Newtonův zákon III
|
|
- Julie Pavlíková
- před 5 lety
- Počet zobrazení:
Transkript
1 Newonův záon III Předpolady: Pomůcy: ruličy, ousy oaleťáu Pedaoicá poznáma: Je nuné posupova a, aby se před oncem hodiny podařilo zada poslední přílad. Př. 1: Jaý byl nejdůležiější závěr minulé hodiny? Nesačí si pamaova 1. Newonův záon, ale je řeba ho používa, dyž se zamýšlíme nad nějaým problémem. Př. 2: Auo jede po vodorovné přímé silnici rovnoměrně rychlosí 90 m/h a působí na něj směrem dopředu síla o veliosi 250 N. Působí na auo další síla? Ja je velá? Auo se pohybuje rovnoměrně přímočaře výsledná působící síla musí bý nulová na auo musí působi romě síly mooru směrem dozadu sejně velá síla o veliosi 250 N (zřejmě celový odpor (vzduch a ření dohromady). Př. 3: Vysvěli princip beranidla. Jaé vlasnosi by mělo mí? Proč je snazší dveře vyrazi než vylači? Beranidlo - rozpohybujeme ho a vrazíme do dveří. Beranidlo se snaží si zachova svůj pohyb, zabrzdí ho až síla dveří (sejně velou silou působí beranidlo na dveře). Beranidlo musí bý ěžé, pohybova se velou rychlosí a musí bý vrdé. Na rychlé zasavení je řeba velá síla. Př. 4: Jaé síly působí na auo jedoucí sálou rychlosí po rovné silnici. Jaá je jejich výslednice? auo jede rovnoměrně dopředu auo rovnoměrně couvá 1
2 auo jede rovnoměrně dopředu směr pohybu aua F S auo rovnoměrně couvá F S Auo jede rovnoměrně výslednice působících sil musí bý nulová. Na auo působí: - raviační síla Země, s - síla silnice, - řecí síla a odpor vzduchu, - síla ol, erou se odsrují od silnice a udržují auo v rovnoměrném pohybu. Dvojice sil opačného směru mají sejnou velios a navzájem se odečou. Auo jede rovnoměrně výslednice působících sil musí bý nulová. Na auo působí: - raviační síla Země, s - síla silnice, - řecí síla a odpor vzduchu, - síla ol, erou se odsrují od silnice a udržují auo v rovnoměrném pohybu. Dvojice sil opačného směru mají sejnou velios a navzájem se odečou. Pedaoicá poznáma: Něeré žáy převapuje, že oba obrázy jsou éměř sejné. Podrobnější disusi o om, erá síla auo udržuje v pohybu necháváme na později. Př. 5: Když položíš vodorovně na pás v obchodě u poladny jao poslední limonádu, láhev zůsává na mísě, i dyž se pás rozjede. Proč? Co se naopa sane, dyž pás zasaví? Láhev se snaží si udrže svůj pohybový sav (lid) zůsává na mísě pás ji posupně rozáčí a ím uvádí do pohybu. Ve chvíli, dy se pás rychle zasaví, se láhev opě snaží udrže svůj pohyb a uálí se dál dopředu. Př. 6: Je nuné, aby osmicá sonda měla během cesy ze Země na Mars celou dobu zapnué moory? Proč? Nuné o není (ani se o a nedělá). Sonda je urychlena při saru ze Země, pa se věší čás raey oddělí a sonda dál leí servačnosí. Moory se zapínají zase až při zasavování nebo manévrech v cíly cesy. Př. 7: Díě si hraje na sluzavce. Jednou sedí uprosřed a nehýbe se, podruhé sejným mísem rovnoměrně projíždí. Porovnej velios řecí síly v obou případech. Rozebereme si posupně oba případy. 2
3 díě se nehýbe Na díě působí ři síly: - raviační síla Země, - síla louzačy (aby se díě nepropadlo dolů), - řecí síla, erá zabraňuje čási raviace sáhnou díě dolů. Podle 1. Newonova záona může díě zůsa v lidu pouze v případě, že výsledná působící síla bude nulová řecí síla musí vyrovna působení raviační síly a síly od louzačy. díě jede rovnoměrně Na díě působí ři síly: F - raviační síla Země, - síla louzačy (aby se díě nepropadlo dolů), - řecí síla, erá zabraňuje čási raviace sáhnou díě dolů. Podle 1. Newonova záona se může díě pohybova rovnoměrně přímočaře pouze v případě, že výsledná působící síla bude nulová řecí síla musí vyrovna působení raviační síly a síly od louzačy. Graviační síla i síla louzačy jsou v obou případech sejné řecí síla musí bý v obou případech sejná. Pedaoicá poznáma: Sudeni věšinou považují za věší sílu působící v lidu. Vychází o i z osobní suečnosi, proože nerozlišují sílu, erá musí zabrzdi louzající díě, od síly, erá sačí omu, aby se už sojící díě nepohybovalo. Př. 8: Ační hrdina musí vysoči z jedoucího vlau. V jaém směru má soči? Proč? Co musí při dopadu uděla? Problém: Poud jedeme vlaem, máme rychlos vlau, o erou nepřijedeme, dyž vysočíme při dopadu na zem se budeme pohybova ve směru jízdy vůči zemi podobnou rychlosi, erou jede vla. Doporučení: dopada ve směru pohybu vlau (pozadu jsou všechny reace daleo obížnější), zusi se odrazi směrem dozadu proi směru jízdy vlau a ím rychlos vůči zemi sníži, po dopadu uděla ooul, nebo poračova v běhu. Př. 9: Parašuisa vysočí z leadla. Nejdříve padá se zavřeným padáem. Zrychluje, ale po určié době se jeho rychlos usálí a padá rovnoměrně. Poé oevře padá, jeho pád se zpomaluje až do oamžiu, dy začne opě pada rovnoměrně. Porovnej velios odporu vzduchu, erý dohromady na parašuisu s padáem působí, a) dyž rovnoměrně padá se zavřeným padáem, b) dyž rovnoměrně padá s oevřeným padáem. Během pádu působí na parašuisu dvě síly: 3
4 - raviační síla Země (během pádu se nemění), v - odpor vzduchu. a) Parašuisa rovnoměrně padá se zavřeným padáem. Rovnoměrný pohyb na parašuisu působí nulová výsledná síla musí plai Fv b) Parašuisa rovnoměrně padá s oevřeným padáem. Rovnoměrný pohyb na parašuisu působí nulová výsledná síla musí plai Fv = F. = F. V obou případech se velios odporu vzduchu rovná veliosi raviační síly, erou na parašuisu působí Země v obou případech působí na parašuisu sejně velý odpor vzduchu. Př. 10: Vysvěli, ja je možné, že v obou bodech předchozího příladu, působí na parašuisu sejně velý odpor vzduchu, dyž při pádu s oevřeným padáem brzdí parašuisu daleo věší plocha oevřeného padáu. Odpor vzduchu závisí na: veliosi plochy, rychlosi pohybu. Parašuisa rovnoměrně padá se zavřeným padáem: malá plocha, ale velá rychlos pádu pořebná velios odporu vzduchu. Parašuisa rovnoměrně padá s oevřeným padáem: velá plocha, ale malá rychlos pádu pořebná velios odporu vzduchu. Smysl padáu: velá plocha padáu zaručí, že odpor vzduchu dosáhne pořebné veliosi už při malé rychlosi pádu a parašuisa přežije dopad na zem (dyž se padá neoevře, dopadne s velou pravděpodobnosí po nějaé době rovnoměrného pádu, ale příliš velou rychlosí a zabije se). Př. 11: V úzé rubici uvízl předmě (papíre). Navrhni způsob, ja ho dosa ven. Posup fyziálně zdůvodni. Je možné upravi posup a, aby papíre vylezl horním (dolním) oncem rubice. Můžeme využí servačnosi papíru v rubici. Poud uvedeme rubu rychle do pohybu (napřílad úderem), snaží se papír zůsa v lidu (doud ho ření o sěny neuvede do pohybu) poud lučeme do rubice seshora, papír se posupně přesunuje hornímu onci (zůsává v lidu, zaímco rubice se po úderu pohybuje dolů), poud lučeme do rubice zezdola, papír se posupně přesunuje dolnímu onci (zůsává v lidu, zaímco rubice se po úderu pohybuje nahoru). Poud pohybující se rubu rychle zasavíme (napřílad nárazem), snaží se papír zůsa v pohybu (doud ho ření o sěny nezasaví) poud zasavujeme rubici pohybující se shora dolů, papír se posupně přesunuje dolnímu onci (zůsává v pohybu, zaímco rubice se nárazu zasaví), poud zasavujeme rubici pohybující se zdola nahoru, papír se posupně přesunuje hornímu onci (zůsává v pohybu, zaímco rubice se nárazu zasaví). 4
5 Pedaoicá poznáma: Předchozí přílad si žáci zouší s ruličami od uchyňsých papírových uěre, prázdných rolí od láe. Něeří objeví zajímavé souvislosi s vyřepáváním ečupu z čásečně prázdného obalu. Zaím jsme zoumali, ja probíhá pohyb, dyž je působící síla nulová. Nyní je řeba prozouma pohyb v siuaci, dy výsledná síla nulová není. Pedaoicá poznáma: Doporučuji zada následující přílad jao dobrovolnou supinovou práci s odevzdáním do příšího ýdne s ím, že supina, erá si měření nejlépe rozmyslí ho poé v hodině provede. Provádění pousů současně ve více supinách omezuje poče siloměrů a prosor. Př. 12: Máš dispozici siloměr, olečové brusle, spolupracovníy. Připrav pousy na prozoumání vlivu nenulové výsledné síly působící ve směru pohybu na pohyb. Podle nejlepšího návrhu budeme v příší hodině posupova. Zohledni veličiny, eré budou sledovaný pohyb ovlivňova. Shrnuí: 5
Newtonův zákon II
1.2.4 1. Newonův záon II Předpolady: 1203 Pomůcy: rubice, papír. Př. 1: Rozhodni, eré z následujících vě můžeme chápa jao další formulace 1. Newonova záona. a) Je-li výslednice sil, eré působí na ěleso,
1.5.4 Kinetická energie
.5.4 Kineicá energie Předolady: 50 Energie je jeden z nejoužívanějších, ale aé nejhůře definovaelných ojmů ve sředošolsé fyzice. V běžném živoě: energie = něco, co ořebujeme vyonávání ráce. Vysyuje se
1.3.5 Dynamika pohybu po kružnici I
1.3.5 Dynamika pohybu po kružnici I Předpoklady: 1304 Při pohybu po kružnici je výhodnější popisova pohyb pomocí úhlových veličin, keré korespondují s normálními veličinami, keré jsme používali dříve.
ÚVOD DO DYNAMIKY HMOTNÉHO BODU
ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí
2.2.9 Jiné pohyby, jiné rychlosti II
2.2.9 Jiné pohyby, jiné rychlosi II Předpoklady: 020208 Pomůcky: papíry s grafy Př. 1: V abulce je naměřeno prvních řice sekund pohybu konkurenčního šneka. Vypoči: a) jeho průměrnou rychlos, b) okamžié
1.3.4 Rovnoměrně zrychlený pohyb po kružnici
34 Rovnoměrně zrychlený pohyb po kružnici Předpoklady: 33 Opakování: K veličinám popisujícím posuvný pohyb exisují analogické veličiny popisující pohyb po kružnici: rovnoměrný pohyb pojíko rovnoměrný pohyb
1.5.1 Mechanická práce I
.5. Mechanická ráce I Předoklady: Práce je velmi vděčné éma k rozhovoru: někdo se nadře a ráce za ním není žádná, jiný se ani nezaoí a udělá oho sousu, a všichni se cíí nedocenění. Fyzika je řírodní věda
(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení
(). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,9 s do 6,5 s. 3. Jakou rychlosí
Nakloněná rovina I
1.2.14 Nakloněná rovina I Předoklady: 1213 Pomůcky: kulička, sada na měření řecí síly. Až dosud jsme se u všech říkladů uvažovali ouze vodorovné lochy. Př. 1: Vysvěli, roč jsme u všech dosavadních říkladů
Vstupní tok požadavků
Vsupní o požadavů Bodový proces, záladní ypy procesů Bodový proces Sledujeme chod určiého procesu, v němž čas od času dochází jisé význačné událosi posloupnos časových oamžiů = 1 3 4 proces deerminován
4.5.8 Elektromagnetická indukce
4.5.8 Elekromagneická indukce Předpoklady: 4502, 4504 důležiý jev sojící v samých základech moderní civilizace všude kolem je spousa elekrických spořebičů, ale zaím jsme neprobrali žádný ekonomicky možný
2. Přídavky na obrábění
2. Přídavy na obrábění Abyco oli z oloovaru vyrobi součás ředesanýc geoericýc varů a rozěrů, v ředesané výrobní oleranci a jaosi obrobené locy, usíe zvoli oloovar s dosaečnýi řídavy na obrábění. U oloovarů
2.2.8 Jiné pohyby, jiné rychlosti I
2.2.8 Jiné poyby, jiné ryclosi I Předpoklady: 020207 Pomůcky: Vernier Go Moion, počíač, nafukovací míč, kyvadlo velké, závaží na pružině, nakloněná rovina s vozíkem Př. 1: Nejdelší přímou pravidelně provozovanou
Newtonův zákon I
14 Newtonův zákon I Předpoklady: 104 Začnee opakování z inulé hodiny Pedaoická poznáka: Nejdříve nechá studenty vypracovat oba následující příklady, pak si zkontrolujee první příklad a studenti dostanou
6.3.6 Zákon radioaktivních přeměn
.3. Zákon radioakivních přeměn Předpoklady: 35 ěkeré nuklidy se rozpadají. Jak můžeme vysvěli, že se čás jádra (například čásice 4 α v jádře uranu 38 U ) oddělí a vyleí ven? lasická fyzika Pokud má čásice
Rovnoměrně zrychlený pohyb v grafech
..9 Ronoměrně zrychlený pohyb grfech Předpokldy: 4 Př. : N obrázku jsou nkresleny grfy dráhy, rychlosi zrychlení ronoměrně zrychleného pohybu. Přiřď grfy eličinám. s,, ronoměrně zrychlený pohyb: zrychlení
6. Optika. Konstrukce vlnoploch pro světlo:
6. Opi 6. Záldní pojmy Těles, erá vysíljí svělo, jsou svěelné zdroje. Zářivá energie v nich vzniá přeměnou z energie elericé, chemicé, jderné. Zdrojem svěl mohou bý i osvělená ěles (vidíme je díy odrzu
2.6.4 Kapalnění, sublimace, desublimace
264 Kapalnění, sublimace, desublimace Předpoklady: 2603 Kapalnění (kondenzace) Snižování eploy páry pára se mění v kapalinu Kde dochází ke kondenzaci? na povrchu kapaliny, na povrchu pevné láky (orosení
3.3.4 Thaletova věta. Předpoklady:
3.3.4 Thaletova věta Předpolady: 030303 Př. : Narýsuj ružnici ( ;5cm) a její průměr. Na ružnici narýsuj libovolný bod různý od bodů, (bod zvol jina než soused v lavici). Narýsuj trojúhelní. Má nějaou speciální
2.2.2 Měrná tepelná kapacita
.. Měrná epelná kapacia Předpoklady: 0 Pedagogická poznámka: Pokud necháe sudeny počía příklady samosaně, nesihnee hodinu za 45 minu. Můžee využí oho, že následující hodina je aké objemnější a použí pro
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B
Zákon síly. Hmonos jako míra servačnosi. Vyvození hybnosi a impulsu síly. Závislos zrychlení a hmonosi Cvičení k zavedeným pojmům Jméno auora: Mgr. Zdeněk Chalupský Daum vyvoření: 11. 11. 2012 Číslo DUM:
Kombinace s opakováním
9..3 Kombinace s opaováním Předpolady: 907. 908, 9, 92 Pedagogicá poznáma: Tato hodina zabere opět minimálně 70 minut. Asi ji čeá rozšíření na dvě hodiny. Netradiční začáte. Nemáme žádné přílady, ale rovnou
5 GRAFIKON VLAKOVÉ DOPRAVY
5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos
Kombinace s opakováním
9..3 Kombinace s opaováním Předpolady: 907. 908, 9, 92 Pedagogicá poznáma: Časová náročnost této hodiny je podobná hodině předchozí. Netradiční začáte. Nemáme žádné přílady, ale rovnou definici. Definice
1.3.7 Trojúhelník. Předpoklady:
1.3.7 Trojúhení Předpoady: 010306 Př. 1: Narýsuj tři body,,, teré neeží na přímce. Narýsuj všechny úsečy určené těmito třemi body. Jaý útvar vznine? Zísai jsme trojúhení. Ja přiše trojúhení e svému jménu?
FYZIKA I. Pohyb těles po podložce
VYSOKÁ ŠKOLA BÁŇSKÁ TECHICKÁ UIVERZITA OSTRAVA FAKULTA STROJÍ FYZIKA I Pohyb ěles po podložce Prof. RDr. Vilé Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Ar. Dagar Mádrová
NA POMOC FO. Pád vodivého rámečku v magnetickém poli
NA POMOC FO Pád vodivého rámečku v maneickém poli Karel auner *, Pedaoická akula ZČU v Plzni Příklad: Odélníkový rámeček z vodivého dráu má rozměry a,, hmonos m a odpor. Je zavěšen ve výšce h nad horním
1.5.3 Výkon, účinnost
1.5. Výkon, účinnos ředpoklady: 151 ř. 1: ři výběru zahradního čerpadla mohl er vybíra ze ří čerpadel. rvní čerpadlo vyčerpá za 1 sekundu,5 l vody, druhé čerpadlo vyčerpá za minuu lirů vody a řeí vyčerpá
1.4.1 Inerciální vztažné soustavy, Galileiho princip relativity
1.4.1 Inerciální vztažné soustavy, Galileiho princip relativity Předpoklady: 1205 Pedagogická poznámka: Úvodem chci upozornit, že sám považuji výuku neinerciálních vztažných soustav na gymnáziu za tragický
1.1.18 Rovnoměrně zrychlený pohyb v příkladech IV
8 Rovnoměně ychlený pohyb v příkladech IV Předpoklady: 7 Pedagogická ponámka: Česká škola v současné době budí ve sudenech předsavu, že poblémy se řeší ásadně najednou Sudeni ak mají obovské poblémy v
(iv) D - vybíráme 2 koule a ty mají různou barvu.
2 cvičení - pravděpodobnost 2102018 18cv2tex Definice pojmů a záladní vzorce Vlastnosti pravděpodobnosti Pravděpodobnost P splňuje pro libovolné jevy A a B následující vlastnosti: 1 0, 1 2 P (0) = 0, P
4.5.8 Elektromagnetická indukce
4.5.8 Elekromagneická indukce Předpoklady: 4502, 4504 Elekyromagneická indukce je velmi důležiý jev, jeden ze základů moderní civilizace. Všude kolem je spousa elekrických spořebičů, ale zaím jsme neprobrali
Práce a výkon při rekuperaci
Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava
Program Bezpečné cesty do školy ZŠ Tusarova, Praha 7
Program Bezpečné cesy do školy 216 ZŠ Tusarova, Praha 7 Doazníkové šeření o způsoby dopravy do školy Poče vrácených doazníků je 39, což předsavuje 84% návranos. Oázka Jak se dopravuješ do školy? Proč?
a excentricita e; F 1 [0; 0], T [5; 2], K[3; 4], e = 3.
Řešené úlohy na ohnisové vlasnosi uželoseče Řešené úlohy onsruce uželosečy z daných podmíne řílad: Sesroje uželoseču, je-li dáno její ohniso F 1, ečna = T s bodem T doyu a excenricia e; F 1 [0; 0], T [5;
Stýskala, L e k c e z e l e k t r o t e c h n i k y. Vítězslav Stýskala TÉMA 6. Oddíl 1-2. Sylabus k tématu
Sýskala, 22 L e k c e z e l e k r o e c h n i k y Víězslav Sýskala TÉA 6 Oddíl 1-2 Sylabus k émau 1. Definice elekrického pohonu 2. Terminologie 3. Výkonové dohody 4. Vyjádření pohybové rovnice 5. Pracovní
1.3.5 Kružnice, kruh. Předpoklady: Narýsuj bod S. Kružítkem narýsuj kružnici se středem v bodu S a poloměrem 3 cm.
1.3.5 Kružnice, ruh Předpolady: 010304 Př. 1: Narýsuj bod. Kružítem narýsuj ružnici se středem v bodu a poloměrem 3 cm. tejně jao přímy označujeme ružnice malým písmenem (většinou začínáme písmenem ;3cm,
Návrh číslicově řízeného regulátoru osvětlení s tranzistorem IGBT
Návrh číslicově řízeného reguláoru osvělení s ranzisorem IGB Michal Brejcha ČESKÉ VYSOKÉ ČENÍ ECHNICKÉ V PRAZE Faula eleroechnicá Kaedra eleroechnologie OBSAH: 0. Úvod... 3. Analýza... 4.. Rozbor sávajícího
1.4.2 Zrychlující vztažné soustavy
1.4.2 Zrychlující vztažné soustavy Předpoklady: 1401 Na zkoumání zrychlujících vztažných soustav využijeme speciální výzkumný vagón metra SIKIOR VK01-ARME (Sikior VK01 Acceleration Research by Mechanical
Vztahy mezi veličinami popisujíscími pohyb
1.1.23 Vzhy mezi veličinmi popisujíscími pohyb Předpokldy: 010122 Pedgogická poznámk: Cílem hodiny je: získání ciu pro diferenciální chování veličin, nácvik dovednosi dodržování prvidel (kreslení derivovných
Úloha V.E... Vypař se!
Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee
6 5 = 0, = 0, = 0, = 0, 0032
III. Opaované pousy, Bernoulliho nerovnost. Házíme pětrát hrací ostou a sledujeme výsyt šesty. Spočtěte pravděpodobnosti možných výsledů a určete, terý má největší pravděpodobnost. Řešení: Jedná se o serii
MECHANIKA PRÁCE A ENERGIE
Projek Efekivní Učení Reformou oblasí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a sáním rozpočem České republiky. MECHANIKA PRÁCE A ENERGIE Implemenace ŠVP Učivo - Mechanická
( ) ( ) 1.2.11 Tření a valivý odpor II. Předpoklady: 1210
Tření a valivý odpor II Předpoklady: Př : Urči zrychlení soustavy závaží na obrázku Urči vyznačenou sílu, kterou působí provázek na závaží Hmotnost kladek i provázku zanedbej Koeficient tření mezi závažími
( ) Příklady na otočení. Předpoklady: Př. 1: Je dána kružnice k ( S ;5cm)
3.5.9 Přílady na otočení Předpolady: 3508 Př. 1: Je dána ružnice ( ;5cm), na teré leží body, '. Vně ružnice leží bod L, uvnitř ružnice bod M. Naresli obrazy bodů L, M v zobrazení řeš bez úhloměru. R (
Demografické projekce počtu žáků mateřských a základních škol pro malé územní celky
Demografické projekce poču žáků maeřských a základních škol pro malé územní celky Tomáš Fiala, Jika Langhamrová Kaedra demografie Fakula informaiky a saisiky Vysoká škola ekonomická v Praze Pořebná daa
1.5.7 Prvočísla a složená čísla
17 Prvočísla a složená čísla Předpolady: 103, 106 Dnes bez alulačy Číslo 1 je dělitelné čísly 1,, 3,, 6 a 1 Množinu, terou tvoří právě tato čísla, nazýváme D 1 množina dělitelů čísla 1, značíme ( ) Platí:
Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s
Ronoměrný poyb eliko rycloi ále ejná (konanní) základní za:. graf záiloi dráy na čae: polopřímka ycázející z počáku (pokud poyb začíná z klidu) m graf záiloi rycloi na čae: ronoběžka odoronou ou m. U poybu
Průtok. (vznik, klasifikace, měření)
Průok (vznik, klasifikace, měření) Průok objemový - V m 3 s (neslačielné kapaliny) hmonosní - m (slačielné ekuiny, poluany, ) m kg s Při proudění směsí (např. hydrodoprava) důležiý průok jednolivých složek
Analogový komparátor
Analogový komparáor 1. Zadání: A. Na předloženém inverujícím komparáoru s hyserezí změře: a) převodní saickou charakerisiku = f ( ) s diodovým omezovačem při zvyšování i snižování vsupního napěí b) zaěžovací
NCCI: Určení bezrozměrné štíhlosti I a H průřezů
Teno N předládá meodu pro určení beroměrné šíhlosi při ohbu be určení riicého momenu M cr. Záladní onervaivní meodu le přesni a, že se uváží eomerie průřeu a var momenového obrace. Obsah. Zjednodušená
Nakloněná rovina II
1215 Nkloněná rovin II Předokldy: 1214 Pomůcky: siloměr 2,5 N, sd n měření řecí síly Pedoická oznámk: V éo následující hodině se nerobírá žádná nová lák Přeso jde o oměrně důležié hodiny, roože žáci se
Matematika v automatizaci - pro řešení regulačních obvodů:
. Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.
3.2.9 Věta o středovém a obvodovém úhlu
3..9 ěta o středovém a obvodovém úhlu Předpolady: ody, rozdělují ružnici na dva oblouy. Polopřímy a pa rozdělují rovinu na dva úhly. rcholy obou úhlů leží ve středu ružnice říáme, že jde o středové úhly
3.2.9 Věta o středovém a obvodovém úhlu
3..9 ěta o středovém a obvodovém úhlu Předpolady: ody, rozdělují ružnici na dva oblouy. Polopřímy a pa rozdělují rovinu na dva úhly. rcholy obou úhlů leží ve středu ružnice říáme, že jde o středové úhly
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY
Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných
Pouť k planetám - úkoly
Nemůže Slunce náhle ohrozi nečekaným výbuchem Vaši rakeu? záleží, v jaké vzdálenosi se nachází, důležié je uvědomi si akiviu Slunce (skvrny, prouberance, nebezpečné výrysky plazmau a následný proud nabiých
Konstrukce trojúhelníků II
.7.0 Konstruce trojúhelníů II Předpolady: 00709 Minulá hodina: Tři věty o shodnosti (odpovídají jednoznačným postupům pro onstruci trojúhelníu): Věta sss: Shodují-li se dva trojúhelníy ve všech třech stranách,
Pasivní tvarovací obvody RC
Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :
FYZIKA. Newtonovy zákony. 7. ročník
FYZIKA Newtonovy zákony 7. ročník říjen 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt
1.2.11 Tření a valivý odpor I
1..11 Tření a valivý odpor I Předpoklady: 11 Př. 1: Do krabičky od sirek ležící na vodorovném stole strčíme malou silou. Krabička zůstane stát. Vysvětli. Mezi stolem a krabičkou působí tření, které se
2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice)
..4 Výpoče epla a zákon zachování energie (kalorimerická rovnice) Teplo je fyzikální veličina, předsavuje aké energii a je udíž možné (i nuné) jej měři. Proč je aké nuné jej měři? Např. je předměem obchodu
Alternativní rozdělení. Alternativní rozdělení. Binomické rozdělení. Binomické rozdělení
Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Náhodná veličina X má alternativní rozdělení s parametrem p, jestliže nabývá hodnot 0 a 1 s pravděpodobnostmi
Úloha II.E... je mi to šumák
Úloha II.E... je mi o šumák 8 bodů; (chybí saisiky) Kupe si v lékárně šumivý celaskon nebo cokoliv, co se podává v ableách určených k rozpušění ve vodě. Změře, jak dlouho rvá rozpušění jedné abley v závislosi
Úloha VI.3... pracovní pohovor
Úloha VI.3... pracovní pohovor 4 body; průměr,39; řešilo 36 sudenů Jedna z pracoven lorda Veinariho má kruhový půdorys o poloměru R a je umísěna na ložiscích, díky nimž se může oáče kolem své osy. Pro
OTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka)
OTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka) A) Výklad: Posuvné účinky: Ze studia posuvných účinků síly jsme zjistili: změny rychlosti nebo směru posuvného pohybu tělesa závisejí na tom, jak velká síla
TLUMIČE TORSNÍHO KMITÁNÍ SILIKONOVÉ TLUMIČE
TLUMIČE TORSNÍHO KMITÁNÍ Připojují se orsní sousavě v mísě nejvěší orsní výhyly, j. na volném oni liového hřídele. V prinipu se jedná o přídavný orní sysém na eliminai orsníh výhyle. Dělíme je na: Třeí..mění
Jméno a příjmení holka nebo kluk * Třída Datum Škola
P-1 Jméno a příjmení holka nebo kluk * Třída Daum Škola Zopakuje si (bude se vám o hodi ) 3 důležié pojmy a především o, co popisují Pro jednoduchos se omezíme pouze na 1D (j. jednorozměrný) případ. Pro
MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN 80-860-7323-8.
Idenifiáor maeriálu: ICT 1 9 Regisrační číslo rojeu Název rojeu Název říjemce odory název maeriálu (DUM) Anoace Auor Jazy Očeávaný výsu Klíčová slova Druh učebního maeriálu Druh ineraiviy Cílová suina
MECHANICKÉ KMITÁNÍ NETLUMENÉ
MECHANICKÉ KMITÁNÍ NETLUMENÉ Kitání je PERIODICKÝ pohyb hotného bodu (tělesa). Pohybuje se z jedné rajní polohy KP do druhé rajní polohy KP a zpět. Jaýoliv itající objet se nazývá OSCILÁTOR. A je aplituda
1.2.3 1. Newtonův zákon I
1.2.3 1. Newtonův zákon I Předpoklady: 1202 Pomůcky: váleček (100 g závaží), ovladač na plátno a obdélník na pevné těleso (jako nájezd), 2 sady na měření koeficientu tření. Dnešní hodina je nejdůležitější
3.1.6 Dynamika kmitavého pohybu, závaží na pružině
3..6 Dynaia itavého pohybu, závaží na pružině Předpolady: 303 Pedagogicá poznáa: Na příští hodinu by si všichni ěli do dvojice přinést etrový prováze (nebo silnější nit) a stopy. Poůcy: pružina, stojan,
SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole
Začneme opakováním z předchozí kapitoly (První Newtonův pohybový zákon setrvačnost).
Mechanika teorie srozumitelně www.nabla.cz Druhý Newtonův pohybový zákon Začneme opakováním z předchozí kapitoly (První Newtonův pohybový zákon setrvačnost). 1. úkol: Krabičku uvedeme strčením do pohybu.
Nakloněná rovina II
3 Nakloněná rovina II Předoklady: Pedagogická oznáka: Obsah hodiny se za norálních okolnosí saozřejě nedá sihnou, záleží na Vás, co si vyberee Pedagogická oznáka: Na začáku hodiny zadá sudenů říklad Nečeká
Základním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo.
přednáša KOMBINATORIKA Při řešení mnoha praticých problémů se setáváme s úlohami, ve terých utváříme supiny z prvů nějaé onečné množiny Napřílad máme sestavit rozvrh hodin z daných předmětů, potřebujeme
1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a)
1. KOMBINATORIKA Kombinatoria je obor matematiy, terý zoumá supiny prvů vybíraných z jisté záladní množiny. Tyto supiny dělíme jedna podle toho, zda u nich záleží nebo nezáleží na pořadí zastoupených prvů
Kinematika hmotného bodu
DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3
( ) ( ) Newtonův zákon II. Předpoklady:
6 Newtonův zákon II Předpoklady: 0005 Př : Autoobil zrychlí z 0 k/h na 00 k/h za 8 s Urči velikost síly, která auto uvádí do pohybu, pokud autoobil váží,6 tuny Předpokládej rovnoěrně zrychlený pohybu auta
min 4 body Podobně pro závislost rychlosti na uražené dráze dostáváme tabulku
Řešení úloh školního kola 6 ročníku Fyzikální olympiády Kaegorie E a F Auoři úloh: J Jírů (1, 1), V Koudelková (11), L Richerek (3, 7) a J Thomas (1, 4 6, 8 9) FO6EF1 1: Grafy pohybu a) Pro závislos dráhy
Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE
Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE 1 Rozhodni a zdůvodni, zda koná práci člověk, který a) vynese tašku do prvního patra, b) drží činku nad hlavou, c) drží tašku s nákupem na zastávce autobusu, d)
Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)
Bucinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Formalizace rozměrové analýzy ( výsledné jednoty na obou stranách musí souhlasit ). Rozměr fyziální veličiny Mějme nějaou třídu jednote, napřílad [(g,
Části kruhu. Předpoklady:
2.10.3 Části uhu Předpolady: 0201002 Př. 1: Na užnici ( ;5cm) leží body,, = 8cm. Uči početně vzdálenost tětivy od středu užnice. pávnost výpočtu zontoluj ýsováním. Naeslíme si obáze a využijeme speciální
1.2.7 3. Newtonův pohybový zákon I
1..7 3. Newtonův pohybový zákon I Předpoklady: 101 Pedagogická poznámka: V klasickém pojetí se dá 3. Newtonův zákon probrat během 15 minut. Proti jeho znění se studenti bouřit nebudou. Teprve na příkladech
[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.
5. GRAVITAČNÍ POLE 5.1. NEWTONŮV GRAVITAČNÍ ZÁKON Gravitace Gravitace je všeobecná vlastnost těles. Newtonův gravitační zákon Znění: Dva hmotné body se navzájem přitahují stejně velkými gravitačními silami
P. Rozhodni, zda bod P leží uvnitř, vně nebo na kružnici k. Pokud existují, najdi tečny kružnice procházející bodem P.
756 Tečny ružnic II Předpolady: 45, 454 Pedagogicá poznáma: Tato hodina patří na gymnázium mezi početně nejnáročnější Ačoliv jsou přílady optimalizované na co nejmenší početní obtížnost, všichni studenti
ŔᶑPř. 10 Ohyb nosníku se ztrátou stability. studentská kopie
Navrhněe sropní průvla průřeu IPE oceli S35, aížený podle obráu reacemi e sropnic. Nosní je ajišěn proi ráě příčné a orní sabili (lopení) v podporách a v působiších osamělých břemen. haraerisicá hodnoa
Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL:
Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL... 8 17_Skládání různoběžných sil působících v jednom bodě...
BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti)
BIOMECHANIKA 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin
Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium
Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium V řešení číslujte úlohy tak, jak jsou číslovány v zadání. U všech úloh uveďte stručné zdůvodnění. Vyřešené úlohy zašlete elektronicky
9 Viskoelastické modely
9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály
4. Práce, výkon, energie a vrhy
4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce
Magnetická indukce příklady k procvičení
Magnetická indukce příklady k procvičení Příklad 1 Rozhodněte pomocí (Flemingova) pravidla levé ruky, jakým směrem bude působit síla na vodič, jímž protéká proud, v následujících situacích: a) Severní
PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika
PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný
Tlumené kmity. Obr
1.7.. Tluené kiy 1. Uě vysvěli podsau lueného kiavého pohybu.. Vysvěli význa luící síly. 3. Zná rovnici okažié výchylky lueného kiavého pohybu. 4. Uě popsa apliudu luených kiů. 5. Zná konsany charakerizující
Rovnoměrně zrychlený = zrychlení je stále stejné = velikost rychlosti se každou sekundu zvýší (případně sníží) o stejný díl
Rovnoměrně zrychlený přímočarý pohyb Rovnoměrně zrychlený = zrychlení je stále stejné = velikost rychlosti se každou sekundu zvýší (případně sníží) o stejný díl Rychlost v = a t v okamžitá rychlost a zrychlení,
Soubor úloh k Mechanice (komb. studium)
Soubor úloh k Mechanice (komb. studium) 1. úloha Pozrite si nasledujúce grafy, pričom si všimnite odlišné osi: Ktorý z grafov predstavuje pohyb s konštantnou rýchlosťou? (A) I, II a IV (B) I a III (C)
e) U ( ) ( ) r 1.1. Ř EŠENÉPŘ ÍKLADY PDF byl vytvořen zkušebníverzífineprint pdffactory
. Signá ly se souvislým časem Ř EŠENÉPŘ ÍKLADY r.. a) Urč ee sřednía eeivníhodnou signálů na obr.., jejich výon a energii za č as =. d) = b) e), 5ms c) ),5V -,5V Obr... Analyzované signály. Sředníhodnoa:
Hlavní body. Úvod do vlnění. Harmonické vlny. Energie a intenzita vlnění. Popis, periodicita v čase a prostoru Huygensův princip, odraz a lom vlnění
Vlnění Úvod do vlnění Hlavní bod Harmoniké vln Popis, periodiia v čase a prosoru Hugensův prinip, odraz a lom vlnění Energie a inenzia vlnění Inerferene vln, Dopplerův jev Vln přenos kmiů prosorem Prosředím
6. Měření Youngova modulu pružnosti v tahu a ve smyku
6. Měření Youngova modulu pružnosti v tahu a ve smyu Úol : Určete Youngův modul pružnosti drátu metodou přímou (z protažení drátu). Prostudujte doporučenou literaturu: BROŽ, J. Zálady fyziálních měření..