Termodynamika. Vnitøní energie. Malá zmìna této velièiny je

Rozměr: px
Začít zobrazení ze stránky:

Download "Termodynamika. Vnitøní energie. Malá zmìna této velièiny je"

Transkript

1 Termodynamika 1/19 Vnitøní energie U = ψ E(ψ)π(ψ) Malá zmìna této velièiny je du = ψ π(ψ) de(ψ) + ψ dπ(ψ) E(ψ) de(ψ): zmìnila se energetická hladina dπ(ψ): zmìnila se pravdìpodobnost výskytu stavu ψ Termodynamika: du = p dv + TdS p dv þpístÿ posuneme o dx. Zmìna energie = de(ψ) = mechanická práce = Fdx = F/A d(ax) = p(ψ) dv p(ψ) = þtlak stavu ψÿ, tlak = p = ψ π(ψ)p(ψ). TdS Zmìna π(ψ) [V] = zmìna zastoupení stavù s rùznou energií = teplo

2 [jkv -gb BoltzmannTomb-s.jpg] 2/19 Boltzmannova rovnice pro entropii... aneb druhá polovina statistické termodynamiky π(e) = exp(α i βe) E(ψ) = 1 β [α i ln π(ψ)], dπ(ψ) = 0 dπ(ψ)e(ψ) = ψ ψ Porovnáním s TdS: = k B T d ψ dπ(ψ) 1 β [α i ln π(ψ)] = 1 dπ(ψ) ln π(ψ) β π(ψ) ln π(ψ) ψ ψ S = k ψ π(ψ) ln π(ψ) Mikrokanonický soubor: π(ψ) = Boltzmannova rovnice: { 1/W pro E = E(ψ) 0 pro E E(ψ) S = k ln W Vlastnost: S 1+2 = S 1 + S 2 = k B ln(w 1 W 2 ) = k ln(w 1+2 ) credit: schneider.ncifcrf.gov/images/ boltzmann/boltzmann-tomb-8.html Uva¾ujeme-li pøechody mezi stavy, lze odvodit 0 (H-teorém) i ds dt

3 Boltzmannùv H-teorém (II. vìta termodynamická)+ 3/19 Fermiho zlaté pravidlo pro pravdìpodobnost pøechodu stavu φ na ψ zpùsobenou poruchovým Hamiltoniánem H pert (v izolovaném systému): dπ(φ ψ) W(φ ψ) = 2π dt h φ H pert ψ 2 ρ nal = W(ψ φ) = W ψφ Zmìna zastoupení stavu ψ (master equation): dπ(ψ) dt = φ π(φ)w(φ ψ) π(ψ) φ W(ψ φ) = φ W φψ [π(φ) π(ψ)] Rychlost zmìny entropie: ds dt = k d π(ψ) ln π(ψ) = k dt ψ ψ Trik: zamìníme φ ψ a seèteme: ln π(ψ) φ W φψ [π(φ) π(ψ)] ds dt = 1 2 k ψ,φ W ψφ [ln π(φ) ln π(ψ)][π(φ) π(ψ)] 0 entropie izolovaného systému neklesá Loschmidtùv paradox: Irreverzibilita z reverzibilních mikroskopických zákonù

4 Ideální roztok Stejná energie sousedù { = { = { (energie v¹ech uspoøádání je stejná). 4/19 Smícháme N 1 molekul látky 1 a N 2 molekul látky 2: ( ) N W = = N! N 1 N 1!N 2! ( S = k B ln W k B N 1 ln N 1 N + N 2 ln N ) 2 N S m = R (x 1 ln x 1 + x 2 ln x 2 ) Pou¾ili jsme tzv. Stirlingùv vzorec, lnn! N ln N N. Odvození: ln N! = N ln i i=1 N 0 ln i di Pøesnìj¹í asymptotický vzorec je: per partes = [i ln i i] N 0 = N ln N N ln N! asympt. = N ln N N + ln 2πN N 1 360N N 5 +

5 Reziduální entropie krystalù za T 0 [traj/ice.sh] 5/19 Krystal: 1 stav S = k ln 1 = 0 (tøetí vìta) Naru¹ení 3. vìty: CO, N 2 O, H 2 O. Pøísnì vzato není v rovnováze, ale energetické bariéry jsou pøíli¹ velké { stav þzamrzneÿ Pøíklad: Entropie krystalu CO za 0 K S m = k B ln 2 N A = R ln 2 Pøíklad: Entropie ledu za 0 K S m = k B ln N A = 3.41 J K 1 mol 1 Paulingovo pøibli¾né odvození: 6 = ( 4 2 ) orientací molekuly ale pak je vazba s pravdìp. 1 2 ¹patnì v molu je 2N A vazeb ( ) S m = k B ln 6 NA 2 2N = 3.37 J K A 1 mol 1

6 Informaèní entropie DNA 6/19 Za pøedpokladu zcela náhodného uspoøádání párù bází. Na jeden pár bází: k ln 4, na 1 mol párù bází: R ln 4. Odpovídající Gibbsova energie (pøi 37 C): G = RT ln 4 = 3.6 kj mol 1 Pro srovnání: ATP ADP { standardní: r G m = 31 kj mol 1 { za bì¾ných podmínek v buòce: r G m = 57 kj mol 1 Zachování øádu (informace) nìco stojí credit:

7 Termodynamika { dokonèení 7/19 α =? S = k ψ π(ψ)[α βe(ψ)] = (kα U T ) a tedy α = U TS kt F = kt ln ψ Helmholtzova (volná) energie = F kt e βe(ψ) [...] = kanonická partièní funkce = statistická suma (Q nebo Z) V¹e umíme z F (df = pdv SdT): p = F V S = F T U = F + TS H = U + pv G = F + pv

8 Jednoatomový ideální plyn podruhé Jeden atom v krabici L 3 : øe¹ení 1D: øe¹ení 3D: ^Hψ = Eψ, ^H = ^p2 2m + ^U krabice, ^p = i h r h 2 ( 2 ) ψ 2m x ψ y ψ z 2 = Eψ ( πnx x ) ψ 1D (x) = sin, E nx = h2 L 8mL 2n2 x, n x > 0 8/19... tentokrát kvantovì ψ(x, y, z) = ψ 1D (x)ψ 1D (y)ψ 1D (z), E n = h2 8mL 2(n2 x + n 2 y + n 2 z ), n x,y,z > 0 Statistická suma: [ h q tr = exp 2 ] ( ) 8mL 2 k B T (n2 x + n 2 y + n 2 L 3 z ) Λ n x =1 n y =1 n z =1 (de Broglieova) tepelná vlnová délka: Λ = h 2πmkB T

9 Jednoatomový ideální plyn podruhé II 9/19 De Broglieova vlnová délka = hranice kvantového/klasického popisu Pøíklad a) Kolik je Λ pro helium za teploty 2 K? b) Srovnejte s typickou vzdáleností atomù v kapalném heliu (hustota g cm 3 ). c) Jakou chybu udìláme pøi aproximaci q tr integrálem pro 1 atom He v krychli o hranì 0.1 mm? a) 6.2A; b) 4A; c) nepatrnou ( rel.) credit: hight3ch.com/superfluid-liquid-helium/

10 Jednoatomový ideální plyn podruhé III 10/19 Teï pro N atomù: nerozli¹itelnost Q = 1 N! qn tr... pokud ov¹em jsou dost ( Λ) daleko od sebe. Helmholtzova energie: ( ) 1 V F = k B T ln Q = k B T ln N N! Λ 3N = Nk B T ln Tlak: Chemický potenciál: ( ) F µ = N T,V p = ( ) F V T = k B T N V nebo = G N = F + pv N = k BT ln ( ( NΛ 3 ) ev e = C e = e = elektron pλ 3 ) k B T

11 Jednoatomový ideální plyn podruhé IV 11/19 Entropie (Sackur{Tetrode): ( ) ( F Ve S = = Nk ln 5/2 ) T NΛ 3 V ( V = Nk ln V 0 ) ( k = Nk ln B Te 5/2 ) pλ 3 Je aditivní pøi zdvojnásobení systému { dùsledek nerozli¹itelnosti! k i N i ln x i, σ A /σ B < 1 Gibbsùv paradox: S(σ A /σ B ) = 0, σ A /σ B = 1 k i N i ln x i, σ A /σ B > 1 Vnitøní energie: U = F + TS = 3 2 Nk BT Pøíklad: Vypoètìte molární entropii argonu pøi teplotì 25 C a tlaku 1 bar a srovnejte s experimentální hodnotou J K 1 mol J K 1 mol 1

12 Kanonická statistická suma 12/19 N stejných atomù interagujících potenciálem U: Kvantová mechanika: Q = ψ e βe(ψ) Klasická mechanika: ψ = ( r 1, r 2,..., r N, p 1, p 2,..., p N ) kde p = m v (hybnost neboli impuls) E = K + U = N i=1 p 2 i 2m + U( r 1, r 2,..., r N ) Dohromady: Q = 1 N! h 3N e βe d r 1 d r N d p 1 d p N Èlen h 3N zaji¹»uje stejný výsledek jako v kvantovém pøípadì (ovìøíme pro ideální plyn { viz dal¹í stránka) Q se nazývá kanonická partièní funkce; èasto se znaèí Z

13 Kanonická statistická suma II 13/19 Po integraci pøes hybnosti (zase Gauss... ): Q = 1 N!Λ 3 e βu d r 1 d r N 1 N!Λ 3Z kde Z = e βu d r 1 d r N je konguraèní integrál; èasto se znaèí Q A taky pro X = X( r 1,..., r N ): X = 1 Z Xe βu d r 1 d r N Napø. X = U reziduální vnitøní energie (std. stav id. plyn za p, T) Pro ideální jednoatomový plyn (bez vnitøních stupòù volnosti): Z = V N, Q = VN N!Λ 3 = stejné Q (a tedy i F) jako v kvantovém pøípadì.

14 Partièní funkce ideálního plynu 14/19 kde q in je vnitøní partièní funkce. Q = 1 N! qn, q = q tr q in, q tr = V Λ 3 Pro malé molekuly je energie souètem pøíspìvkù q in lze faktorizovat: q in = q rot q vib q el Rotaèní partièní funkce nesymetrické lineární molekuly: [ q rot = (2J + 1) exp E ] [ rot klasickálimita (2J + 1) exp h 2 ] J(J + 1) dj k B T 2k B TI J=0 J=0 = 2Ik BT h 2 = k BT hc~b = T (~B = h 2 Θ rot 2Ihc je rotaèní konstanta) Symetrická lineární molekula (polovina stavù, σ = 2): q rot = Ik BT h 2 = k BT σhc~b π ( ) 2Ia k Obecná molekula: q rot = B T 1/2 ( ) π kb T 3/2 1 σ h 2 = σ hc A~B~C ~ a={x,y,z}

15 Pøíklad. Z rotaèního spektra HCl (prùmìr izotopù) vypoètìte ~B a rotaèní partièní funkci pøi 25 C. Centrifugální korekce zanedbejte. (Data: hyperphysics.phy-astr.gsu.edu) qt = z 3 4: ~B = cm 1, qrot = 20.30, qrot, = 19.97; J J /19 ~ν/cm

16 Vibraèní partièní funkce 16/19 Ka¾dá fundamentální harmonická vibrace: [ q vib = exp hν ] k B T υ 1 h~νc = 1 e x, kde x = k B T υ=0 Proto¾e partièní funkci denujeme tak, ¾e nejni¾¹í energie je nulová, E 0 = 0, nezahrnujeme zde energii nulového bodu. Pokud bychom ji chtìli zahrnout (jestli¾e na¹e energie molekul nulové vibrace neobsahují), bylo by: s nulovým bodem qvib = e x/2 1 e x Klasická limita nebo také q vib... obvykle dost nepøesné 0 exp [ hν ] k B T υ dυ = k BT h~νc = 1 x 0 1 e x 1 x = k BT h~νc T Θ vib

17 Elektronová partièní funkce Elektronovou partièní funkci poèítáme pøímo: q el = i g i exp ( ) Ei k B T 17/19 Term 2S+1 L J (Russell{Saunders) popisuje stav atomu: S = celkové spinové kvantové èíslo (2S + 1 = multiplicita; ve spektru je vidìt jako multiplet díky spin-orbitální interakci (pro L > 0)) L = orbitální kvantové èíslo (moment hybnosti elektronu je h L(L + 1)) podle klíèe S = 0, P = 1, D = 2, F = 3... J = celkové angulární kvantové èíslo (J { L S,..., L + S}) Multiplicita (poèet stavù): g = 2J + 1 Pøíklad. Atom boru má základní stav dublet 2 P 1/2 (multiplicita 2) a 2 P 3/2 (multiplicita 4), rozdíl je pouze E = cm 1. a) Vypoètìte elektronovou partièní funkci pøi 1000 K. b) Dal¹í stav má cm 1. Zanedbali jsme jej oprávnìnì? a) qel = 5.913; b) ano (exp( E/k/T) = )

18 Chemický potenciál ideálního plynu Helmholtzova energie: ( NΛ F = k B T ln Q = Nk B T ln 3 ) e q in V 18/19 Pøechod na G: pøièteme pv a pøejdeme na p = Nk B T/V jako nezávisle promìnnou ( Λ G = F + pv = F + Nk B T = Nk B T ln 3 ) p k B Tq in pøevedeme na 1 mol (N = N A ) polo¾íme p = p st (standardní stav = id.plyn pøi T a p st ) pøidáme molární energii U m(0) v T = 0 ( G m = µ = U Λ m(0) + RT ln 3 p st ) k B Tq in Pokud nekombinujeme výpoèty s tabulkami, zvolíme si p st, jak chceme

19 Chemická rovnováha v ideální plynné fázi Standardní reakèní Gibbsova energie: r G m = ν i G m,i i Λ = h 2πmkB T 19/19 ( r G ) m RT [ r U = exp ] ( m(0) RT k B T ) νi q rot = 2Ik BT sym h 2 K = exp q in,i p i st Λ 3 1 i q vib = 1 e h~νc/k BT Pøíklad Fotosféra Slunce má teplotu 5800 K a tlak je asi Pa. Skládá se pøevá¾nì z atomárního vodíku. Kolik % vodíku je disociováno na protony a elektrony? a) Uva¾ujte jen disociaci H H + + e b) Je pøedpoklad pou¾ití klasické mechaniky pro e oprávnìný? c) Posuïte, jak se projeví (i) vzbuzené stavy vodíku (n = 2 atd.) (ii) vznik iontu H (elektronová anita H je kj/mol) (iii) vznik molekul H 2 (E dis = 4.52 ev, l = 0.74 A, ν vib = Hz) a) %; b) ano (dist 20Λ), c) (i) zanedbatelnì, (ii) málo, (iii) málo

Statistická termodynamika (mechanika)

Statistická termodynamika (mechanika) Statistická termodynamika (mechanika) 1/16 Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic Tlak ideálního plynu z kinetické teorie 1 [tchem/simplyn.sh] 2/16 Molekula = hmotný

Více

Statistická termodynamika (mechanika) Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic

Statistická termodynamika (mechanika) Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic Statistická termodynamika (mechanika) 1/23 Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic Tlak ideálního plynu z kinetické teorie 1 [simolant -I0] 2/23 Molekula = hmotný bod

Více

Statistická termodynamika (mechanika)

Statistická termodynamika (mechanika) Statistická termodynamika (mechanika) 1/18 Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic Tlak ideálního plynu z kinetické teorie 1 [simolant -I0] 2/18 Molekula = hmotný bod

Více

Pravdìpodobnostní popis

Pravdìpodobnostní popis Pravdìpodobnostní popis 1/19 klasická mechanika { stav = { r 1,..., r N, p 1,..., p N } stavù je { hustota pravdìpodobnosti stavù ρ( r 1,..., r N, p 1,..., p N ) kvantové mechaniky { stav = stavù je koneènì

Více

Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W =

Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W = Termochemie { práce Práce: W = s F nebo W = Objemová práce (p vn = vnìj¹í tlak): W = V2 V 1 p vn dv s2 Vratný dìj: p = p vn (ze stavové rovnice) W = V2 V 1 p dv s 1 F ds s.1 Diferenciální tvar: dw = pdv

Více

Opakování: Standardní stav þ ÿ

Opakování: Standardní stav þ ÿ Opakování: Standardní stav þ ÿ s.1 12. øíjna 215 Standardní stav þ ÿ = èistá slo¾ka ve stavu ideálního plynu za teploty soustavy T a standardního tlaku = 1 kpa, døíve 11,325 kpa. Èistá látka: Pøibli¾nì:

Více

Klasická termodynamika (aneb pøehled FCH I)

Klasická termodynamika (aneb pøehled FCH I) Klasická termodynamika (aneb pøehled FCH I) 1/16 0. zákon 1. zákon id. plyn: pv = nrt pv κ = konst (id., ad.) id. plyn: U = U(T) }{{} Carnotùv cyklus dq T = 0 2. zákon rg, K,... lim S = 0 T 0 S, ds = dq

Více

Viriálová stavová rovnice 1 + s.1

Viriálová stavová rovnice 1 + s.1 Viriálová stavová rovnice 1 + s.1 (Mírnì nestandardní odvození Prùmìrná energie molekul okolo vybrané molekuly (β = 1/(k B T : 0 u(r e βu(r 4πr 2 dr Energie souboru N molekul: U = f 2 k B T + N 2 2V Tlak

Více

A až E, s těmito váhami 6, 30, 15, 60, 15, což znamená, že distribuce D dominuje.

A až E, s těmito váhami 6, 30, 15, 60, 15, což znamená, že distribuce D dominuje. Příklad 1 Vypočtěte počet způsobů rozdělení 18 identických objektů do 6 boxů s obsahem 1,0,3,5,8,1 objektů a srovnejte tuto váhu s konfigurací, kdy je každý box obsazen třemi objekty. Která konfigurace

Více

Tento dokument je doplňkem opory pro studenty Přírodovědecké fakulty Univerzity Jana Evangelisty Purkyně.

Tento dokument je doplňkem opory pro studenty Přírodovědecké fakulty Univerzity Jana Evangelisty Purkyně. Statistická fyzika - cvičení RNDr. Filip Moučka, Ph.D., filip.moucka@ujep.cz Tento dokument je doplňkem opory pro studenty Přírodovědecké fakulty Univerzity Jana Evangelisty Purkyně. Cílem tohoto textu

Více

Statistická termodynamika

Statistická termodynamika Statistická termodynamika Jan Řezáč UOCHB AV ČR 24. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Statistická termodynamika 24. listopadu 2016 1 / 38 Úvod Umíme popsat jednotlivé molekuly (případně jejich interakce)

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Fluktuace termodynamických veličin

Fluktuace termodynamických veličin Kvantová a statistická fyzika (Termodynamika a statistická fyzika Fluktuace termodynamických veličin Fluktuace jsou odchylky hodnot fyzikálních veličin od svých středních (rovnovážných hodnot. Mají původ

Více

Fyzika IV Dynamika jader v molekulách

Fyzika IV Dynamika jader v molekulách Dynamika jader v molekulách vibrace rotace Dynamika jader v molekulách rotační energetické hladiny (dvouatomová molekula) moment setrvačnosti kolem osy procházející těžištěm osa těžiště m2 m1 r2 r1 R moment

Více

Lekce 4 Statistická termodynamika

Lekce 4 Statistická termodynamika Lekce 4 Statistická termodynamika Osnova 1. Co je statistická termodynamika 2. Mikrostav, makrostav a Gibbsův soubor 3. Příklady Gibbsových souborů 4. Souborové střední hodnoty 5. Časové střední hodnoty

Více

Matematika II Urèitý integrál

Matematika II Urèitý integrál Matematika II Urèitý integrál RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Motivace Je dána funkce f(x) = 2 + x2 x 4. Urèete co

Více

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10

Více

Molekulové modelování a simulace

Molekulové modelování a simulace Molekulové modelování a simulace c Jiří Kolafa (24. srpna 2018) mujweb.cz/kolafa Ústav Fyzikální chemie, VŠCHT Praha Tato skripta jsou určena pro následující předměty vyučované na VŠCHT Praha: Počítačová

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

Molekulové modelování a simulace

Molekulové modelování a simulace Molekulové modelování a simulace c Jiří Kolafa (3. května 2018) mujweb.cz/kolafa Ústav Fyzikální chemie, VŠCHT Praha Tato skripta jsou určena pro následující předměty vyučované na VŠCHT Praha: Počítačová

Více

Molekulové modelování a simulace

Molekulové modelování a simulace Molekulové modelování a simulace c Jiří Kolafa (13. března 2017) mujweb.cz/kolafa Ústav Fyzikální chemie, VŠCHT Praha Tato skripta jsou určena pro následující předměty vyučované na VŠCHT Praha: Počítačová

Více

Řešené úlohy ze statistické fyziky a termodynamiky

Řešené úlohy ze statistické fyziky a termodynamiky Řešené úlohy ze statistické fyziky a termodynamiky Statistická fyzika. Uvažujme dvouhladinový systém, např. atom s celkovým momentem hybnosti h v magnetickém ) ) poli. Bázové stavy označme = a =, první

Více

Molekulové vibrace CO 2. Vidíme pomocí: { IR spektroskopie { Ramanovy spektroskopie

Molekulové vibrace CO 2. Vidíme pomocí: { IR spektroskopie { Ramanovy spektroskopie Molekulové vibrace Vidíme pomocí: { IR spektroskopie { Ramanovy spektroskopie Typické frekvence: 10 12 Hz { 10 14 Hz vlnoèty 30 cm 1 Hz { 4400 cm 1 (H 2 ) Kvantované, ovlivòují termodynamické vlastnosti

Více

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e = Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?

Více

Rovnováha kapalina{pára u binárních systémù

Rovnováha kapalina{pára u binárních systémù Rovnováha kapalina{pára u binárních systémù 1 Pøedpoklad: 1 kapalná fáze Oznaèení: molární zlomky v kapalné fázi: x i molární zlomky v plynné fázi: y i Poèet stupòù volnosti: v = k f + 2 = 2 stav smìsi

Více

Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování

Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování eideální plyny b H Q(, V, T )... e dp 3... dpdr... dr! h Integrace přes hybnosti QVT (,, ) pmkt! h 3 / e dr dr dr /... U kt... eideální chování p kt r B ( T) r B ( T) r 3 3 Vyšší koeficinety velice složité

Více

Potenciální energie atom{atom

Potenciální energie atom{atom Potenciální energie atom{atom 1/16 Londonovy (disperzní) síly: na del¹ích vzdálenostech, v¾dy pøita¾livé Model uktuující dipól { uktuující dipól elst. pole E 1/r 3 indukovaný dipól µ ind E energie u(r)

Více

Nekovalentní interakce

Nekovalentní interakce Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno JAMES WATT 19.1.1736-19.8.1819 Termodynamika principy, které vládnou přírodě Obsah přednášky Vysvětlení základních

Více

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli: Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly

Více

Kovy - model volných elektronů

Kovy - model volných elektronů Kovy - model volných elektronů Kovová vazba 1. Preferuje ji většina prvků vyskytujících se v přírodě. Kov je tvořen kladně nabitými ionty (s konfigurací vzácného plynu) a relativně velmi volnými elektrony.

Více

Modelové výpočty na H 2 a HeH +

Modelové výpočty na H 2 a HeH + Modelové výpočty na H 2 a HeH + Minimální báze Všechny teoretické poznatky je užitečné ilustrovat modelovým výpočtem. Budeme aplikovat Hartree-Fockovy výpočty na uzavřených slupkách systémů H 2 a HeH +.

Více

Nekovalentní interakce

Nekovalentní interakce Nekovalentní interakce Jan Řezáč UOCHB AV ČR 3. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 3. listopadu 2016 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii

Více

Brownovská (stochastická) dynamika, disipativní èásticová dynamika = MD + náhodné síly. i = 1,..., N. r i. U = i<j. u(r ij ) du(r ji ) r ji

Brownovská (stochastická) dynamika, disipativní èásticová dynamika = MD + náhodné síly. i = 1,..., N. r i. U = i<j. u(r ij ) du(r ji ) r ji Molekulová dynamika Síly: tuhé koule ap. { nárazy þklasickáÿ MD { integrace pohybových rovnic 1/20 Brownovská (stochastická) dynamika, disipativní èásticová dynamika = MD + náhodné síly Pøíklad: f i =

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.

Více

Fenomenologická termodynamika

Fenomenologická termodynamika Atkins 1 Fenomenologická termodynamika Popisuje makroskopický stav Neuvažuje vnitřní stavbu hmoty okolí termodynamická soustava (systém) okolí Vnitřní parametry teplota T vnitřní energie U tlak p látková

Více

Fyzika IV. g( ) Vibrace jader atomů v krystalové mříži

Fyzika IV. g( ) Vibrace jader atomů v krystalové mříži Vibrace jader atomů v krystalové mříži v krystalu máme N základních buněk, v každé buňce s atomů, které kmitají kolem rovnovážných poloh výchylky kmitů jsou malé (Taylorův rozvoj): harmonická aproximace

Více

ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE PRO PŘÍPAD POTENCIÁLNÍ ENERGIE.

ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE PRO PŘÍPAD POTENCIÁLNÍ ENERGIE. ATOMY + MOLEKULY ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE H ˆψ = Eψ PRO PŘÍPAD POTENCIÁLNÍ ENERGIE Vˆ = Ze 2 4πε o r ŘEŠENÍ HLEDÁME

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

Teorie Molekulových Orbitalů (MO)

Teorie Molekulových Orbitalů (MO) Teorie Molekulových Orbitalů (MO) Kombinace atomových orbitalů na všech atomech v molekule Vhodná symetrie Vhodná (podobná) energie Z n AO vytvoříme n MO Pro začátek dvouatomové molekuly: H 2, F 2, CO,...

Více

Termodynamika a živé systémy. Helena Uhrová

Termodynamika a živé systémy. Helena Uhrová Termodynamika a živé systémy Helena Uhrová Základní pojmy termodynamiky soustava izolovaná otevřená okolí vlastnosti soustavy znaky popisující soustavu stav rovnováhy tok m či E =0 funkce stavu - soubor

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

PLANCK EINSTEIN BOHR de BROGLIE

PLANCK EINSTEIN BOHR de BROGLIE KVANTOVÁ MECHANIKA PLANCK 1858-1947 EINSTEIN 1879-1955 BOHR 1885-1962 de BROGLIE 1892-1987 HEISENBERG 1901-1976 SCHRÖDINGER 1887-1961 BORN 1882-1970 JORDAN 1902-1980 PAULI 1900-1958 DIRAC 1902-1984 VŠECHNO

Více

Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost

Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost Stanislav Labík Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost 325 labik@vscht.cz 220 444 257 http://www.vscht.cz/fch/ Výuka Letní semestr N403032 Základy fyzikální chemie

Více

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o. . Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární

Více

Stavba hmoty. Atomová teorie Korpuskulární model látky - chemické

Stavba hmoty. Atomová teorie Korpuskulární model látky - chemické Stavba hmoty Atomová teorie Korpuskulární model látky - chemické látky jsou složeny z mikroskopických, chemicky dále neděčástic atomů. Později byl model rozšířen na molekuly a ionty (chemický druh - specie).

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) 1 Statistická fyzika Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Cíl statistické fyziky: vysvětlit makroskopické vlastnosti látky na základě mikroskopických vlastností jejích elementů,

Více

Aproximace funkcí. Chceme þvzoreèekÿ. Známe: celý prùbìh funkce

Aproximace funkcí. Chceme þvzoreèekÿ. Známe: celý prùbìh funkce Aproximace funkcí 1/13 Známe: celý prùbìh funkce Chceme þvzoreèekÿ hodnoty ve vybraných bodech, pøíp. i derivace Kvalita údajù: známe pøesnì (máme algoritmus) známe pøibli¾nì (experiment èi simulace) {

Více

Born-Oppenheimerova aproximace

Born-Oppenheimerova aproximace Born-Oppenheimerova aproximace Oddělení elektronického a jaderného pohybu Jádra 2000 x těžší než elektrony elektrony kvantová chemie, popis systému (do 100 atomů) na základě vlastností elektronů (jádra

Více

III. STRUKTURA A VLASTNOSTI PLYNŮ

III. STRUKTURA A VLASTNOSTI PLYNŮ III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo

Více

8 Elasticita kaučukových sítí

8 Elasticita kaučukových sítí 8 Elasticita kaučukových sítí Elastomerní polymerní látky (např. kaučuky) tvoří ze / chemické příčné vazby a / fyzikální uzly. Vyznačují se schopností deformovat se již malou silou nejméně o 00 % své původní

Více

Kvantová fyzika atomárních soustav letní semestr VIII. KOTLÁŘSKÁ 23. DUBNA 2014

Kvantová fyzika atomárních soustav letní semestr VIII. KOTLÁŘSKÁ 23. DUBNA 2014 F40 Kvantová fyzika atomárních soustav letní semestr 03-04 VIII. Vibrace víceatomových molekul cvičení KOTLÁŘSKÁ 3. DUBNA 04 Úvodem capsule o maticích a jejich diagonalisaci definice "vibračních módů"

Více

elektrony v pevné látce verze 1. prosince 2016

elektrony v pevné látce verze 1. prosince 2016 F6122 Základy fyziky pevných látek seminář elektrony v pevné látce verze 1. prosince 2016 1 Drudeho model volných elektronů 1 1.1 Mathiessenovo pravidlo............................................... 1

Více

Úvod do strukturní analýzy farmaceutických látek

Úvod do strukturní analýzy farmaceutických látek Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 40, dolenskb@vscht.cz Nukleární Magnetická Rezonance I. Příprava předmětu byla podpořena projektem

Více

Obsah. Chyby a nedostatky hlaste prosím autorovi. 1 Úvod 3

Obsah. Chyby a nedostatky hlaste prosím autorovi. 1 Úvod 3 Molekulové modelování a simulace c Jiří Kolafa (jiri.kolafa@vscht.cz), 23. září 214, Ústav Fyzikální chemie, VŠCHT Praha Tento text obsahuje m.j. upravené části skript Skripta Fyzikální chemie bakalářský

Více

Úvodní info. Studium

Úvodní info.   Studium [mozilla le:/home/jiri/www/fch/cz/pomucky/kolafa/n4316.html] 1/16 Úvodní info Jiøí Kolafa Ústav fyzikální chemie V CHT Praha budova A, místnost 325 (zadním vchodem) jiri.kolafa@vscht.cz 2244 4257 Web pøedmìtu:

Více

Fáze a fázové přechody

Fáze a fázové přechody Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Fáze a fázové přechody Pojem fáze je zobecněním pojmu skupenství, označuje homogenní část makroskopického tělesa. Jednotlivé fáze v

Více

3.5.2 Kvantový rotátor

3.5.2 Kvantový rotátor 35 Další příklady 77 m ( x) exp x ; ( ) th kb (388) uto dnes slavnou formuli odvodil Felix v roce 193 Formule má velký význam v teorii kmitů krystalové mříže Odvoďme tak jako v minulých případech limitu

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ 18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti

Více

FYZIKÁLNÍ CHEMIE I: 2. ČÁST

FYZIKÁLNÍ CHEMIE I: 2. ČÁST Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 2. ČÁST KCH/P401 Ivo Nezbeda Ústí nad Labem 2013 1 Obor: Klíčová slova: Anotace: Toxikologie a analýza škodlivin, Chemie

Více

Termodynamika 2. UJOP Hostivař 2014

Termodynamika 2. UJOP Hostivař 2014 Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně

Více

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou

Více

Molekulové modelování a simulace

Molekulové modelování a simulace Molekulové modelování a simulace c Ji í Kolafa (24. února 2019) https://web.vscht.cz/~kolafaj Ústav Fyzikální chemie, V CHT Praha Tato skripta jsou ur ena pro následující p edm ty vyu ované na V CHT Praha:

Více

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe Skupenské stavy Plyn Zcela neuspořádané Hodně volného prostoru Zcela volný pohyb částic Částice daleko od sebe Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Více

Molekulové modelování a simulace

Molekulové modelování a simulace Molekulové modelování a simulace c Ji í Kolafa (24. února 2019) https://web.vscht.cz/~kolafaj Ústav Fyzikální chemie, V CHT Praha Tato skripta jsou ur ena pro následující p edm ty vyu ované na V CHT Praha:

Více

Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů

Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů Elektronová struktura pevných látek model volných elektronů 1897: J.J. Thomson - elektron jako částice 1900: P. Drude: kinetická teorie plynů - kov jako plyn elektronů Drudeho model elektrony se mezi srážkami

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program

Více

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura

Více

Termodynamika v biochemii

Termodynamika v biochemii Termodynamika v biochemii Studium energetických změn Klasická x statistická Rovnovážná x nerovnovážná lineárn rní a nelineárn rní Základní pojmy Makroskopický systém, okolí systému Termodynamický systém

Více

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15 Obsah PŘEDMLUVA...9 ÚVOD...11 1. TEORETICKÁ MECHANIKA...15 1.1 INTEGRÁLNÍ PRINCIPY MECHANIKY... 16 1.1.1 Základní pojmy z mechaniky... 16 1.1.2 Integrální principy... 18 1.1.3 Hamiltonův princip nejmenší

Více

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory

Více

October 1, Interpretujte význam jejích parametrů. Vypočítejte jeho momenty. Napište vzorec pro. I(n, a, b) :=

October 1, Interpretujte význam jejích parametrů. Vypočítejte jeho momenty. Napište vzorec pro. I(n, a, b) := Kvantová fyzika cvičení s návody a výsledky October 1, 007 Návody zde uvedené jsou záměrně uváděny ve stručné formě, jako nápověda a vodítko, jak při řešení úloh postupovat; nepředstavují a nenahrazují

Více

Atomové a molekulové orbitaly Ion molekuly vodíku. Molekula vodíku Heitler-Londonovou metodou. Metoda LCAO. Báze atomových orbitalů.

Atomové a molekulové orbitaly Ion molekuly vodíku. Molekula vodíku Heitler-Londonovou metodou. Metoda LCAO. Báze atomových orbitalů. Atomové a molekulové orbitaly Ion molekuly vodíku. Molekula vodíku Heitler-Londonovou metodou. Metoda LCAO. Báze atomových orbitalů. Ion molekuly vodíku H + 2 První použití metody je demonstrováno při

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

Opakování: shrnutí základních poznatků o struktuře atomu

Opakování: shrnutí základních poznatků o struktuře atomu 11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické

Více

Molekuly. Všeobecně známý fakt: atomy se slučujou do molekul, pokud to zrovna nejsou atomy inertních plynů v posledním sloupci periodické tabulky

Molekuly. Všeobecně známý fakt: atomy se slučujou do molekul, pokud to zrovna nejsou atomy inertních plynů v posledním sloupci periodické tabulky Molekuly Všeobecně známý fakt: atomy se slučujou do molekul, pokud to zrovna nejsou atomy inertních plynů v posledním sloupci periodické tabulky Nejjednodušší případ: molekulární iont H +, tj. dva protony

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE doc. Ing. David MILDE, Ph.D. tel.: 585634443 E-mail: david.milde@upol.cz (c) -017 Doporučená literatura Černohorský T., Jandera P.: Atomová spektrometrie. Univerzita Pardubice 1997.

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

Elementární reakce. stechiometrický zápis vystihuje mechanismus (Cl. + H 2 HCl + H. ) 2 NO 2 ; radioak-

Elementární reakce. stechiometrický zápis vystihuje mechanismus (Cl. + H 2 HCl + H. ) 2 NO 2 ; radioak- Elementární reakce 1/15 stechiometrický zápis vystihuje mechanismus (Cl. + H 2 HCl + H. ) 2 NO 2 ; radioak- reakce monomolekulární (rozpad molekuly: N 2 O 4 tivní rozpad; izomerizace) reakce bimolekulární

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

Kvantová mechanika - model téměř volných elektronů. model těsné vazby

Kvantová mechanika - model téměř volných elektronů. model těsné vazby Kvantová mechanika - model téměř volných elektronů model těsné vazby Částice (elektron) v periodickém potenciálu- Blochův teorém Dále už nebudeme považovat elektron za zcela volný (Sommerfeld), ale připustíme

Více

VÍTEJTE V MIKROSVĚTĚ

VÍTEJTE V MIKROSVĚTĚ VÍTEJTE V MIKROSVĚTĚ Klasická vs. Moderní fyzika Klasická fyzika fyzika obyčejných věcí viditelných pouhým okem Moderní fyzika Relativita zabývá se tím co se pohybuje rychle nebo v silovém gravitačním

Více

Exponenciální rozdìlení

Exponenciální rozdìlení Exponenciální rozdìlení Ing. Michael Rost, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích Katedra aplikované matematiky a informatiky Exponenciální rozdìlení Exp(A, λ) "Rozdìlení bez pamìti" Exponenciální

Více

6. Stavy hmoty - Plyny

6. Stavy hmoty - Plyny skupenství plynné plyn x pára (pod kritickou teplotou) stavové chování Ideální plyn Reálné plyny Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti skupenství plynné reálný plyn ve stavu

Více

Motivace: Poissonova rovnice

Motivace: Poissonova rovnice Motivace: Poissonova rovnice Zachovává se poèet el. indukèních èar: Q = D d s, S D = ε E Integrál spoèítáme pøes povrch krychlièky dx dy dz: dq = dvρ = D d s = dydz[d x (x + dx) D x (x)] = dxdydz S ( Dx

Více

Magnetokalorický jev MCE

Magnetokalorický jev MCE Magnetokalorický jev a jeho aplikační potenciál P. Svoboda Katedra fyziky kondenzovaných látek Magnetokalorický jev MCE MCE: znám déle než 120 let renesance zájmu během posledních 35 let PROČ? Připomínka

Více

Vybrané podivnosti kvantové mechaniky

Vybrané podivnosti kvantové mechaniky Vybrané podivnosti kvantové mechaniky Pole působnosti kvantové mechaniky Středem zájmu KM jsou mikroskopické objekty Typické rozměry 10 10 až 10 16 m Typické energie 10 22 až 10 12 J Studované objekty:

Více

Symetrie Platonovská tělesa

Symetrie Platonovská tělesa Symetrie Platonovská tělesa 1 Symetrie Virus rýmy Virus obrny Virus slintavky a kulhavky 2 Symetrie molekul Jak jsou atomy v molekule uspořádány = ekvivalentní atomy 3 Prvky a operace symetrie Značk a

Více

Vlastnosti pevných látek

Vlastnosti pevných látek Vlastnosti pevných látek fyzikální vlastnost: odezva na určitý podnět, fyzikální rovnice definuje vztah mezi nimi (fyzikální veličiny skaláry, vektory, tenzory) Příklad: elastická deformace izotropního

Více

Transportní jevy. J = konst F

Transportní jevy. J = konst F Transportní jevy 1/23 Transportní (kinetické) jevy: difuze, elektrická vodivost, viskozita (vnitøní tøení), vedení tepla... Tok (ux) (té¾ zobecnìný tok) hmoty, náboje, hybnosti, tepla... : J = mno¾ství

Více

John Dalton Amadeo Avogadro

John Dalton Amadeo Avogadro Spojením atomů vznikají molekuly... John Dalton 1766 1844 Amadeo Avogadro 1776 1856 Výpočet molekuly 2, metoda valenční vazby Walter eitler 1904 1981 Fritz W. London 1900 1954 Teorie molekulových orbitalů

Více

Matematika I Ètvercové matice - determinanty

Matematika I Ètvercové matice - determinanty Matematika I Ètvercové matice - determinanty RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Co u¾ známe? vektory - základní operace

Více

Operátory a maticové elementy

Operátory a maticové elementy Operátory a matice Operátory a maticové elementy operátory je výhodné reprezentovat maticemi maticové elementy operátorů jsou dány vztahy mezi Slaterovými determinanty obsahujícími ortonormální orbitaly

Více

Řešit atom vodíku znamená nalézt řešení Schrödingerovy rovnice s příslušným hamiltoniánem. 1 4πǫ 0. 2m e

Řešit atom vodíku znamená nalézt řešení Schrödingerovy rovnice s příslušným hamiltoniánem. 1 4πǫ 0. 2m e 8 Atom vodíku Správné řešení atomu vodíku je jedním z velkých vítězství kvantové mechaniky. Podle klasické fyziky náboj, který se pohybuje se zrychlením (elektron obíhající vodíkové jádro proton), by měl

Více

Úvodní info. Studium

Úvodní info.   Studium [mozilla le:///home/jiri/www/fh/z/pomuky/kolafa/n4341.html] 1/16 Úvodní info Jiøí Kolafa Ústav fyzikální hemie V CHT Praha budova A, místnost 325 (zadním vhodem) jiri.kolafa@vsht.z 2244 4257 Web pøedmìtu:

Více