Metody zkoumání závislosti numerických proměnných

Save this PDF as:
Rozměr: px
Začít zobrazení ze stránky:

Download "Metody zkoumání závislosti numerických proměnných"

Transkript

1 Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy odpovídají změy druhé velčy tak, že určté hodotě jedoho zaku může odpovídat více hodot zaku druhého, což je způsobeo tím, že současě působí řada áhodých vlvů statstcká (volá) závslost vyjadřuje obecou tedec změ - ejčastěj závslost jedostraá jede zak vystupuje jako příča (ezávsle proměá).. x a druhý zak jako ásledek (závsle proměá) začíme y

2 grafcké zobrazeí závslost dvou proměých - bodový dagram z bodového dagramu můžeme posoudt průběh závslost - leárí, eleárí kladá, záporá sílu této závslost - tj. stupeň kolísáí hodot kolem čáry vyjadřující průběh závslost

3 Regresí aalýza popsujeme průběh statstcké závslost odhadujeme hodoty závsle proměé Y odpovídající daé hodotě jedé ebo více ezávsle proměých X. jedoduchá (párová) RA: Y... závsle proměá (vysvětlovaá proměá) X.. ezávsle proměá (vysvětlující proměá) y f ( x) vícerozměrá RA: Y. závsle proměá (vysvětlovaá proměá) X X X...ezávsle proměé (vysvětlující proměé),..., k 1, y f ( x1, x,..., x k )

4 Postup (kroky) RA: 1. volba typu regresí fukce (alezeí regresího modelu). odhad parametrů regresího modelu 3. testováí hypotéz o těchto parametrech (ověřeí výzamost parametrů regresího modelu) 4. ověřeí vhodost zvoleého regresího modelu (posouzeí kvalty regresího modelu).

5 Jedoduchá (párová) regresí aalýza Volba typu regresí fukce (alezeí regresího modelu) úkolem je alézt vhodou aalytckou fukc, která ejlépe vysthe průběh závslost závsle proměé Y a ezávsle proměé X vhodou aalytckou fukc volíme a základě: věcě-logckého rozboru zkoumaých závslostí grafckého zázorěí pomocí MS krterí "prcp parsmoe"

6 Odhad parametrů regresího modelu TEORETICKÝ REGRESNÍ MODEL y Y 1,,..., ZS... teoretcká (hypotetcká) regresí fukce Y f ( x,,,..., ) 0 1 k 0, 1,..., k jsou ezámé regresí parametry ezámá áhodá složka 0 0 determstcký model stochastcký model

7 VS... výběrová (emprcká) regresí fukce - je odhadem regresí fukce závslost v ZS yˆ f ( x, b, b,..., b ) 0 1 b0, b1,..., b výběrové regresí koefcety (odhady k regresích parametrů y y e e rezduum (je odhadem áhodé složky) e ˆ y y Předpoklady o áhodé složce Rozděleí áhodých složek je ormálí E D ( ) 0 ( ) kost. cov(, j) 0 k N(0, ) kovarace všech dvojc áhodé složky jsou ulové

8 regresí fukce leárí v parametrech parametry odvozujeme metodou ejmeších čtverců MNČ PŘÍKLADY přímka Y b0 b1x parabola Y b0 b1 x b x hyperbola Y b b / x 0 1 log.fukce Y b b l x 0 1 fukce eleárí v parametrech elze použít přímo MNČ 1 Y b. b Y b x x b

9 základí metoda k odvozeí parametrů leárích regresích modelů: Metoda ejmeších čtverců (MNČ) Leárí fukce - přímka (přímková regrese) Y 0 1 x teoretcká regresí přímka ŷ b0 b1x výběrová regresí přímka Cílem je ajít přímku, která ejlépe popsuje průběh závslost, tj. přímku, která je zjštěým hodotám ejblíže ( y y ) e 0 ( y yˆ ) e m

10 MNČ ( ˆ ) m. 1 1 ( 0 1 ) m. 1 S y y e S y b b x Úkolem je ajít hodoty parametrů přímky Mmalzujeme rezduálí součet čtverců S b0, b1 S b 0 S b 1 y b b x x y b0 x b1 x 0

11 Řešeím soustavy dvou rovc dostaeme odhady parametrů přímky b b y x x y 1 yx x ( x) b0, b1 b yx = výběrový regresí koefcet je bodový odhad parametru 1 teoretcké regresí přímky, tj. směrce teoretcké regresí přímky) je směrcí výběrové regresí přímky ŷ b0 b1x b yx vyjadřuje průměrou změu závsle proměé Y př jedotkové změě ezávsle proměé X b y x y x x 0 x ( x) b0 y byxx

12 Výpočet parametrů b, yx b 0 z euspořádaých údajů x y x y x y x 1 y 1 x 1 y 1 x 1 y 1 x y x y x y b yx y x x y ( ) x x b0 y byxx x y x y x y x y x y x y

13 Příklad: Sledujeme závslost spotřeby vody a počtu čleů u souboru17 domácost x y x y x y b b yx b yx b y x x y x ( x ) y x y x x x ( x ) yˆ 4,4 30,4x 30,4 4,4

14 yˆ 4,4 30,4x

15 Testy hypotéz o parametrech regresí fukce Idvduálí t-testy H : 0 H : 0 0 j 1 j Testové krtérum t b s b j j t( p) krtcký obor Iterpretace v případě přímkové regrese: pro přímku t ( ) t t ( p) t t ( p) Zamítutí hypotézy o ulové hodotě regresího parametru 1 zameá přjetí předpokladu, že středí hodota vysvětlovaé proměé y se změí o kostatu b yx př jedotkové změě vysvětlující proměé x. Zamítutí hypotézy o ulové hodotě regresího parametru 0 zameá přjetí předpokladu, že regresí přímka prochází počátkem (ulou). 1

16 Výstup EXCEL Koefcety Chyba stř. hodoty t Stat Hodota P Hrace 4,4 18,35 1,3 0,1 Soubor X 30,4 5,70 5,30 0,00 Varable DF Parameter Estmate Parameter Estmates Stadard Error t Value Pr > t Itercept b <.0001 yˆ 4,4 30,4x 0,975 t (15),131

17 Y f ( x,,,..., ) 0 1 Regresí odhady Výběrové regresí koefcety b jsou bodové odhady teoretckých regresích parametrů Regresím odhadem chápeme výpočet hodoty závsle proměé y odpovídající určté hodotě ezávsle proměé x (tz. dosadíme hodotu x do vypočteé výběrové regresí fukce). Např. v ašem příkladě odhad průměré spotřeby domácost, která má 3 čley, získáme dosazeím x = 3 do vypočteé regresí rovce yˆ 4,4 30,4x k ˆy yˆ f ( x, b, b,..., b ) 4,4 0 1 k 30, ,96

18 Odhady parametrů regresí fukce Y f ( x,,,..., ) 0 1 yˆ f ( x, b, b,..., b ) 0 1 k k Můžeme vypočítat tervalové odhady regresích parametrů, které jsou kostruováy kolem vypočteých bodových odhadů parametrů (oboustraé tervaly spolehlvost) P ( bj t / sb j bj t1 / 1 j bj s ) 1 tervalový odhad pro všechy hodoty výběrové regresí fukce, tj pro jedotlvé body yˆ Iterval kolem vypočítaé regresí fukce tvoří tzv. pás spolehlvost, který eí ve všech bodech stejě šroký (ejužší je v bodě, který má souřadce ( x, y )

19 Predkce v regres Je odhad hodoty závsle proměé y pro hodotu ezávsle proměé x, která eí z oboru hodot, z chž byla regresí fukce spočítáa. Např. odhad spotřeby domácost, která by měla 8 čleů vypočítáme ˆy 4,4 30,4.8 66,16 Predkčí Itervalové odhady opět tvoří pás spolehlvost kolem regresí fukce, který je ale šrší ež pás spolehlvost pro tervalové odhady hodot ležících a regresí fukc.

20 Posouzeí kvalty regresí fukce regresí fukce je tím vhodější, čím jsou apozorovaé hodoty více soustředěy kolem regresí čáry. - emprcké (zjštěé) hodoty závsle proměé yˆ y - vyrovaé hodoty (hodoty ležící a regresí čáře) - celkový součet čtverců (charakterzuje celkovou varabltu) Q ( y y) teoretcký součet čtverců charakterzuje část varablty závsle proměé y zachyceou (vysvětleou) regresí fukcí rezduálí součet čtverců charakterzuje část varablty závsle proměé y, kterou elze vysvětlt regresí fukcí platí 1 Q Q Q T R Q ( y y) T 1 Q ( y y ) R 1

21 Celkový F - test H :... 0 H : o H m 1 0 Testové krterum F QT p 1 QR F ( p 1); ( p) p krtcký obor F F1 ( p 1); ( p)

22 Míra těsost závslost je dex determace, I R Q Q T 1 I I 1 ( y yˆ ) ( y yˆ ) 0... ezávslost y a x 1... determstcká závslost 0,1 dex determace vyjádřeý v % udává, jakou část rozptylu závsle proměé y lze vysvětlt zvoleou regresí fukcí. I Pokud se blíží hodota jedé, lze usuzovat, že byla použta vhodá regresí fukce a že mez y a x exstuje slá závslost. I Pokud se blíží hodota ule, pak usuzujeme, buď že byla použta evhodá regresí fukce ebo že mez y a x exstuje je slabá závslost.

23 Pro posouzeí, která fukce je vhodější se používá upraveý dex determace (R-sq. Adjusted) I 1 upr 1 (1 I ) p

24 ANOVA V ašem příkladě Rozdíl SS MS F Výzamost F Regrese , ,19 8,1 8,856E-05 Rezdua ,8 941,15 Celkem ,47 Source DF Sum of Squares Aalyss of Varace Mea Square F Value Pr > F Model <.0001 Error Corrected Total R 0,651 F 0,95 (1;15) 4,

25 Odhady parametrů regresích fukcí eleárích v parametrech Příklady: Y Y = 0 1 x expoecálí fukce Y = 0 x 1 mocá fukce (Cobb-Douglassova x Törqustova křvka produkčí fukce) elze použít MNČ k odhadu parametrů regresí fukce Postup odhadu parametrů: 1. Najdeme vhodý tzv. počátečí odhad. te postupě zlepšujeme teračím postupy tak dlouho, až dostaeme odhad s požadovaou přesostí

26 ad 1. Metody počátečích odhadů: learzující trasformace metoda aprorí formace metoda vybraých bodů metoda learzující trasformace model s eleárí regresí fukcí převedeme trasformací a model leárí a odhady jeho parametrů získáme MNČ metoda aprorí formace jako počátečí odhady použjeme hodoty parametrů doporučovaé teorí ebo hodoty zámé z předchozího šetřeí (výpočtu) metoda vybraých bodů vybereme tolk bodů, kolk parametrů má zvoleá regresí fukce. Souřadce těchto bodů dosadí me do rovce regresí fukce. Získáme soustavu eleárích rovc, jejchž řešeím jsou hledaé počátečí odhady parametrů.

27 Ad. Metody postupého zlepšováí počátečích odhadů teračí postupy: apř. Gauss-Newtoův, Marquardtův apod. Prcp: v každém kroku se počítá součet čtverců rezduí S 1 ( y yˆ ) 1 e postup kočí, když S - S -1 <

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

Úvod do korelační a regresní analýzy

Úvod do korelační a regresní analýzy Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

Metody statistické analýzy. doc. Ing. Dagmar Blatná, CSc.

Metody statistické analýzy. doc. Ing. Dagmar Blatná, CSc. Metody statstcké aalýzy doc. Ig. Dagmar Blatá, CSc. Bakoví sttut vysoká škola, a.s. Praha 0 METODY STATISTICKÉ ANALÝZY Autor: Recezet: Vydal: Tsk: Vydáí: doc. Ig. Dagmar Blatá, CSc. doc. Ig. Jří Trešl,

Více

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =

Více

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme

Více

a další charakteristikou je četnost výběrového souboru n.

a další charakteristikou je četnost výběrového souboru n. Předáška č. 8 Testováí rozptylu, testy relatví četost, testy dobré shody, test ezávslost kvaltatvích zaků Testy rozptylu Testy se používají k ověřeí hypotézy o určté velkost rozptylu a k ověřeí vztahu

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

Spolehlivost a diagnostika

Spolehlivost a diagnostika Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresí a korelačí aalýza Závslost příčá (kauzálí). Závslostí pevou se ozačuje případ, kdy výskytu jedoho jevu utě odpovídá výskyt druhé jevu (a často aopak). Z pravděpodobostího hledska jde o vztah, který

Více

Lineární regrese ( ) 2

Lineární regrese ( ) 2 Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující

Více

Generování dvojrozměrných rozdělení pomocí copulí

Generování dvojrozměrných rozdělení pomocí copulí Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta

Více

KVALITA REGRESNÍHO MODELU Radek Fajfr

KVALITA REGRESNÍHO MODELU Radek Fajfr UNIVERZITA PARDUBICE FAKULTA EKONOMICKO-SPRÁVNÍ KVALITA REGRESNÍHO MODELU Radek Fajfr Bakalářská práce 00 Prohlášeí Tuto prác jsem vypracoval samostatě. Veškeré lterárí pramey a formace, které jsem v

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i : ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru

Více

Jednoduchá lineární regrese

Jednoduchá lineární regrese Jedoduchá leárí regrese Motvace: Cíl regresí aalýz - popsat závslost hodot velč Y a hodotách velč X. Nutost vřešeí dvou problémů: a) jaký tp fukce se použje k popsu daé závslost; b) jak se staoví kokrétí

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

Úvod do teorie měření

Úvod do teorie měření Uverzta Jaa Evagelsty Purkyě v Ústí ad Labem Přírodovědecká fakulta Úvod do teore měřeí Prof. Chlář emář 0 Průměr, rozptyl a směrodatá odchylka X = X = ( X X ) = = = Výpočty pomocí vzorců a pomocí statstckých

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,

Více

8 NELINEÁRNÍ REGRESNÍ MODELY

8 NELINEÁRNÍ REGRESNÍ MODELY 8 NELINEÁRNÍ REGRESNÍ MODELY 8 Tvorba eleárího regresího modelu Postup tvorby eleárího regresího modelu se dá rozčlet do těchto kroků: Návrh regresího modelu Obvykle se jako eleárí regresí model používá

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě

Více

Měření závislostí. Statistická závislost číselných znaků

Měření závislostí. Statistická závislost číselných znaků Měřeí závslostí Statstcká závslost číselých zaků - závslost dvou velč lze vádřt ako ech fukčí vztah vzorcem, taulkou hodot příslušé fukce eo grafck; - mez zak zkoumaých evů zšťueme estec příčé (kauzálí

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů SP4 Přpomeutí pojmů Pravděpodobost Náhodý jev: - základí prostor - elemetárí áhodý jev A - áhodý jev, - emožý jev, jstý jev podjev opačý

Více

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Statistika - vícerozměrné metody

Statistika - vícerozměrné metody Statstka - vícerozměré metody Mgr. Mart Sebera, Ph.D. Katedra kezologe Masarykova uverzta Fakulta sportovích studí Bro 0 Obsah Obsah... Sezam obrázků... 4 Sezam tabulek... 4 Úvod... 6 Pojmy... 7 Náhodé

Více

Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky).

Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky). Statstka. Základí pojmy Statstcký soubo - daá koečá, epázdá moža M předmětů pozoováí, majících jsté společé vlastost (událost, věc,.) Jedotlvé pvky této možy se azývají pvky statstckého soubou (statstcké

Více

11. Regresní analýza. Čas ke studiu kapitoly: 60 minut. Cíl VÝKLAD Úvod

11. Regresní analýza. Čas ke studiu kapitoly: 60 minut. Cíl VÝKLAD Úvod . egresí aalýza Čas ke studu kaptoly: 6 mut Cíl Po prostudováí tohoto odstavce udete umět vysvětlt pojem oecý leárí model prcp leárího regresího modelu používat výsledky regresí aalýzy verfkovat regresí

Více

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor 1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců

Více

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení. MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je

Více

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě.

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě. 3. Hodoceí přesost měřeí a vytyčováí. Odchylky a tolerace ve výstavbě. 3.1 Úvod o měřeí obecě 3.2 Chyby měřeí a jejch děleí 3.2.1 Omyly a hrubé chyby 3.2.2 Systematcké chyby 3.2.3 Náhodé chyby 3.3 Výpočet

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

Statistická analýza dat

Statistická analýza dat INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Statstcká aalýza dat Učebí texty k semář Autor: Prof. RNDr. Mla Melou, DrSc. Datum: 5.. 011 Cetrum pro rozvoj výzkumu pokročlých řídcích a sezorckých techologí CZ.1.07/.3.00/09.0031

Více

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2 SP3 Neparametrcké testy hypotéz PRAVDĚPODOBNOST A STATISTIKA Neparametrcké testy hypotéz čast Lbor Žák SP3 Neparametrcké testy hypotéz Lbor Žák Neparametrcké testy hypotéz - úvod Neparametrcké testy statstckých

Více

14. Korelace Teoretické základy korelace Způsoby měření závislostí pro různé typy dat

14. Korelace Teoretické základy korelace Způsoby měření závislostí pro různé typy dat 4. Korelace 4. Teoretcké základy korelace 4. Způsoby měřeí závslostí pro růzé typy dat Př prác se statstckým údaj se velm často setkáváme s daty, která jsou tvořea dvojcem, trojcem hodot. Složky takovýchto

Více

Aktivita 1 Seminář základů statistiky a workshop (Prof. Ing. Milan Palát, CSc., Ing. Kristina Somerlíková, Ph.D.)

Aktivita 1 Seminář základů statistiky a workshop (Prof. Ing. Milan Palát, CSc., Ing. Kristina Somerlíková, Ph.D.) Aktvta Semář základů tattky a workhop (Prof. Ig. Mla Palát, CSc., Ig. Krta Somerlíková, Ph.D.) Stattcké tříděí Základí metoda tattckého zpracováí. Sekupováí hodot proměé, které jou z hledka klafkačího

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

Chyby přímých měření. Úvod

Chyby přímých měření. Úvod Chyby přímých měřeí Úvod Př zjšťováí velkost sledovaé velčy dochází k růzým chybám, které ovlvňují celkový výsledek. V pra eestuje žádá metoda měřeí a měřcí zařízeí, které by bylo absolutě přesé, což zameá,

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. upraveé vydáí Josef Tvrdík OSTRAVSKÁ UNIVERZITA 008 OBSAH: Úvod... 3 Parametrcké testy o shodě středích hodot... 4. Jedovýběrový t-test...

Více

APLIKOVANÁ STATISTIKA

APLIKOVANÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Výsledky této ásti regresní analýzy jsou asto na výstupu z poítae prezentovány ve form tabulky analýzy rozptylu.

Výsledky této ásti regresní analýzy jsou asto na výstupu z poítae prezentovány ve form tabulky analýzy rozptylu. Ig. Marta Ltschmaová Statstka I., cveí 4 JEDNODUCHÁ LINEÁRNÍ REGRESE asto chceme prozkoumat vztah mez dvma velam, kde jeda z ch, tzv. ezávsle promá x, má ovlvovat druhou, tzv. závsle promou Y. edpokládá

Více

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC 5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty

Více

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

Přednáška V. Úvod do teorie odhadu. Pojmy a principy teorie odhadu Nestranné odhady Metoda maximální věrohodnosti Průměr vs.

Přednáška V. Úvod do teorie odhadu. Pojmy a principy teorie odhadu Nestranné odhady Metoda maximální věrohodnosti Průměr vs. Předáška V. Úvod do teore odhadu Pojmy a prcpy teore odhadu Nestraé odhady Metoda mamálí věrohodost Průměr vs. medá Opakováí výběrová dstrbučí fukce Sestrojíme výběrovou dstrbučí fukc pro výšku a váhu

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP Záko velkých čísel, cetrálí lmtí věta PRAVDĚPODOBNOST A STATISTIKA Lbor Žák SP Záko velkých čísel, cetrálí lmtí věta Lbor Žák Kovergece podle pravděpodobost Posloupost áhodých proměých,,,, koverguje

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2 Iterpolace pomocí sple křvky dáo: bodů v rově úkol: alézt takovou křvku, která daým body prochází y f f 2 f 0 f x0 x... x 2 x x Iterpolace pomocí sple křvky evýhodou polyomálí terpolace změa ěkterého z

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Ekoomcká fakulta Semestrálí ráce S kua Jméa: Leka Pastorová, Davd arha, Ja Vtásek a Fl Urbačík Ročík: 0/06 Učtel: gr. Jří Rozkovec Obor: Podková ekoomka Datum:.. 06 Obsah

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 3. ÚKOL JB TEST 3. Úkol zadáí pro statistické testy U každého z ásledujících testů uveďte ázev (včetě autora), předpoklady použití, ulovou

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

SP2 Korelační analýza. Korelační analýza. Libor Žák

SP2 Korelační analýza. Korelační analýza. Libor Žák Korelačí aalýza Přpomeutí pojmů áhodá proměá áhodý vetor áhodý vetor Náhodý výběr: pro áhodou proměou : pro áhodý vetor : pro áhodý vetor : Přpomeutí pojmů - ovarace Kovarace áhodých proměých ovaračí oefcet

Více

12. Neparametrické hypotézy

12. Neparametrické hypotézy . Neparametrcké hypotézy V této část se budeme zabývat specálí částí teore statstckých hypotéz tzv. eparametrckým hypotézam ebo jak řečeo eparametrckým statstckým testy. Neparametrcké se azývají proto,

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT (OPRAVENÁ VERZE 006) Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 Obsah: Úvod... 3 Programové prostředky pro statstcké výpočty... 4. Tabulkový

Více

Model poptávky po železniční osobní dopravě Českých drah, a. s. na tuzemském přepravním trhu

Model poptávky po železniční osobní dopravě Českých drah, a. s. na tuzemském přepravním trhu Vědeckotechcký sorík ČD č. 3/0 Leka Zahradíková Model poptávky po železčí osoí dopravě Českých drah, a. s. a tuzemském přepravím trhu Klíčová slova: poptávka, osoí doprava, České dráhy, regresí aalýza,

Více

14. B o d o v é o d h a d y p a r a m e t r ů

14. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

jsou varianty znaku) b) při intervalovém třídění (hodnoty x

jsou varianty znaku) b) při intervalovém třídění (hodnoty x Výběr z eřeštelých příkladů ze zkouškových testů Jde o výběr z tpů příkladů, jejchž úspěšost řešeí u zkoušek se blíží ule. Itervalové versus bodové tříděí V tabulce je uvedeo rozděleí četostí a) př bodovém

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Přednáška č. 2 náhodné veličiny

Přednáška č. 2 náhodné veličiny Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující

Více

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x)

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x) 9 REGRESE A KORELACE Slovo regrese oecě zmeá poh zpět ústup ávrt regresví = ustupující Opčým termíem je progrese pokrok postup šířeí růst Pojem regrese l do sttstk zvede kocem 9 století rtským učecem Frcsem

Více

11. Popisná statistika

11. Popisná statistika . Popsá statstka.. Pozámka: Př statstckém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákotost, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme statstcké jedotky. Př

Více

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0 VYBRANÉ NEPARAMETRICKÉ

Více

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,

Více

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ

Více

[ jednotky ] Chyby měření

[ jednotky ] Chyby měření Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti

Více

APLIKACE REGRESNÍ ANALÝZY NA VÝPOČET BODU ZVRATU

APLIKACE REGRESNÍ ANALÝZY NA VÝPOČET BODU ZVRATU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV FINANCÍ FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF FINANCES APLIKACE REGRESNÍ ANALÝZY NA VÝPOČET BODU ZVRATU

Více

} kvantitativní znaky

} kvantitativní znaky Měřeí tattcké závlot, korelace, regree Obecé prcpy závlot vzájemá ouvlot měřeých zaků Prof. RNDr. Jaa Zvárov rová,, DrSc. fukčí závlot x tattcká závlot átroje pro měřeí závlot leár rí regree korelace }

Více

V. Normální rozdělení

V. Normální rozdělení V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ KATEDRA SPECIÁLNÍ GEODÉZIE DIPLOMOVÁ PRÁCE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ KATEDRA SPECIÁLNÍ GEODÉZIE DIPLOMOVÁ PRÁCE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ KATEDRA SPECIÁLNÍ GEODÉZIE DIPLOMOVÁ PRÁCE Praha 8 Pavel Třasák ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ KATEDRA SPECIÁLNÍ GEODÉZIE DIPLOMOVÁ

Více

Pravděpodobnostní modely

Pravděpodobnostní modely Pravděpodobostí modely Meu: QCEpert Pravděpodobostí modely Modul hledá metodou maimálí věrohodosti (MLE Maimum Likelihood Estimate) statistický model (rozděleí) který ejlépe popisuje data. Je přitom k

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

S1P Popisná statistika. Popisná statistika. Libor Žák

S1P Popisná statistika. Popisná statistika. Libor Žák SP Popsá statstka Popsá statstka Lbor Žák SP Popsá statstka Lbor Žák Základí zdroje : skrpta Mateatka IV - doc. RNDr. Z. Karpíšek, CSc. ateatka o le - http://athole.fe.vutbr.cz/ Základ ateatcké statstk

Více

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby. ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém

Více

9. Měření závislostí ve statistice Pevná a volná závislost

9. Měření závislostí ve statistice Pevná a volná závislost Dráha [m] 9. Měřeí závislostí ve statistice Měřeí závislostí ve statistice se zabývá především zkoumáím vzájemé závislosti statistických zaků vícerozměrých souborů. Závislosti přitom mohou být apříklad

Více

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou 4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky

Více

REGRESNÍ DIAGNOSTIKA. Regresní diagnostika

REGRESNÍ DIAGNOSTIKA. Regresní diagnostika 4.11.011 REGRESNÍ DIAGNOSTIKA Chemometrie I, David MILDE Regresí diagostika Obsahuje postupy k posouzeí: kvality dat pro regresí model (přítomost vlivých bodů), kvality modelu pro daá data, splěí předpokladů

Více

P1: Úvod do experimentálních metod

P1: Úvod do experimentálních metod P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí

Více

Závislost slovních znaků

Závislost slovních znaků Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví

Více