl závlot mez velčam. Důvod mohou být áledující: tudovaé velč emají omálí ozděleí. V datech jou odlehlé hodot (přdáí č odtaěí jedého odlehlého pozoováí může apoto změt). Mez tudovaým velčam lze předpokládat vztah, kteý je ce mootóí (čím větší x, tím většou větší ; popř. aopak), ale e leáí ( datový oblak je kocetovaý kolem křvk, kol přímk). Data jou vou povahou odálí. (Peaoův koelačí koefcet pak emá dobý ml.) V takových tuacích e hodí použít peamaův (pořadový) koelačí koefcet (říká e také peamaův koefcet koelace pořadí). Te e vpočte tak, že e původí data (zvlášť x a

3 zvlášť ) ahadí pořadím podle velkot (př hodě dvou č více hodých datech e pořadí způměuje) a z takto zíkaých dat (pořadí) e vpočte Peaoův koelačí koefcet. V předchozím příkladu b to vpadalo takto: matka pořadí mez matkam dítě pořadí mez dětm peamaův koelačí koefcet mez hladou mléčé kel matk a dítěte dotaeme jako občejý (Peaoův) koelačí koefcet mez. a. loupcem tabulk. Vchází =,9. Hpotéza, že koelace pořadí je (v populac) ulová, e tetuje jým (ložtějším) způobem ež aalogcká hpotéza o Peaoově koelačím koefcetu. Pokud emáme k dpozc pogam, kteý vpočte p-hodotu, dají e po malé použít tabulk ktckých hodot po. Po áš případ = uvádějí tabulk ktckou hodotu po a hladě 5 % ovou,89 (míto,8 po ). Po větší ěkd e dopoučuje už od =, učtě po e ale ktcké hodot po a lší velm málo (apř. př = je o cca,), takže tet po lze, až bchom e doputl velké chb, povádět úplě tejě jako tet po. Excel pecálí átoj a výpočet emá. počítat pořadí podle velkot (v ašem příkladu. a. loupec tabulk) e dá pomocí fukce RANK alepoň v případě, že ve loupc dat ejou žádé dvě hodot tejé. (Pokud b e apř.. a. ejmeší čílo hodovalo, potřebujeme oběma čílům přřadt pořadí,5, ale fukce RANK učí po obě číla pořadí. Evetuálí hod je třeba vhledat a pořadí vpočteé fukcí RANK upavt.) Dále e a vpočteé pořadí použje fukce po výpočet Peaoova koelačího koefcetu. Koelačí koefcet vjadřuje, jak těý je (leáí) vztah mez dvěma velčam, ale eříká, jaká je kokétí podoba takového vztahu, apř. jaká hodota zhuba příluší daé hodotě x. Takovým úloham e ve tattce zabývá egeí aalýza. Všmeme je ejjedodušší úloh egeí aalýz, tzv. jedoduché leáí egee. Ta e týká leáí závlot jedé poměé tzv. závle poměé (též vvětlovaé poměé, egeadu aj.) a jedé ezávle poměé (též vvětlující poměé, egeou atp.). V úloze jedoduché leáí egee chceme data, ),...,(, ) položt egeí přímkou tvau = a + b x, ted ajít pávé hodot koefcetů a, b takové přímk. Koefcet a e azývá úek a oe, popř. tecept, koefcet b je klo (popř. měce) egeí přímk. (Aglck e těmto koefcetům říká tecept a lope.) Data, jakým e v medcíě etkáváme, zpavdla umožňují vjádřt závlot a x pomocí přímk pouze přblžě. Pacujeme poto obvkle egeí ovcí = a + b x + e, kde komě dat a koefcetů egeí přímk fguuje také chba e. Chbu e lze zapat také jako e = a + b x ). Odtud vdíme, že vjadřuje, o kolk e egeí přímka etefla do bodu (, ) o kolk výše ebo íže egeí přímka pobíhá. (Vzdáleot mez bodem a přímkou e v tomto případě měří ve vlém měu e tak, jak jme zvklí apř. ze tředoškolké geomete, tj. ve měu kolmce puštěé z bodu a přímku.) O chbách e, e, K, e e obvkle předpokládá, že jou hodotam (ealzacem) ezávlých áhodých velč, kteé mají vemě omálí ozděleí ulovou tředí hodotou a ezámým ozptlem σ. Co jou pávé hodot koefcetů a, b, bchom mohl defovat ejůzějším způob, a každé takové defc b odpovídala ějaká přímka položeá dat. Nejběžější způob

4 pokládáí přímk dat ovšem předtavuje metoda ejmeších čtveců: Každá volba číel a, b učuje (po kokétí data x, ),...,(, ) ) -tc chb e, e, K, e, a té odpovídá oučet ( čtveců chb e. Metoda ejmeších čtveců volí ze všech možých hodot koefcetů a, b = takové, kteé dávají ejmeší možý oučet čtveců chb. To, že používáme metodu ejmeších čtveců, aštětí ezameá, že bchom kutečě muel ložtě řešt optmalzačí úlohu mmalzace oučtu čtveců chb. Z ktéa ejmeších čtveců e dají matematck odvodt jedoduché vzoce, do kteých tačí jeom doadt. Použjeme-l tejé začeí půměů, měodatých odchlek a koelace vpočteých z dat, ),...,(, ) jako v předcházejícím textu, dá e klo egeí přímk taoveé metodou ejmeších čtveců vjádřt vzocem b =. x Vzoec po a pak lze pamatovat podle toho, že egeí přímka pochází bodem, ) : a = b x. V Excelu tto vzoce ealzují apř. fukce LOPE a INTERCEPT ebo átoj Aalýza dat, popř. lze ovc egeí přímk zobazt jako oučát x-bodového gafu. Po dříve uvedeá data (hlad mléčé kel v kv matek a dětí), máme (x je hlada u matk, u dítěte) x =,5, = 5,, = 7,, = 5, 9 a =,95, takže dotáváme 5,9 b =,95 =,85, a = 5,,85,5 =,. 7, Gaf z Excelu dat a egeí přímkou může vpadat áledově: x Kocetace kel mléčé v kv matk a dítěte 5 =,85x -,8 dítě 5 7 matka Čato e tetuje hpotéza, že klo egeí přímk v populac (mohl bchom ho začt apř. B; koefcet b je jeho bodovým odhadem) je ulový (tj. že závle poměá a x faktck ezáví). Tetová tattka tohoto tetu e v lteatuře zapuje v ůzém tvau, ale důležté je, že koefcet b je tattck výzamě odlšý od ul pávě tehd, kdž je tattck výzamě od Je po zajímavot: Extují jé možot ež metoda ejmeších čtveců. V ěkteých aplkacích e apř. používá egeí přímka taoveá tak, ab bl ejmeší možý medá abolutích hodot chb. Výhodou takové egeí přímk obecě odlšé od přímk etojeé metodou ejmeších čtveců je to, že a její půběh emají velký vlv odlehlá pozoováí. Výpočet koefcetů takové egeí přímk je dot áočý, ale a ozdíl od dob před ěkolka deítkam let e a oučaých počítačích paktck povét dá.

5 ul odlšý (a téže hladě výzamot) koelačí koefcet. tačí ted tetovat výzamot. Případě e dá použít také opačý tk tetovat koelac pomocí egee. Např. átoj Aalýza dat v Excelu, zvolíme-l koelac, je počítá koelačí koefcet, ale epovede žádý tet. Zvolíme-l ovšem míto koelace ege, dotaeme tet hpotéz o ulovém klou egeí přímk, jehož výledek (kde e ajde: vz dokumet o výpočtech) e vztahuje a koelac. V čát tohoto textu věovaé koelačímu koefcetu blo bez hlubšího zdůvoděí řečeo, že koelačí koefcet je míou kocetace dat kolem (egeí) přímk. Toto tvzeí e dá v kotextu leáí egee zdůvodt áledujícím způobem. Předtavme, že máme data, ),...,(, ), po kteá e hodí model jedoduché leáí egee. Kdž potřebujeme tpout hodotu u ějakého objektu, o kteém c evíme (pecálě ezáme hodotu velč x), ezbude ám c lepšího ež použít půmě. Čím větší je ozptl, tím mlhavější fomac o kokétí hodotě u daého objektu půmě podává. Jým lov, emáme-l žádou pomocou fomac, kteá b o hodotě ěco apověděla, je míou ejtot o. Kdbchom u ového objektu zal x a opět měl hodotu tpovat, mohl bchom jako odhad použít a + b x. Tetokát b míou ejtot o už ebl celkový ozptl, ale ozptl chb (ebol egeích ezduí) e,, e K, e, tzv. ezduálí ozptl. ouvlot mez kocetací dat kolem egeí přímk a ezduálím ozptlem je evdetí. Co to má polečého koelací? Mez celkovým ozptlem, ezduálím ozptlem a koelačím koefcetem platí vztah e =, což e také dá zapat jako e =. Čtatel zlomku a levé taě e říká ozptl vvětleý vaabltou ebo tučěj vvětleý ozptl. Vvětleý ozptl udává, o kolk e zmeší ejtota o tím, že záme x. Duhá moca koelačího koefcetu, tzv. koefcet detemace, tak říká, jak velká čát celkového ozptlu závle poměé e dá vvětlt (ep. odtat) a základě zalot hodot ezávle poměé x. Lze to vjádřt gafck (dole je uvedeo, jakou čát celkového ozptlu jedotlvé ložk předtavují ): e celkový ozptl vvětleý ozptl ezduálí ozptl V čeké vez Excelu je to je jeda z mohých překladatelkých peel e míto koefcet detemace říká polehlvot. Kdo e ebojí vzoců, může všmout, že pomě délek dvou čátí úečk má moho polečého tetovou tattkou T uvedeou a. taě tohoto textu.

9.3.5 Korelace. Předpoklady: 9304

9.3.5 Korelace. Předpoklady: 9304 935 Koelace Předpoklad: 9304 Zatím jsme se zabýval vžd pouze jedím zakem, ve statstckém výzkumu jsme však u každého jedotlvce (statstcké jedotk) sledoval zaků více Učtě spolu ěkteé zak souvsí (apříklad

Více

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor 1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců

Více

Dvourozměrná tabulka rozdělení četností

Dvourozměrná tabulka rozdělení četností ANALÝZA ZÁVILOTÍ - zouáí závlot dvou evet více poěých, ěřeí íl této závlot, atd - cíle je hlubší vutí do podtat ledovaých jevů a poceů, přblížeí tzv příčý ouvlote Dvouozěá tabula ozděleí četotí - je eleetáí

Více

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení. MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je

Více

Téma 3: Popisná statistika

Téma 3: Popisná statistika Popá tatta Téma : Popá tatta Předáša 7 Záladí tattcé pojmy Pojem a úoly tatty Statta je věda, teá e zabývá zíáváím, zpacováím a aalýzou dat po potřeby ozhodováí. Zoumá tav a vývoj homadých jevů a vztahů

Více

Odhady a testy hypotéz o regresních přímkách

Odhady a testy hypotéz o regresních přímkách Lekce 3 Odhad a tet hpotéz o regreích přímkách Ve druhé lekc jme kotruoval kofdečí terval a formuloval tet hpotéz o korelačím koefcetu Korelačí koefcet je metrckou charaktertkou tezt závlot, u které ezáleží

Více

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC 5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém

Více

Úvod do korelační a regresní analýzy

Úvod do korelační a regresní analýzy Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

} kvantitativní znaky

} kvantitativní znaky Měřeí tattcké závlot, korelace, regree Obecé prcpy závlot vzájemá ouvlot měřeých zaků Prof. RNDr. Jaa Zvárov rová,, DrSc. fukčí závlot x tattcká závlot átroje pro měřeí závlot leár rí regree korelace }

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

Momenty a momentové charakteristiky

Momenty a momentové charakteristiky Lekce 3 Momety a mometové charaktertky Pokud jme e v předešlém výkladu zmňoval o ěkteré tattcké charaktertce, zpravdla jme rověž uváděl, zda j řadíme mez více ebo méě důležté. A byly to právě artmetcký

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

Testování statistických hypotéz

Testování statistických hypotéz Tetováí tatitických hypotéz CHEMOMETRIE I, David MILDE Jedá e o jedu z ejpoužívaějších metod pro vyloveí závěrů o základím ouboru, který ezkoumáme celý, ale pomocí áhodého výběru. Př.: Je obah účié látky

Více

3. cvičení 4ST201 - řešení

3. cvičení 4ST201 - řešení cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 - řešeí Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků).

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků). Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě Dvojvzková tererece teké vrtvě Předpokládejme, vl o mpltudě dvou delektrk tk, že mpltud održeé vly bude o dexu lomu bude t (vz obr. DI-1). v protředí

Více

a q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0)

a q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0) ..9 Úlohy geometickou poloupotí Předpokldy: 0, 0 Pedgogická pozámk: Při řešeí příkldů potupujeme tk, by Ti ejpomlejší počítli lepoň příkldy,,,. Souh vzoců pvidel po geometickou poloupot: + - pozávcí zmeí

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

8.2.7 Vzorce pro geometrickou posloupnost

8.2.7 Vzorce pro geometrickou posloupnost 7 Vzoce po geometicou poloupot Předpoldy: 0, 0 Př : Po geometicou poloupot pltí ; q Uči čle, iž by učovl Mohli bychom pomocí vzoce po -tý čle učit čle p pomocí tejého vzoce učit i Teto potup je ložitější

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

[ jednotky ] Chyby měření

[ jednotky ] Chyby měření Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá

Více

Aktivita 1 Seminář základů statistiky a workshop (Prof. Ing. Milan Palát, CSc., Ing. Kristina Somerlíková, Ph.D.)

Aktivita 1 Seminář základů statistiky a workshop (Prof. Ing. Milan Palát, CSc., Ing. Kristina Somerlíková, Ph.D.) Aktvta Semář základů tattky a workhop (Prof. Ig. Mla Palát, CSc., Ig. Krta Somerlíková, Ph.D.) Stattcké tříděí Základí metoda tattckého zpracováí. Sekupováí hodot proměé, které jou z hledka klafkačího

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

9. REGRESNÍ A KORELAČNÍ ANALÝZA

9. REGRESNÍ A KORELAČNÍ ANALÝZA Pravděpodobot a tattka 9. REGRESNÍ A KORELAČNÍ ANALÝZA Průvodce tudem V předchozí kaptole jme uvedl způob, jak popat leárí závlot mez dvěma argumety a její míru. Užtím korelačích poměrů je možé zjtt, zda

Více

,6 32, ,6 29,7 29,2 35,9 32,6 34,7 35,3

,6 32, ,6 29,7 29,2 35,9 32,6 34,7 35,3 Př 7: S 95% polehlivotí odhaděte variabilitu (protředictvím odhadu měrodaté odchylky) a tředí hodotu obahu vitamíu C u rajčat. Záte-li výledky rozboru 0-ti vzorků rajčat: 3 4 5 6 7 8 9 0 9,6 3,4 30 3,6

Více

Přehled vztahů k problematice jednoduchého úročení a úrokové sazby

Přehled vztahů k problematice jednoduchého úročení a úrokové sazby Přehled vztahů k poblematice jedoduchého úočeí a úokové sazby Pozámka: Veškeé úokové sazby /předlhůtí i polhůtí/, diskotí sazby, míy iflace a sazby daě z příjmů je do uvedeých vzoců uto dosazovat v jejich

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

ARITMETICKÉ POSLOUPNOSTI s-tého STUPNĚ. Daniela Bittnerová

ARITMETICKÉ POSLOUPNOSTI s-tého STUPNĚ. Daniela Bittnerová The Mthemtc Educto to the t Cetury Project Proceedg of the Itertol Coferece The Decdble d the Udecdble Mthemtc Educto Bro, Czech Republc, September 00 ARITMETICKÉ POSLOUPNOSTI -TÉHO STUPNĚ Del Btterová

Více

Statistické charakteristiky (míry)

Statistické charakteristiky (míry) Stattcé charaterty (míry) - hrují formac, obažeou v datech (vyjadřují j v ocetrovaé formě); - charaterzují záladí ryy zoumaého ouboru dat; - umožňují porováváí více ouborů. upy tattcých charatert :. charaterty

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

11 TESTOVÁNÍ HYPOTÉZ. Čas ke studiu kapitoly: 360 minut. Cíl

11 TESTOVÁNÍ HYPOTÉZ. Čas ke studiu kapitoly: 360 minut. Cíl TESTOVÁNÍ HYPOTÉZ Ča ke tudu kaptoly: 36 mut Cíl Po potudováí tohoto odtavce budete: zát základí pojmy a pcpy tetováí hypotéz zát kocepc klackého tetu umět ozhodovat pomocí čtého tetu výzamot umět pooudt

Více

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i : ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru

Více

FINANČNÍ MATEMATIKA- INFLACE

FINANČNÍ MATEMATIKA- INFLACE ojekt ŠABLONY NA GVM Gymázum Velké Mezříčí egstačí číslo pojektu: CZ..7/.5./34.948 V- ovace a zkvaltěí výuky směřující k ozvoj matematcké gamotost žáků středích škol FNANČNÍ MATEMATA- NFLACE Auto Jazyk

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Beta faktor a ekvitní prémie z cizího trhu: přenositelnost a statistická spolehlivost

Beta faktor a ekvitní prémie z cizího trhu: přenositelnost a statistická spolehlivost Beta fakto a ekvtí péme z czího thu: přeostelost a statstcká spolehlvost Veze 15. 4. 014 chal Dvořák Abstakt Cílem textu je lustovat že český buzoví th eobsahuje dostatečý počet ttulů ke koektímu staoveí

Více

Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu

Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu Směrce /0 Stattcké vyhodocováí dat, verze 4 Verze 4 e hodá e Směrcí /0 verze 3, ouze byla rozšířea o robutí aalýzu. Stattcké metody ro zkoušeí zůoblot Cílem tattcké aalýzy výledků zkoušek ř zkouškách zůoblot

Více

11 TESTOVÁNÍ PARAMETRICKÝCH HYPOTÉZ

11 TESTOVÁNÍ PARAMETRICKÝCH HYPOTÉZ TESTOVÁNÍ PARAMETRICKÝCH HYPOTÉZ Pojmem tetováí tatitických hypotéz ozaujeme ozhodováí o pavdivoti paametických, ep. epaametických hypotéz o populaci. V tomto ozhodovacím poceu opoti ob tojí ulová a alteativí

Více

INŽENÝRSKÁ GEODÉZIE I

INŽENÝRSKÁ GEODÉZIE I VYSOKÉ UČENÍ TECHNICKÉ V RNĚ FKULT STVENÍ OTKR ŠVÁENSKÝ LEXEJ VITUL JIŘÍ UREŠ INŽENÝRSKÁ GEODÉZIE I GE6 MODUL 0 ZÁKLDY INŽENÝRSKÉ GEODÉZIE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRMY S KOMINOVNOU FORMOU STUDI

Více

a) Hypotézy o parametru jedné populace (o stední hodnot, mediánu, rozptylu, relativní

a) Hypotézy o parametru jedné populace (o stední hodnot, mediánu, rozptylu, relativní TESTOVÁNÍ HYPOTÉZ a ke tudu kaptoly: 8 mut Cíl Po protudováí tohoto odtavce budete: zát základí pojmy a prcpy tetováí hypotéz zát kocepc klackého tetu umt rozhodovat pomocí tého tetu výzamot umt pooudt

Více

Lineární regrese ( ) 2

Lineární regrese ( ) 2 Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující

Více

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru

Více

P1: Úvod do experimentálních metod

P1: Úvod do experimentálních metod P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu

Více

Téma 5: Analýza závislostí

Téma 5: Analýza závislostí Aalýza závlotí Téma 5: Aalýza závlotí Předáša 5 Závlot mez ev Záladí pom Předmětem této aptol ude zoumáí závlotí ouvlotí mez dvěma a více ev. Jedá e o proutí do vztahů mez ledovaým ev a tím přlížeí tzv.

Více

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0).

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0). ČÍSELNÉ VEKTORY Defce Uspořádou -tc čísel = (,,, ) zveme číselým vektoem Čísl,,, jsou složky ebol souřdce vektou Přozeé číslo zýváme ozměem ebo tké dmezí vektou Defce Vekto, jehož všechy složky se ovjí

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Základy korelační analýzy

Základy korelační analýzy Základy koelačí aalýzy Doposud jsme se z hlediska biostatistiky zabývali hodoceím spojitých a diskétích áhodých veliči v jedé ebo více odlišitelých expeimetálích skupiách. Tato kapitola představuje úvod

Více

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY Jméo: Petr Česák Datum měřeí:.3.000 Studjí rok: 999-000, Ročík: Datum odevzdáí: 6.3.000 Studjí skupa: 5 Laboratorí skupa:

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvaltěí výuky prostředctvím IC éma III..3 echcká měřeí v MS Excel Pracoví lst 5 Měřeí teploty. Ig. Jří Chobot VY_3_INOVACE_33_5 Aotace Iovace a zkvaltěí

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DA prof. Ig. Jří Holčík, CSc. INVESICE Isttut DO bostatstky ROZVOJE VZDĚLÁVÁNÍ a aalýz IV. LINEÁRNÍ KLASIFIKACE pokračováí Isttut bostatstky a aalýz (SUPPOR VECOR MACHINE SVM) SEPARABILNÍ

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

3. cvičení 4ST201. Míry variability

3. cvičení 4ST201. Míry variability cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry varablty

Více

1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE

1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE V této kaptole se dozvíte: jak je oecě defováa kolmost (ortogoalta) vektorů; co rozumíme ortogoálí a ortoormálí ází; co jsou to tzv relace ortoormalty a Croeckerovo delta;

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP Záko velkých čísel, cetrálí lmtí věta PRAVDĚPODOBNOST A STATISTIKA Lbor Žák SP Záko velkých čísel, cetrálí lmtí věta Lbor Žák Kovergece podle pravděpodobost Posloupost áhodých proměých,,,, koverguje

Více

Univerzita Karlova Přírodovědecká fakulta Katedra analytické chemie

Univerzita Karlova Přírodovědecká fakulta Katedra analytické chemie Uivezit ov Příodovědecká fkut ted ytické chemie Sttitické vyhodoceí výedků Picip: Výedky opkových zkoušek, kteé jou ztížey áhodými chybmi, mjí učité ozděeí (ditibuci). Rozděeím e zde ozumí záviot pvděpodoboti

Více

K čemu slouží regrese?

K čemu slouží regrese? REGRESE K čemu slouží regrese? C = Ca + c. Y C = 00 + 0,6. Y + e Budeme zjišťovat jak jeda proměá (ezávislá) Ovlivňuje jiou proměou (závislou) C Y 950 1000 910 150 1130 1500 1150 1750 1475 000 1550 50

Více

Spolehlivost a diagnostika

Spolehlivost a diagnostika Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

stavební obzor 1 2/2014 11

stavební obzor 1 2/2014 11 tavebí obzor /04 Exploratorí aalýza výběrového ouboru dat pevoti drátobetou v tlau Ig. Daiel PIESZKA Ig. Iva KOLOŠ, Ph.D. doc. Ig. Karel KUBEČKA, Ph.D. VŠB-TU Otrava Faulta tavebí Věrohodé vyhodoceí experimetálích

Více

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl:

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl: 9 ÁHODÉ VÝBĚR A JEJICH ZPRACOVÁÍ Čas ke studu katol: 30 mut Cíl: Po rostudováí tohoto odstavce budete rozumět ojmům Základí soubor, oulace, výběr, výběrové šetřeí, výběrová statstka a budete zát základí

Více

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2 Iterpolace pomocí sple křvky dáo: bodů v rově úkol: alézt takovou křvku, která daým body prochází y f f 2 f 0 f x0 x... x 2 x x Iterpolace pomocí sple křvky evýhodou polyomálí terpolace změa ěkterého z

Více

8.2.1 Aritmetická posloupnost I

8.2.1 Aritmetická posloupnost I 8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu

Více

Základy optického zobrazení

Základy optického zobrazení Základy optickéo zobazeí. Zákoy geometické optiky Záko odazu větla (ob. ) ři dopadu věteléo papku a ozaí dvou ůzýc potředí dojde k jejic čátečému ebo úplému odazu. dažeý papek zůtává v oviě dopadu (oviě

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

Úvod do teorie měření

Úvod do teorie měření Uverzta Jaa Evagelsty Purkyě v Ústí ad Labem Přírodovědecká fakulta Úvod do teore měřeí Prof. Chlář emář 0 Průměr, rozptyl a směrodatá odchylka X = X = ( X X ) = = = Výpočty pomocí vzorců a pomocí statstckých

Více

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá Statitická šetřeí a zpracováí dat Statitika e věda o metodách běru, zpracováí a vyhodocováí tatitických údaů. Statitika zkoumá polečeké, přírodí, techické a. evy vždy a dotatečě rozáhlém ouboru údaů. Matematická

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

Jednoduchá lineární závislost

Jednoduchá lineární závislost Jedoduchá leárí závlot Regreí fuce: ),...,, ( 0 m f Předpolad: Fuce je leárí v parametrech: ) (... ) 0 ( 0 f f m m f 0 ()... f m () regreor 0... m regreí parametr určujeme METODOU NEJMENŠÍCH ČTVERCŮ Regreí

Více

Geometrická optika. Optická soustava

Geometrická optika. Optická soustava Optcká outv Geometcká optk oubo optckýc pvků (čoček, olů, zcdel, plplelíc deek, dělčů vzku, dkčíc jýc pvků), kteé jou vzájem upořádáy učtým způobem tk, by optcká outv plňovl dé yzkálí geometcké poždvky

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 25. srpen 2013 Název zpracovaného celku: STATISTIKA ZÁKLADNÍ POJMY

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 25. srpen 2013 Název zpracovaného celku: STATISTIKA ZÁKLADNÍ POJMY Předmět: Ročík: Vytvořl: Datum: MATEMATIKA ČTVRTÝ Mg Tomáš MAŇÁK 5 pe 03 Název zpacovaého celku: STATISTIKA ZÁKLADNÍ POJMY STATISTIKA ZÁKLADNÍ POJMY Stattka e věda o metodách běu (pozoováí, měřeí, vážeí,

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

Chyby přímých měření. Úvod

Chyby přímých měření. Úvod Chyby přímých měřeí Úvod Př zjšťováí velkost sledovaé velčy dochází k růzým chybám, které ovlvňují celkový výsledek. V pra eestuje žádá metoda měřeí a měřcí zařízeí, které by bylo absolutě přesé, což zameá,

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

10 - Přímá vazba, Feedforward

10 - Přímá vazba, Feedforward 0 - Přímá vazba, Feedforward Michael Šebek Automatické řízeí 03 4--3 Motivace (FF podle Atroma) Automatické řízeí - Kberetika a robotika Už máme avržeu zpětovazebí čát Chceme zajitit přeo referece rový

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

Finanční management. Co je inflace? Reálný a nominální diskont. Zahrnutí inflace do výpočtu NPV

Finanční management. Co je inflace? Reálný a nominální diskont. Zahrnutí inflace do výpočtu NPV Fačí maageme Zahuí flace do výpoču NPV Co je flace? defce měřeí pomocí CPI, PPI, defláou eálá a omálí velča měřeí v peěžích jedokách ebo v kupí síle běžé a sálé cey Reálý a omálí dsko zaedbáme-l daě (Fshe):

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

Strojové učení. Things learn when they change their behavior in a way that makes them perform better in a future. (Witten, Frank, 1999) typy učení:

Strojové učení. Things learn when they change their behavior in a way that makes them perform better in a future. (Witten, Frank, 1999) typy učení: Strojové učeí The feld of mache learg s cocered wth the questo of how to costruct computer programs that automatcally mprove wth eperece. (Mtchell, 1997) Thgs lear whe they chage ther behavor a way that

Více

T e c h n i c k á z p r á v a. Pokyn pro vyhodnocení nejistoty měření výsledků kvantitativních zkoušek. Technická zpráva č.

T e c h n i c k á z p r á v a. Pokyn pro vyhodnocení nejistoty měření výsledků kvantitativních zkoušek. Technická zpráva č. Evropská federace árodích asocací měřcích, zkušebích a aalytckých laboratoří Techcká zpráva č. /006 Srpe 006 Poky pro vyhodoceí ejstoty měřeí výsledků kvattatvích zkoušek T e c h c k á z p r á v a EUROLAB

Více

Chyby měření: 1. hrubé chyby - nepozornost, omyl, únava pozorovatele... - významně převyšuje rozptyl náhodné chyby 2. systematické chyby - chybné

Chyby měření: 1. hrubé chyby - nepozornost, omyl, únava pozorovatele... - významně převyšuje rozptyl náhodné chyby 2. systematické chyby - chybné CHYBY MĚŘENÍ Opakovaé měřeí téže fyzkáí večy evede vždy k přesě stejým výsedkům. Této skutečost bychom se evyhu, kdybychom měřeí provádě s ejvětší důkadostí a precsostí aopak, čím ctvější a přesější jsou

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

1 STATISTICKÁ ŠETŘENÍ

1 STATISTICKÁ ŠETŘENÍ STATISTICKÁ ŠETŘENÍ Záladem aždého tattcého zoumáí jou údaje (data). Lze je zíat v záadě dvěma způoby. Buď je převzít z ějaého zdroje ebo je am zjtt. Seudárí data údaje, teré převezmeme z růzých zdrojů;

Více

5. Posloupnosti a řady

5. Posloupnosti a řady Matematická aalýza I předášky M. Málka cvičeí A. Hakové a R. Otáhalové Zimí semestr 2004/05 5. Poslouposti a řady 5.1 Limita a hromadé hodoty. Mějme posloupost x ) prvků Hausdorffova topologického prostoru

Více

Směrnice 1/2011 Statistické vyhodnocování dat, verze 3 Verze 3 je shodná s původní Směrnicí 1/2011 verze 2, za čl. 2.3 je vložen nový odstavec

Směrnice 1/2011 Statistické vyhodnocování dat, verze 3 Verze 3 je shodná s původní Směrnicí 1/2011 verze 2, za čl. 2.3 je vložen nový odstavec Směrice /0 Statitické vyhodocováí dat, verze 3 Verze 3 e hodá ůvodí Směricí /0 verze, za čl..3 e vlože ový odtavec. Statitické metody ro zkoušeí zůobiloti Statitická aalýza oužívaá ro aalýzu výledků zkoušky

Více

Struktura a architektura počítačů

Struktura a architektura počítačů Struktur rchtektur počítčů Číselé soustvy Převody me soustvm, kódy Artmetcké operce České vysoké učeí techcké Fkult elektrotechcká Ver J Zděek 3 Polydcké číselé soustvy (počí) Hodot čísl v soustvě se ákldem

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

APLIKOVANÁ STATISTIKA

APLIKOVANÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4

Více