9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl:

Rozměr: px
Začít zobrazení ze stránky:

Download "9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl:"

Transkript

1 9 ÁHODÉ VÝBĚR A JEJICH ZPRACOVÁÍ Čas ke studu katol: 30 mut Cíl: Po rostudováí tohoto odstavce budete rozumět ojmům Základí soubor, oulace, výběr, výběrové šetřeí, výběrová statstka a budete zát základí výběrové statstk ro výběr z ormálího rozděleí - 8 -

2 Výklad: Motto: Chceme-l vědět, jak chutá vío v sudu, emusíme vít celý sud. tačí jeom malý doušek a víme a čem jsme. tatstka to je sběr a zracováí dat. V moha oborech se setkáme s růzkum oírajícím se o relatvě malý očet zkoumaých jedotek výběr. tatstka ak oužívá ostu omocí chž můžeme, sce s určtým rzkem ředem staoveým, a základě toho mála usuzovat a chováí celku oulace. Tomuto zobecňováí říkáme statstcká dukce. 9. tatstcké zjšťováí Pro většu statstckých souborů, s mž se v ra setkáváme, je tcký vsoký rozsah očet zkoumaých jedotek. Jakmle jsme ted ostaveí řed úkol rovést určté šetřeí a aalzovat údaje z ěj zjštěé, musíme ejrve rozhodout, zda budeme toto šetřeí realzovat jako včerávající ebo výběrové. Včerávající šetřeí to je rošetřeí všech jedotek statstckého souboru oulace. Zravdla se jedá o záležtost velm ákladou ersoálě, fačě, časově, mohd dokoce raktck erealzovatelou destrukčí zkoušk. Pokud však toto šetřeí roběhe, mez jeho esoré výhod atří řesost zjštěých charakterstk a detalost formací o každé zkoumaé jedotce. Příkladem včerávajícího šetřeí je aříklad sčítáí ldu. Výběrové šetřeí jde o rošetřeí vbraých jedotek statstckého souboru oulace. Z takto ořízeých charakterstk ak více č méě usuzujeme a vlastost celé oulace. Výběrová šetřeí se oužívají aříklad ř zjšťováí jaká je odora oltckých stra, ř ověřováí evost trubek vráběých určtým odkem, aod. Mírou objektvost formací, které z ěho získáme, je kvalta rovedeí výběrového šetřeí. 9. T výběrových šetřeí Základí soubor, z chž vbíráme mohou být buď koečě ebo ekoečě velké. Příkladem koečě velkého základího souboru je dodávka výrobku ař. raček, říkladem ekoečě velkého základího souboru je eřetržtá ásová výroba ař. raček. Př kostrukc výběrového souboru se sažíme o to, ab výběrový soubor měl stejé vlastost jako základí soubor, z ěhož výběr ochází. Mez druh výběrových šetřeí řadíme aketu, metodu základího masvu, záměrý výběr a áhodý výběr. Aketa oslovuje ouze esstematck vbraou část oulace osob, odků, sttucí. Dotazík se k resodetům dotazovaým dostává rostředctvím sdělovacích rostředků aketa televzích dváků, aketa časosu Mládí, ebo je zaslá adresě. ávratost dotazíku je však malá odhaduje se že 30%. Iformace získaé aketím šetřeím elze zobecňovat

3 Metoda základího masvu se oužívá v říadech, kd se základí soubor skládá z ěkolka velkých jedotek a z většího očtu jedotek malých. ař. ř šetřeí v oblast hutctví se můžeme odle této metod zaměřt a ěkolk obřích solečostí, tam rovést šetřeí a malé odk vechat. Výhod: meší racost a meší časová áročost šetřeí. evýhod: zobecěí ozatků má meší latost evsthuje secfka meších jedotek. Záměrý výběr sočívá v tom, že skua odboríku a daou roblematku vbere odle svého ejlešího uvážeí t jedotk, o chž se lze domívat, že ve svém souhru ejlée umoží rovést šetřeí. tímto tem šetřeí se setkáme aříklad ř růzkumech trhu a ř růzkumech veřejého míěí. evýhoda: subjektví řístu k výběru zochbňuje možost zobecěí. Prostý áhodý výběr je základím a v ra ejoužívaějším tem výběru. Jde o výběr, ř ěmž mají všech jedotk základího souboru stejou ravděodobost, že do výběru budou zařaze. í se áhodým výběrem budeme zabývat odroběj a formálěj. 9.3 áhodý výběr áhodý výběr je secálí áhodý vektor, jehož složk jsou ezávslé áhodé velč se stejým rozděleím ravděodobost. Pokusíme se uvedeou defc vsvětlt. Oakujeme-l -krát ezávsle okus ozorováí, měřeí, jehož výsledek je áhodá velča s dstrbučí fukcí, ozorujeme vlastě áhodý vektor,..., T,, jehož složk jsou vzájemě ezávslé áhodé velč s touž dstrbučí fukcí. Teto vektor azýváme áhodý výběr z rozděleí ebo áhodý výběr ze základího souboru ebo oulace s rozděleím.číslo se azývá rozsah áhodého výběru. Podle rozsahu obvkle rozdělujeme áhodé výběr a malé 30 a velké > 30. áhodý výběr má zřejmě sdružeou dstrbučí fukc :,..., P ; ; P P a odobě sdružeou hustotu ravděodobost: f f Číselý vektor,...,, který získáme ř realzac áhodého výběru,...,, azýváme statstcký soubor ebo vzorek o rozsahu. Moža všech těchto vektorů se azývá výběrový rostor. Je to zřejmě odmoža mož R

4 Řadu formací o osuzovaé áhodé velčě osktují její číselé charakterstk, ař. E, D, σ atd. Př statstcké dukc jsme ř určováí jejch hodot odkázá a realzace áhodých výběrů, ted a statstcké soubor. Užíváme řtom ásledující ojm:,...,, k jejímuž určeí eí třeba zát kokrétí hodot arametrů říslušého rozděleí, azýváme statstka ebo výběrová charakterstka a začíme j T =T,...,. Je to obecě áhodá velča. ukc áhodého výběru T Její hodotu t T,,, kterou abývá a statstckém souboru,, T ozorovaá hodota statstk T ebo emrcká charakterstka. Používáme zejméa ásledující statstk:, azýváme. T výběrový růměr E ET E E E. T výběrový roztl eí těžké ukázat, že E = D 3. T výběrová směrodatá odchlka 3 echť v daém výběru je očet rvků se sledovaou vlastostí V, ak: 4. V T4 výběrová relatví četost výběrový odíl 9.4 Výběrová rozděleí rozděleí statstk č výběrových charakterstk Předokládejme, že daý áhodý výběr ochází z ormálího rozděleí:,...,,, T., le jedak z cetrálí lmtí vět ro velká, ale dá se také ukázat a základě odvozeí rozděleí součtu áhodých velč. Z 0, le z trasformace ředešlého rozděleí - 3 -

5 blo vsvětleo ř dskus rozděleí 4. t T odvozeo ř dskus o oužtí tudetova rozděleí 5. 0; P odvozeo ř dskuz alkac cetrálí lmtí vět ka í ředokládáme dva výběr z ormálích rozděleí: T,...,,,, T,...,,, j. Potom latí: 6. 0, Z ; ; ; ; ; 7., zdůvoděo v souvslost s -rozděleím Předokládejme secálí říad, že roztl jsou ezámé avšak stejé:. Potom se dá ukázat, že latí: 8. t T echť mají daé výběrové soubor očt rvků se sledovaou vlastostí V a V. Pak výběrové relatví četost určíme jako: V ; V

6 Pak latí: 9. 0; P, kde V V

7 hrutí: tatstka ak oužívá ostu omocí chž můžeme, sce s určtým rzkem ředem staoveým, a základě toho mála usuzovat a chováí celku oulace. Tomuto zobecňováí říkáme statstcká dukce. Jakmle jsme ostaveí řed úkol rovést určté šetřeí a aalzovat údaje z ěj zjštěé, musíme ejrve rozhodout, zda budeme toto šetřeí realzovat jako včerávající ebo výběrové. Včerávající šetřeí to je rošetřeí všech jedotek statstckého souboru oulace. Výběrové šetřeí jde o rošetřeí vbraých jedotek statstckého souboru oulace. Mez druh výběrových šetřeí řadíme aketu, metodu základího masvu, záměrý výběr a áhodý výběr. áhodý výběr je secálí áhodý vektor, jehož složk jsou ezávslé áhodé velč se stejým rozděleím ravděodobost. Číselý vektor,...,, který získáme ř realzac áhodého výběru,...,, azýváme statstcký soubor ebo vzorek o rozsahu. Moža všech těchto vektorů se azývá výběrový rostor. ukc áhodého výběru =,...,, k jejímuž určeí eí třeba zát kokrétí hodot arametrů říslušého rozděleí, azýváme statstka ebo výběrová charakterstka a začíme j T. Její hodotu t=t,...,, kterou abývá a statstckém souboru,...,, azýváme ozorovaá hodota statstk T ebo emrcká charakterstka. Používáme zejméa ásledující statstk: výběrový růměr, výběrový roztl s výběrovou směrodatou odchlku s a výběrový odíl. a Za ředokladu, že áhodý výběr ochází z ormálího rozděleí ravděodobost, se dají z daého áhodého výběru odvodt další výzamé statstk se zámým rozděleím: Výběrová charakterstka Rozděleí výběrové charakterstk Z 0; T t - P 0; Máme-l k dsozc dva výběr z ormálího rozděleí, setkáváme s ásledujícím výběrovým statstkam:

8 Výběrová charakterstka Rozděleí výběrové charakterstk Z 0; T t, P 0;

9 Otázk. Co je statstcká dukce?. Charakterzujte ojm áhodý výběr a statstcký soubor. 3. Co jsou výběrové charakterstk a které z ch se ejčastěj oužívají? 4. Vjmeujte ěkteré z dalších výběrový statstk, tj. statstk odvozeých z áhodého výběru z ormálího rozděleí a u ěkterých z takto vjmeovaých statstk se okuste zdůvodt rozděleí ravděodobost

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu

Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu Směrce /0 Stattcké vyhodocováí dat, verze 4 Verze 4 e hodá e Směrcí /0 verze 3, ouze byla rozšířea o robutí aalýzu. Stattcké metody ro zkoušeí zůoblot Cílem tattcké aalýzy výledků zkoušek ř zkouškách zůoblot

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení. MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určté předpoklady (hypotézy) o základím souboru STATISTICKÁ HYPOTÉZA předpoklad (tvrzeí) o parametru G základího

Více

Statistika - vícerozměrné metody

Statistika - vícerozměrné metody Statstka - vícerozměré metody Mgr. Mart Sebera, Ph.D. Katedra kezologe Masarykova uverzta Fakulta sportovích studí Bro 0 Obsah Obsah... Sezam obrázků... 4 Sezam tabulek... 4 Úvod... 6 Pojmy... 7 Náhodé

Více

PRAVDĚPODOBNOST ... m n

PRAVDĚPODOBNOST ... m n RVDĚODONOST - matematická discilía, která se zabývá studiem zákoitostí, jimiž se řídí hromadé áhodé jevy - vytváří ravděodobostí modely, omocí ichž se saží ostihout rocesy, ovlivěé áhodou. Náhodé okusy:

Více

Fakulta elektrotechniky a informatiky Statistika STATISTIKA

Fakulta elektrotechniky a informatiky Statistika STATISTIKA Fakulta elektrotechky a formatky TATITIKA. ZÁKLADNÍ OJMY. Náhodý pokus a áhodý jev NÁHODNÝ OKU proces realzace souboru podmíek kde výsledek emůžeme předem ovlvt. - výsledek áhodého pokusu. - jev, který

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou

Více

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i : ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

C V I Č E N Í 4 1. Představení firmy Splintex Czech 2. Vlastnosti skla a skloviny 3. Aditivita 4. Příklady výpočtů

C V I Č E N Í 4 1. Představení firmy Splintex Czech 2. Vlastnosti skla a skloviny 3. Aditivita 4. Příklady výpočtů Techologe skla 00/03 C V I Č E N Í 4. Představeí rmy pltex Czech. Vlastost skla a sklovy 3. Adtvta 4. Příklady výpočtů Hospodářská akulta. Představeí rmy pltex Czech a.s. [,] Frma pltex Czech je součástí

Více

ANALÝZA SPOTŘEBITELSKÉHO CHOVÁNÍ S VYUŽITÍM TÖRNQUISTOVÝCH FUNKCÍ U VYBRANÝCH POTRAVINÁŘSKÝCH VÝROBKŮ

ANALÝZA SPOTŘEBITELSKÉHO CHOVÁNÍ S VYUŽITÍM TÖRNQUISTOVÝCH FUNKCÍ U VYBRANÝCH POTRAVINÁŘSKÝCH VÝROBKŮ ANALÝZA SPOTŘEBITELSKÉHO CHOVÁNÍ S VYUŽITÍM TÖRNQUISTOVÝCH FUNKCÍ U VYBRANÝCH POTRAVINÁŘSKÝCH VÝROBKŮ THE ANALYSIS OF CONSUMER BEHAVIOR WITH TÖRNQUIST FUNCTIONS USING FOR CHOICE FOOD PRODUCTS Pavlína Hálová

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hyotéz Př statstckých šetřeích se často setkáváme s roblémy tohoto druhu () Máme zjstt, zda dva daé vzorky ocházejí z téhož ZS. () Máme rozhodout, zda rozdíly hodot růměrů (res. roztylů)

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

9.3.5 Korelace. Předpoklady: 9304

9.3.5 Korelace. Předpoklady: 9304 935 Koelace Předpoklad: 9304 Zatím jsme se zabýval vžd pouze jedím zakem, ve statstckém výzkumu jsme však u každého jedotlvce (statstcké jedotk) sledoval zaků více Učtě spolu ěkteé zak souvsí (apříklad

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Testy statistických hypotéz

Testy statistických hypotéz Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč

Více

elektrické filtry Jiří Petržela základní pojmy

elektrické filtry Jiří Petržela základní pojmy Jiří Petržela základí ojmy základí ojmy z oblati elektrických filtrů základí ojmy elektrický filtr je lieárí dvojbra, který bez útlumu roouští je určité kmitočtové ložky, které obahuje vtuí igál rouštěé

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů Číslicová filtrace Použití : Separace sigálů Restaurace sigálů Číslicové filtry Aalogové x číslicové filtry : Aalogové Číslicové: + levé + rychlé + velký dyamický rozsah (v amplitudě i frekveci) - evhodé

Více

Obr. Z1 Schéma tlačné stanice

Obr. Z1 Schéma tlačné stanice Části a mechaismy strojů III Předmět : 34750/0 Části a mechaismy strojů III Cvičí : Doc Ig Jiří Havlík, PhD Ročík : avazující Školí rok : 00 0 Semestr : zimí Zadáí cvičeí Navrhěte a kostrukčě zracujte

Více

20. Kontingenční tabulky

20. Kontingenční tabulky 0. Kotigečí tabulky 0.1 Úvodí ifomace V axi e velmi častá situace, kdy vyšetřueme aedou dva statistické zaky, kteé sou svou ovahou diskétí kvatitativí( maí řesě staoveý koečý očet všech možostí ); soité

Více

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa...

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa... IV- Eergie soustavy bodových ábojů... IV- Eergie elektrického pole pro áboj rozmístěý obecě a povrchu a uvitř objemu tělesa... 3 IV-3 Eergie elektrického pole v abitém kodezátoru... 3 IV-4 Eergie elektrostatického

Více

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY VYSOKÉ UČEÍ TECHICKÉ V BRĚ BRO UIVERSITY OF TECHOLOGY FAKULTA STROJÍHO IŽEÝRSTVÍ ÚSTAV AUTOMATIZACE A IFORMATIKY FACULTY OF MECHAICAL EGIEERIG ISTITUTE OF AUTOMATIO AD COMPUTER SCIECE MODELY HROMADÉ OBSLUHY

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

Jihočeská univerzita v Českých Budějovicích. Pedagogická fakulta PRAVDĚPODOBNOSTNÍ MODELY KOLEM NÁS BAKALÁŘSKÁ PRÁCE. Radka Glücksmannová

Jihočeská univerzita v Českých Budějovicích. Pedagogická fakulta PRAVDĚPODOBNOSTNÍ MODELY KOLEM NÁS BAKALÁŘSKÁ PRÁCE. Radka Glücksmannová Jihočesá uiverzita v Česých Budějovicích Pedagogicá faulta PRAVDĚPODOBNOSTNÍ MODELY KOLEM NÁS BAKALÁŘSKÁ PRÁCE Rada Glücsmaová Česé Budějovice, rosiec 7 Na tomto místě bych ráda oděovala vedoucímu baalářsé

Více

8. Zákony velkých čísel

8. Zákony velkých čísel 8 Zákoy velkých čísel V této část budeme studovat velm často užívaá tvrzeí o součtech posloupost áhodých velč Nedříve budeme vyšetřovat tvrzeí azývaá souhrě ako slabé zákoy velkých čísel Veškeré úvahy

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBOST A STATISTIKA Degeerovaé rozděleí D( ) áhodá veličia X s degeerovaým rozděleím X ~D(), R má základí rostor Z = { } a ravděodobostí fukci: ( ) 1 0 Charakteristiky: středí hodota: E(X ) roztyl:

Více

APLIKACE REGRESNÍ ANALÝZY NA VÝPOČET BODU ZVRATU

APLIKACE REGRESNÍ ANALÝZY NA VÝPOČET BODU ZVRATU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV FINANCÍ FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF FINANCES APLIKACE REGRESNÍ ANALÝZY NA VÝPOČET BODU ZVRATU

Více

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY

6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY 6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY Rozdleí áhodé veliiy je edis, terým defiujeme ravdodobost jev, jež lze touto áhodou veliiou osat. Záladím rozdleím oisujícím výbry bez vraceí je hyergeometricé

Více

vají statistické metody v biomedicíně

vají statistické metody v biomedicíně Statistika v biomedicísk ském m výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Proč se používaj vají statistické metody v biomedicíě Biomedicísk

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

ZÁKLADY STAVEBNÍ MECHANIKY

ZÁKLADY STAVEBNÍ MECHANIKY VYSOKÉ UČENÍ TECHNICKÉ V BNĚ AKULTA STAVEBNÍ ING. JIŘÍ KYTÝ, CSc. ING. ZBYNĚK KEŠNE, CSc. ING. OSTISLAV ZÍDEK ING. ZBYNĚK VLK ZÁKLADY STAVEBNÍ ECHANIKY ODUL BD0-O SILOVÉ SOUSTAVY STUDIJNÍ OPOY PO STUDIJNÍ

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzt Krlov v Prze Pegogcká kult SEMINÁRNÍ PRÁCE Z POLYNOMICKÉ ALGEBRY POLYNOM 00/00 CIFRIK Záí: Vyšetřete všem probrým prostřeky polyom 0 0 Vyprcováí: Pole věty: Rcoálí kořey. Nechť p Q je koře polyomu

Více

Spolehlivost a diagnostika

Spolehlivost a diagnostika Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore

Více

Statistické zpracování dat

Statistické zpracování dat Bakoví sttut vysoká škola Praha Katedra IT Statstcké zpracováí dat Bakalářská práce Autor: Ja Culka Iformačí techologe, Maaţer projektů Vedoucí práce: Mgr. Olga Procházková Praha Červe, 00 Prohlášeí: Prohlašuj,

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

[ jednotky ] Chyby měření

[ jednotky ] Chyby měření Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá

Více

Obsah. Statistika verze 1.0

Obsah. Statistika verze 1.0 Statstka verze. Obsah Obsah.... Výzam ojmu STATISTIKA.... Kombatorka... 4 3. Statstcká jedotka, soubor, zak, data a ukazatele... 5 4. Úvod do ravděodobost... 7 5. Objektví, subjektví, odmíěá ravděodobost

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

FINANČNÍ MATEMATIKA. Jarmila Radová KBP VŠE Praha

FINANČNÍ MATEMATIKA. Jarmila Radová KBP VŠE Praha FINANČNÍ MATEMATIA Jarmila Radová BP VŠE Praha Osova Jedoduché úročeí Diskotováí krátkodobé ceé papíry Metody vedeí a výpočtu úroku z běžého účtu Skoto Složeé úrokováí Budoucí hodota auity spořeí Současá

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

11. Popisná statistika

11. Popisná statistika . Popsá statstka.. Pozámka: Př statstckém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákotost, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme statstcké jedotky. Př

Více

1. Ukazatele primární: - jsou přímo zjišťované, neodvozené - např. stav zásob, počet pracovníků k 31. 12., atd.

1. Ukazatele primární: - jsou přímo zjišťované, neodvozené - např. stav zásob, počet pracovníků k 31. 12., atd. SROVNÁVÁNÍ HODNOT STATSTCÝCH UKAZATELŮ - oisem a analýzou ekonomikýh jevů a roesů omoí statistikýh ukazatelů se zabývá hosodářská statistika - ílem je nalézt zůsoby měření ekonomiké skutečnosti (ve formě

Více

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou

Více

4 Ztráty tlaku v trubce s výplní

4 Ztráty tlaku v trubce s výplní 4 Ztráty tlaku v trubce s výlní Miloslav Ludvík, Milan Jahoda I Základní vztahy a definice Proudění kaaliny či lynu nehybnou vrstvou částic má řadu alikací v chemické technologii. Částice tvořící vrstvu

Více

Lineární a adaptivní zpracovní dat. 5. Lineární filtrace: FIR, IIR

Lineární a adaptivní zpracovní dat. 5. Lineární filtrace: FIR, IIR Leárí a adaptví zpracoví dat 5. Leárí fltrace: FIR, IIR Dael Schwarz Ivestce do rozvoje vzděláváí Opakováí 2 Co je to fltrace? Co je to fltr? A jak ho popsujeme? Jaký je vztah Z trasformace a Fourerovy

Více

o. elektronickou KOpli aoaatku č. 18, který obsahuje speciální ujednání pro období roku 2016.

o. elektronickou KOpli aoaatku č. 18, který obsahuje speciální ujednání pro období roku 2016. Vážený anena základě žádosti Vaší městské části ze dne 15.04.2016 o oskytnutí informace dle zákona č. 106/1999 Sb., o svobodném řístuu k informacím, ve znění ozdějších ředisů (dále jen "lnfz"), Vám sdělujeme,

Více

Vážeí zákazíci, dovolujeme si Vás upozorit, že a tuto ukázku kihy se vztahují autorská práva, tzv. copyright. To zameá, že ukázka má sloužit výhradì pro osobí potøebu poteciálího kupujícího (aby èteáø

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

7.Vybrané aplikace optimalizačních modelů

7.Vybrané aplikace optimalizačních modelů 7.Vybraé aplkace optmalzačích modelů V této kaptole se budeme věovat dvěma typům úloh, pro echž řešeí se využívaí optmalzačí prcpy. Jedá se o modely aalýzy obalu dat, které se využívaí pro hodoceí relatví

Více

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže Regulace apětí v ES Základí pricip regulace v ES si ukážeme a defiici statických charakteristik zátěže Je zřejmé, že výko odebíraý spotřebitelem je závislý a frekveci a apětí a přípojicích spotřebitelů.

Více

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok.

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok. 8. Měření růtoků V následující tabulce jsou uvedeny jednotky ro objemový a hmotnostní růtok. Základní vztahy ro stacionární růtok Q M V t S w M V QV ρ ρ S w ρ t t kde V [ m 3 ] - objem t ( s ] - čas, S

Více

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý.

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý. evost a životost - Hr III EVNOT a ŽIVOTNOT Hr III Mila Růžička, Josef Jreka, Zbyěk Hrbý zbyek.hrby@fs.cvt.cz evost a životost - Hr III tatistické metody vyhodocováí dat evost a životost - Hr III 3 tatistické

Více

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter. Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový

Více

Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Vyšší odborná škola informačních služeb v Praze. Lukáš Kleňha

Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Vyšší odborná škola informačních služeb v Praze. Lukáš Kleňha Vysoká škola ekoomcká v Praze Fakulta formatky a statstky Vyšší odborá škola formačích služeb v Praze Lukáš Kleňha egresí aalýza acetovy rogrese o rví hostalzac s CHOPN 0 Prohlášeí Prohlašuj, že jsem

Více

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů. Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

Opakování. Metody hodnocení efektivnosti investic. Finanční model. Pravidla pro sestavení CF. Investiční fáze FINANČNÍ MODEL INVESTIČNÍHO ZÁMĚRU

Opakování. Metody hodnocení efektivnosti investic. Finanční model. Pravidla pro sestavení CF. Investiční fáze FINANČNÍ MODEL INVESTIČNÍHO ZÁMĚRU Metody hodoceí efektvost vestc Opakováí Typy vazeb v uzlové síťové grafu K čeu slouží stude využtelost Fačí odel vestčího záěru Časová hodota peěz Metody vyhodoceí Napšte strukturu propočtu Fačí odel FINANČNÍ

Více

Univerzita Pardubice Fakulta ekonomicko-správní

Univerzita Pardubice Fakulta ekonomicko-správní Uverzta Pardubce Fakulta ekoomcko-správí ANALÝZA TRESTNÝCH ČINŮ PROTI ŽIVOTU A ZDRAVÍ V ČR Moka Papoušková Bakalářská práce 00 Prohlášeí Prohlašuj, že jsem tuto prác vypracovala samostatě. Veškeré lterárí

Více

Parciální diferenciální rovnice. Dirichletova úloha pro Laplaceovu (Poissonovu) rovnici Rovnice vedení tepla

Parciální diferenciální rovnice. Dirichletova úloha pro Laplaceovu (Poissonovu) rovnici Rovnice vedení tepla arálí dereálí rove Drleova úloa ro Lalaeov ossoov rov Rove vedeí ela Vlová rove Klasae leárí arálí dereálí rov.řád d ě ý ve dvo roměý V oblas Ω E de a b d e a g jso sojé je dáa rove ro [ ] Ω oložíme g

Více

4.5.9 Vznik střídavého proudu

4.5.9 Vznik střídavého proudu 4.5.9 Vzik střídavého proudu Předpoklady: 4508 Miulá hodia: Pokud se v uzavřeém závitu měí magetický idukčí tok, idukuje se v ěm elektrické apětí =. Př. 1: Vodorově orietovaá smyčka se pohybuje rovoměrě

Více

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor 1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců

Více

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@niax.cz Pravděodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, tyy dat, variabilita, frekvenční analýza

Více

11 TESTOVÁNÍ HYPOTÉZ Základní pojmy

11 TESTOVÁNÍ HYPOTÉZ Základní pojmy EOVÁNÍ YPOÉZ. Základí ojmy V Kaitole jsme se sezámili s ostuem, jak odhadout ezámé arametry základího souboru oulace v říadě, že emáme k disozici všechy jeho rvky, ale je jeho část - áhodý výběr. V raxi

Více

2. Definice plazmatu, základní charakteristiky plazmatu

2. Definice plazmatu, základní charakteristiky plazmatu 2. efiice plazmatu, základí charakteristiky plazmatu efiice plazmatu Plazma bývá obyčejě ozačováo za čtvrté skupeství hmoty. Pokud zahříváme pevou látku, dojde k jejímu roztaveí, při dalším zahříváí se

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

APLIKOVANÁ STATISTIKA

APLIKOVANÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4

Více

Příklady z přednášek Statistické srovnávání

Příklady z přednášek Statistické srovnávání říklad z řednášek Statstcké srovnávání Jednoduché ndvduální ndex říklad V následující tabulce jsou uveden údaje o očtu závažných závad v areálu určté frm zjštěných a oravených v letech 9-998. Závažná závada

Více

8.2.1 Aritmetická posloupnost I

8.2.1 Aritmetická posloupnost I 8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

FLUORIMETRIE. Jan Fähnrich. Obecné základy

FLUORIMETRIE. Jan Fähnrich. Obecné základy FLUORIMETRIE Ja Fährch Obecé základ Fluormetre je aaltcká metoda vužívající schopost ěkterých látek vsílat (emtovat) po předchozím převedeí do vzbuzeého (exctovaého) stavu fluorescečí zářeí v ultrafalové

Více

Á Č ŘÍ ň Í ň ý ě ň ý ň ň ů Í Í ý Í ů Í ě š ě š ě ů š ě Ě Ě Í Í ý š ě Í ý Í ý Í ý š ě š ě Ž ě ý ý ů Ř Í Á Ž ý ó š ý ě š ě š ě š ě š ě ý š ě š ě ě š ě ú ů š ě š ě Í ú ú ě Á Á Í Ě Í Í ÁŘ Í ě ý š ě š ě Ý ý

Více

HODNOCENÍ PŘÍSTROJŮ PRO MĚŘENÍ JAKOSTI ZIMNÍCH KAPALIN DO OSTŘIKOVAČŮ V PROVOZU

HODNOCENÍ PŘÍSTROJŮ PRO MĚŘENÍ JAKOSTI ZIMNÍCH KAPALIN DO OSTŘIKOVAČŮ V PROVOZU HODNOCENÍ PŘÍSTROJŮ PRO MĚŘENÍ JAKOSTI ZIMNÍCH KAPALIN DO OSTŘIKOVAČŮ V PROVOZU Ja SKOLIL 1*, Štefa ČORŇÁK 2*, Ja ULMAN 3 1* Velvaa, a.s., 273 24 Velvary, Česká republika 2,3 Uiverzita obray v Brě, Kouicova

Více

6. Vliv způsobu provozu uzlu transformátoru na zemní poruchy

6. Vliv způsobu provozu uzlu transformátoru na zemní poruchy 6. Vliv zůsobu rovozu uzlu transformátoru na zemní oruchy Zemní oruchou se rozumí sojení jedné nebo více fází se zemí. Zemní orucha může být zůsobena řeskokem na izolátoru, růrazem evné izolace, ádem řetrženého

Více

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

Úvod do zpracování měření

Úvod do zpracování měření Laboratorí cvičeí ze Základů fyziky Fakulta techologická, UTB ve Zlíě Cvičeí č. Úvod do zpracováí měřeí Teorie chyb Opakujeme-li měřeí téže fyzikálí veličiy za stejých podmíek ěkolikrát za sebou, dostáváme

Více

Třetí Dušan Hložanka 16. 12. 2013. Název zpracovaného celku: Řetězové převody. Řetězové převody

Třetí Dušan Hložanka 16. 12. 2013. Název zpracovaného celku: Řetězové převody. Řetězové převody Předmět: Ročník: Vytvořil: Datum: Stavba a rovoz strojů Třetí Dušan Hložanka 6.. 03 Název zracovaného celku: Řetězové řevody Řetězové řevody A. Pois řevodů Převody jsou mechanismy s tuhými členy, které

Více

Měření na třífázovém asynchronním motoru

Měření na třífázovém asynchronním motoru 15.1 Zadáí 15 Měřeí a zatěžovaém třífázovém asychroím motoru a) Změřte otáčky, odebíraý proud, fázový čiý výko, účiík a fázová apětí a 3-fázovém asychroím motoru apájeém z třífázové sítě 3 x 50 V při běhu

Více

Úvod do korelační a regresní analýzy

Úvod do korelační a regresní analýzy Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY Jméo: Petr Česák Datum měřeí:.3.000 Studjí rok: 999-000, Ročík: Datum odevzdáí: 6.3.000 Studjí skupa: 5 Laboratorí skupa:

Více

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky

Více