2.2.9 Jiné pohyby, jiné rychlosti II

Rozměr: px
Začít zobrazení ze stránky:

Download "2.2.9 Jiné pohyby, jiné rychlosti II"

Transkript

1 2.2.9 Jiné pohyby, jiné rychlosi II Předpoklady: Pomůcky: papíry s grafy Př. 1: V abulce je naměřeno prvních řice sekund pohybu konkurenčního šneka. Vypoči: a) jeho průměrnou rychlos, b) okamžié rychlosi šneka v jednolivých inervalech. [s] s [mm] Změna dráhy [mm] v [mm/s] [s] s [mm] Změna dráhy [mm] v [mm/s] 11:5 = 2,2 19 : 5 = 3,8 12 : 5 = 2,4 6 :5 = 1,2 25:10 = 2,5 51: 20 = 2,6 Průměrná rychlos šneka: s 124 v = = mm/s = 2, 48 mm/s. 50 Pedagogická poznámka: Čás žáků se určiě nechá načapa na nesejnou délku inervalů. Pedagogická poznámka: U následujícího příkladu pohyby neměříme, jen si ukazujeme správné vary grafů. Př. 2: Nakreslee graf závislosi polohy na čase a rychlosi na čase pro následující pohyby: a) rovnoměrný pohyb aua po dálnici, b) pohyb válečku, kerý sjede z nakloněného sešiu na sůl, kde se pak rovnoměrně kuálí, c) pohyb krabičky položené na sole poé, co do ní cvrnkneme, d) pohyb značky na nosném laně lanové dráhy. a) rovnoměrný pohyb aua po dálnici Rychlos se nemění (grafem rychlosi je vodorovná čára, kerá znamená pro každý okamžik sejnou hodnou rychlosi), poloha přibývá pořád sejně rychle (grafem polohy je přímá nakloněná čára). 1

2 x,v b) pohyb válečku, kerý sjede z nakloněného sešiu na sůl, kde se pak rovnoměrně kuálí Pohyb má dvě čási. V první čási váleček sjíždí z nakloněného sešiu a zrychluje: rychlos se zvěšuje (jako se zvěšovala poloha v předchozím bodu) a poloha se zvěšuje sále rychleji (graf je čím dál srmější). V druhé čási váleček jede rovnoměrně grafy mají sejný var jako v předchozím příkladu. x,v c) pohyb krabičky položené na sole poé, co do ní cvrnkneme Pohyb krabičky má čyři čási: krabička sojí: rychlos je nulová, poloha se nemění, do krabičky cvrnkáme: rychlos se velmi rychle zvýší, poloha začne velmi rychle narůsa se zvěšující se rychlosí, krabička se posupně zasavuje: rychlos se rovnoměrně zmenšuje, poloha se zvěšuje, ale čím dál pomaleji, krabička sojí: rychlos je nulová, poloha se nemění. 2

3 x,v d) pohyb značky na nosném laně lanové dráhy. Pohyb značky se neusále opakuje. Nejdříve se pohybuje sále sejnou rychlosí jedním směrem (poloha se pořád sejně rychle zvěšuje), pak se rychlos velmi rychle změní na opačný směr (poloha se sejně rychle zmenšuje, jako se předím zvěšovala). x,v Pedagogická poznámka: Při konrole posupujeme po bodech, aby po každém zkonrolovaném bodu byl alespoň kráký čas na korekce řešení následujícího. Pohyb nejprve slovně rozebereme, pak ukážu graf a nechám žákům čas, aby si rozmysleli, kde začínají a končí jednolivé čási pohyb. Pak si eprve graf projdeme na abuli a ukážeme si zajímavá mísa. Pedagogická poznámka: Při sudiu grafů dalších změn je řeba zkouše i hodnoy (jednolivá ečka) a změny (rozdíl dvou hodno), mnozí žáci o mají problém rozliši. Pedagogická poznámka: Na řešení následujících příkladů mají žáci k dispozici papíry s jednolivými grafy. Pokud mají bý následující příklady efekivní, je vyišění papírů nuné ze dvou důvodů: z obrazu na zdi se jen velmi obížně a velmi nepřesně odečíají hodnoy, není možné na zeď promínou více než jeden graf a žáci ak nemohou posupova různými rychlosmi. Př. 3: V grafu Minerální vody a sodovky bez přísad zjisi: a) Kolik lirů minerálních vod se prodalo v leech 1995 a 2005? 3

4 b) V kerém období spořeba rosla? V kerém období klesala? c) Na jaké úrovni se spořeba minerálních vod a sodovky v ČR éměř sabilizovala? d) Kolikrá se spořeba mezi roky 1993 a 2003 spořeba zvýšila? e) Kdy rosla spořeba minerálek nejrychleji? a) Kolik lirů minerálních vod se prodalo v leech 1995 a 2005? lirů lirů b) V kerém období spořeba rosla? V kerém období klesala? Vzrůs spořeby: , , Pokles spořeby: , , c) Na jaké úrovni se spořeba minerálních vod a sodovky v ČR éměř sabilizovala? Okolo lirů od roku d) Kolikrá se spořeba mezi roky 1993 a 2003 spořeba zvýšila? Z na 8500 edy éměř 4,5 krá. e) Kdy rosla spořeba minerálek nejrychleji? Mezi roky 1996 a Př. 4: V grafu Zahájené a dokončené byy v ČR zjisi. a) V kerém roce bylo zahájena výsavba nejvěšího poču byů? b) V kerém roce byla dokončena výsavba nejmenšího poču byů? c) Ve kerých leech se poče zahájených byů držel na přibližně sejné úrovni? Na jaké? d) Počy dokončených byů se vyvíjely přibližně ako, nejdříve jejich poče klesal, poé soupal a pak začal zase klesa. Ve kerých leech se rend měnil? e) Jaký je ypický časový posun mezi počy zahájených a dokončených byů? a) V kerém roce bylo zahájena výsavba nejvěšího poču byů? V roce b) V kerém roce byla dokončena výsavba nejmenšího poču byů? V roce c) Ve kerých leech se poče zahájených byů držel na přibližně sejné úrovni? Na jaké? Od roku 2006 do roku 2008 na d) Počy dokončených byů se vyvíjely přibližně ako, nejdříve jejich poče klesal, poé soupal a pak začal zase klesa. Ve kerých leech se rend měnil? Klesal do roku 1995, pak soupal do roku 2007 a pak opě klesal. e) Jaký je ypický časový posun mezi počy zahájených a dokončených byů? Okolo 2 le (s ímo posuneme se graf dokončených byů nejvíce podobá grafu zahájených byů). Př. 5: V grafu Evidovaní uchazeči o zaměsnání zjisi. a) Nejvyšší a nejmenší poče nezaměsnaných. 4

5 b) Ve kerých obdobích se nezaměsnanos éměř neměnila? c) Kdy nezaměsnanos nejrychleji klesala? Kdy nejrychleji rosla? d) Je možné porovna průměrný růs nezaměsnanosi v leech 1995 až 1999 s průměrným růsem v leech 2000 až e) Pokus se popsa rendy ve vývoji nezaměsnanosi podobně, jako byly v bodě d) předchozího příkladu popsány rendy vývoje dokončených byů. a) Nejvyšší a nejmenší poče nezaměsnaných. Nejnižší poče nezaměsnaných: rok 1995, nezaměsnaných. Nejvyšší poče nezaměsnaných: rok 2010, nezaměsnaných. b) Ve kerých obdobích se nezaměsnanos éměř neměnila? Nezaměsnanos se éměř neměnila mezi ley: 2000 a 2001, 2003 a 2004, 2007 a c) Kdy nezaměsnanos nejrychleji klesala? Kdy nejrychleji rosla? Nejrychleji nezaměsnanos klesla mezi ley 2006 a 2007, v delším období o pak bylo do roku 2005 do roku Nejrychleji narosla nezaměsnanos mezi ley 2008 a Nejdelší období nejrychlejšího růsu bylo mezi ley 1996 a d) Je možné porovna průměrný růs nezaměsnanosi v leech 1995 až 1999 s průměrným růsem v leech 2000 až Mezi ley 2000 a 2004 byl průměrný růs nezaměsnanosi daleko menší než mezi ley 1995 a e) Pokus se popsa rendy ve vývoji nezaměsnanosi podobně, jako byly v bodě d) předchozího příkladu popsány rendy vývoje dokončených byů. Nezaměsnanos pomalu klesala od roku 1993 do roku 1995, kdy začala prudce soupa až do roku Do roku 2000 nezaměsnanos rochu poklesla, po roce 2001 pak začala opě ale pomaleji soupa až do roku V roce 2004 začala nezaměsnanos klesa. Pokles skončil v roce Mezi ley 2008 a 2009 nezaměsnanos prudce vzrosla. Od roku 2010 pak opě začala klesa. Shrnuí: 5

Vztahy mezi veličinami popisujíscími pohyb

Vztahy mezi veličinami popisujíscími pohyb 1.1.23 Vzhy mezi veličinmi popisujíscími pohyb Předpokldy: 010122 Pedgogická poznámk: Cílem hodiny je: získání ciu pro diferenciální chování veličin, nácvik dovednosi dodržování prvidel (kreslení derivovných

Více

2.2.2 Měrná tepelná kapacita

2.2.2 Měrná tepelná kapacita .. Měrná epelná kapacia Předpoklady: 0 Pedagogická poznámka: Pokud necháe sudeny počía příklady samosaně, nesihnee hodinu za 45 minu. Můžee využí oho, že následující hodina je aké objemnější a použí pro

Více

2.2.8 Jiné pohyby, jiné rychlosti I

2.2.8 Jiné pohyby, jiné rychlosti I 2.2.8 Jiné poyby, jiné ryclosi I Předpoklady: 020207 Pomůcky: Vernier Go Moion, počíač, nafukovací míč, kyvadlo velké, závaží na pružině, nakloněná rovina s vozíkem Př. 1: Nejdelší přímou pravidelně provozovanou

Více

Rovnoměrně zrychlený pohyb v grafech

Rovnoměrně zrychlený pohyb v grafech ..9 Ronoměrně zrychlený pohyb grfech Předpokldy: 4 Př. : N obrázku jsou nkresleny grfy dráhy, rychlosi zrychlení ronoměrně zrychleného pohybu. Přiřď grfy eličinám. s,, ronoměrně zrychlený pohyb: zrychlení

Více

1.1.20 Sbírka na procvičení vztahů mezi veličinami popisujícími pohyb

1.1.20 Sbírka na procvičení vztahů mezi veličinami popisujícími pohyb 1.1.20 Sbírk n procvičení vzhů mezi veličinmi popisujícími pohyb Máme ři veličiny popisující pohyb dv vzhy, keré je spojují nvzájem. s v = Rychlos je změn dráhy z změnu čsu (rychlos říká, jk se v čse mění

Více

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení (). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,9 s do 6,5 s. 3. Jakou rychlosí

Více

PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU

PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU Ze serveru www.czso.cz jsme sledovali sklizeň obilovin v ČR. Sklizeň z několika posledních le jsme vložili do abulky 7.1. a) Jaké plodiny paří mezi obiloviny?

Více

4.5.8 Elektromagnetická indukce

4.5.8 Elektromagnetická indukce 4.5.8 Elekromagneická indukce Předpoklady: 4502, 4504 důležiý jev sojící v samých základech moderní civilizace všude kolem je spousa elekrických spořebičů, ale zaím jsme neprobrali žádný ekonomicky možný

Více

1.5.3 Výkon, účinnost

1.5.3 Výkon, účinnost 1.5. Výkon, účinnos ředpoklady: 151 ř. 1: ři výběru zahradního čerpadla mohl er vybíra ze ří čerpadel. rvní čerpadlo vyčerpá za 1 sekundu,5 l vody, druhé čerpadlo vyčerpá za minuu lirů vody a řeí vyčerpá

Více

7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU

7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU Indexy základní, řeězové a empo přírůsku Aleš Drobník srana 1 7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU V kapiole Indexy při časovém srovnání jsme si řekli: Časové srovnání vzniká, srovnáme-li jednu

Více

Matematika v automatizaci - pro řešení regulačních obvodů:

Matematika v automatizaci - pro řešení regulačních obvodů: . Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.

Více

Cíl a následující tabulku: t [ s ] s [ mm ]

Cíl a následující tabulku: t [ s ] s [ mm ] .. Rychlost Předpoklady: 0 Rychlost: kolik ukazuje ručička na tachometru jak rychle se míhá krajina za oknem jak rychle se dostaneme z jednoho místa na druhé Okamžitá rychlost se při jízdě autem neustále

Více

Úloha V.E... Vypař se!

Úloha V.E... Vypař se! Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee

Více

Pasivní tvarovací obvody RC

Pasivní tvarovací obvody RC Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :

Více

5. Modifikovaný exponenciální trend

5. Modifikovaný exponenciální trend 5. Modifikovaný exponenciální rend Tvar rendu Paraer: α, β, Tr = + α β, =,..., n ( β > 0) Hodí se k odelování rendu s konsanní podíle sousedních diferencí Aspoick oezen (viz obr., α < 0,0 < β 0) α

Více

Skupinová obnova. Postup při skupinové obnově

Skupinová obnova. Postup při skupinové obnově Skupinová obnova Při skupinové obnově se obnovují všechny prvky základního souboru nebo určiá skupina akových prvků najednou. Posup při skupinové obnově prvky, jež selžou v určiém období, je nuno obnovi

Více

Základy fyziky + opakovaná výuka Fyziky I

Základy fyziky + opakovaná výuka Fyziky I Úsav fyziky a měřicí echniky Pohodlně se usaďe Přednáška co nevidě začne! Základy fyziky + opakovaná výuka Fyziky I Web úsavu: ufm.vsch.cz : @ufm444 Zimní semesr opakovaná výuka + Základy fyziky 2 hodiny

Více

Zhodnocení historie predikcí MF ČR

Zhodnocení historie predikcí MF ČR E Zhodnocení hisorie predikcí MF ČR První experimenální publikaci, kerá shrnovala minulý i očekávaný budoucí vývoj základních ekonomických indikáorů, vydalo MF ČR v lisopadu 1995. Tímo byl položen základ

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

Cíl a následující tabulku. t [ s ] s [ mm ]

Cíl a následující tabulku. t [ s ] s [ mm ] 1.1.8 Rychlost I Předpoklady: 010107 Pomůcky: Rychlost: kolik ukazuje ručička na tachometru, jak rychle se míhá krajina za oknem, jak rychle se dostaneme z jednoho místa na druhé. Okamžitá rychlost se

Více

4.5.8 Elektromagnetická indukce

4.5.8 Elektromagnetická indukce 4.5.8 Elekromagneická indukce Předpoklady: 4502, 4504 Elekyromagneická indukce je velmi důležiý jev, jeden ze základů moderní civilizace. Všude kolem je spousa elekrických spořebičů, ale zaím jsme neprobrali

Více

1.5.4 Kinetická energie

1.5.4 Kinetická energie .5.4 Kineicá energie Předolady: 50 Energie je jeden z nejoužívanějších, ale aé nejhůře definovaelných ojmů ve sředošolsé fyzice. V běžném živoě: energie = něco, co ořebujeme vyonávání ráce. Vysyuje se

Více

Práce a výkon při rekuperaci

Práce a výkon při rekuperaci Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava

Více

5 GRAFIKON VLAKOVÉ DOPRAVY

5 GRAFIKON VLAKOVÉ DOPRAVY 5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos

Více

Schéma modelu důchodového systému

Schéma modelu důchodového systému Schéma modelu důchodového sysému Cílem následujícího exu je názorně popsa srukuru modelu, kerý slouží pro kvanifikaci příjmové i výdajové srany důchodového sysému v ČR, a o jak ve varianách paramerických,

Více

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice)

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice) ..4 Výpoče epla a zákon zachování energie (kalorimerická rovnice) Teplo je fyzikální veličina, předsavuje aké energii a je udíž možné (i nuné) jej měři. Proč je aké nuné jej měři? Např. je předměem obchodu

Více

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y Předmě: Ročník: Vvořil: Daum: MATEMATIKA ČTVRTÝ Mgr Tomáš MAŇÁK 5 srpna Název zpracovaného celku: DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE je monoónní na celém svém deiničním oboru D

Více

Newtonův zákon II

Newtonův zákon II 1.2.4 1. Newonův záon II Předpolady: 1203 Pomůcy: rubice, papír. Př. 1: Rozhodni, eré z následujících vě můžeme chápa jao další formulace 1. Newonova záona. a) Je-li výslednice sil, eré působí na ěleso,

Více

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací

Více

Řasový test toxicity

Řasový test toxicity Laboraorní návod č. Úsav hemie ohrany prosředí, VŠCHT v Praze Řasový es oxiiy. Účel Řasové esy oxiiy slouží k esování možnýh oxikýh účinků láek a vzorků na vodní produeny. Zelené řasy paří do skupiny neévnaýh

Více

Pilové pásy PILOUS MaxTech

Pilové pásy PILOUS MaxTech Pilové pásy PILOUS MaxTech Originální pilové pásy, vyráběné nejmodernější echnologií z nejkvalinějších německých maeriálů, za přísného dodržování veškerých předepsaných výrobních a konrolních posupů. Zaručují

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace

Více

Analogový komparátor

Analogový komparátor Analogový komparáor 1. Zadání: A. Na předloženém inverujícím komparáoru s hyserezí změře: a) převodní saickou charakerisiku = f ( ) s diodovým omezovačem při zvyšování i snižování vsupního napěí b) zaěžovací

Více

Analýza rizikových faktorů při hodnocení investičních projektů dle kritéria NPV na bázi EVA

Analýza rizikových faktorů při hodnocení investičních projektů dle kritéria NPV na bázi EVA 4 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 11-12 září 2008 Analýza rizikových fakorů při hodnocení invesičních projeků dle kriéria

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B Zákon síly. Hmonos jako míra servačnosi. Vyvození hybnosi a impulsu síly. Závislos zrychlení a hmonosi Cvičení k zavedeným pojmům Jméno auora: Mgr. Zdeněk Chalupský Daum vyvoření: 11. 11. 2012 Číslo DUM:

Více

rok počet obyvatel 27,1 30,9 34,8 38,6 43,4 49,4 56,4 62,4 68,3 74,9 82,0

rok počet obyvatel 27,1 30,9 34,8 38,6 43,4 49,4 56,4 62,4 68,3 74,9 82,0 4.5.5 Trendy I Předpoklady: 040503 Pedagogická poznámka: Pokud nechcete zbytečně ztrácet čas tím, že žáci přepisují tabulku do sešitu, je lepší je vytisknout a rozdat. Pedagogická poznámka: Grafy pro příklady

Více

Vliv funkce příslušnosti na průběh fuzzy regulace

Vliv funkce příslušnosti na průběh fuzzy regulace XXVI. ASR '2 Seminar, Insrumens and Conrol, Osrava, April 26-27, 2 Paper 2 Vliv funkce příslušnosi na průběh fuzzy regulace DAVIDOVÁ, Olga Ing., Vysoké učení Technické v Brně, Fakula srojního inženýrsví,

Více

Nakloněná rovina II

Nakloněná rovina II 1215 Nkloněná rovin II Předokldy: 1214 Pomůcky: siloměr 2,5 N, sd n měření řecí síly Pedoická oznámk: V éo následující hodině se nerobírá žádná nová lák Přeso jde o oměrně důležié hodiny, roože žáci se

Více

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je.

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je. Pravděpodobnos a saisika 0. ČASOVÉ ŘADY Průvodce sudiem Využijeme znalosí z předchozích kapiol, především z 9. kapioly, kerá pojednávala o regresní analýze, a rozšíříme je. Předpokládané znalosi Pojmy

Více

Metodický list. Název materiálu: Měření rychlosti zvukovým záznamem. Autor materiálu: Mgr. Martin Havlíček

Metodický list. Název materiálu: Měření rychlosti zvukovým záznamem. Autor materiálu: Mgr. Martin Havlíček Příjemce: Základní škola Ruda nad Moravou, okres Šumperk, Sportovní 300, 789 63 Ruda nad Moravou Zařazení materiálu: Metodický list Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT (III/2) Sada:

Více

Návod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1

Návod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 Vniřní jednoka pro sysém epelných čerpadel vzduch-voda EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 EKHBRD011ABY1 EKHBRD014ABY1 EKHBRD016ABY1 EKHBRD011ACV1 EKHBRD014ACV1 EKHBRD016ACV1 EKHBRD011ACY1 EKHBRD014ACY1

Více

Sbírka B - Př. 1.1.5.3

Sbírka B - Př. 1.1.5.3 ..5 Ronoměrný pohyb Příklady sřední obížnosi Sbírka B - Př...5. Křižoakou projel rakor rychlosí 3 km/h. Za dese minu po něm projela ouo křižoakou sejným směrem moorka rychlosí 54 km/h. Za jak dlouho a

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE VYTVÁŘENÍ TRŽNÍ ROVNOVÁHY VYBRANÝCH ZEMĚDĚLSKO-POTRAVINÁŘSKÝCH PRODUKTŮ Ing. Michal Malý Školiel: Prof. Ing. Jiří

Více

1.1.18 Rovnoměrně zrychlený pohyb v příkladech IV

1.1.18 Rovnoměrně zrychlený pohyb v příkladech IV 8 Rovnoměně ychlený pohyb v příkladech IV Předpoklady: 7 Pedagogická ponámka: Česká škola v současné době budí ve sudenech předsavu, že poblémy se řeší ásadně najednou Sudeni ak mají obovské poblémy v

Více

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA Přednáška 7 MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA A INTERAKCE S MĚNOVÝM KURZEM (navazující přednáška na přednášku na éma inflace, měnová eorie a měnová poliika) Měnová poliika

Více

2.6.4 Kapalnění, sublimace, desublimace

2.6.4 Kapalnění, sublimace, desublimace 264 Kapalnění, sublimace, desublimace Předpoklady: 2603 Kapalnění (kondenzace) Snižování eploy páry pára se mění v kapalinu Kde dochází ke kondenzaci? na povrchu kapaliny, na povrchu pevné láky (orosení

Více

Výpočty populačních projekcí na katedře demografie Fakulty informatiky a statistiky VŠE. TomášFiala

Výpočty populačních projekcí na katedře demografie Fakulty informatiky a statistiky VŠE. TomášFiala Výpočy populačních projekcí na kaedře demografie Fakuly informaiky a saisiky VŠE TomášFiala 1 Komponenní meoda s migrací Zpravidla zjednodušený model migrace předpokládá se pouze imigrace na úrovni migračního

Více

Ploché výrobky válcované za tepla z ocelí s vyšší mezí kluzu pro tváření za studena

Ploché výrobky válcované za tepla z ocelí s vyšší mezí kluzu pro tváření za studena Ploché výrobky válcované za epla z ocelí s vyšší mezí kluzu pro váření za sudena ČSN EN 10149-1 Obecné echnické dodací podmínky Dodací podmínky pro ermomechanicky válcované Podle ČSN EN 10149-12-2013 ČSN

Více

KINEMATIKA. 1. Základní kinematické veličiny

KINEMATIKA. 1. Základní kinematické veličiny KINEMATIKA. Základní kinemaické veličiny Tao čá fyziky popiuje pohyb ěle. VZTAŽNÁ SOUSTAVA je ěleo nebo ouava ěle, ke kerým vzahujeme pohyb nebo klid ledovaného ělea. Aboluní klid neexiuje, proože pohyb

Více

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Meodika zpracování finanční analýzy a Finanční udržielnos projeků PŘÍLOHA

Více

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

900 - Připojení na konstrukci

900 - Připojení na konstrukci Součási pro připojení na konsrukci Slouží k přenosu sil z áhla závěsu na nosnou konsrukci profily nebo sropy. Typy 95x, 96x a 971 slouží k podložení a uchycení podpěr porubí. Připojení podle ypů pomocí

Více

Teorie obnovy. Obnova

Teorie obnovy. Obnova Teorie obnovy Meoda operačního výzkumu, kerá za pomocí maemaických modelů zkoumá problémy hospodárnosi, výměny a provozuschopnosi echnických zařízení. Obnova Uskuečňuje se až po uplynuí určiého času činnosi

Více

Nakloněná rovina I

Nakloněná rovina I 1.2.14 Nakloněná rovina I Předoklady: 1213 Pomůcky: kulička, sada na měření řecí síly. Až dosud jsme se u všech říkladů uvažovali ouze vodorovné lochy. Př. 1: Vysvěli, roč jsme u všech dosavadních říkladů

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonomerie Heeroskedasicia Cvičení 7 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady. E(u) = 0 náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný

Více

Ocenění podniku s přihlédnutím k možné insolvenci postup pro metodu DCF entity a equity

Ocenění podniku s přihlédnutím k možné insolvenci postup pro metodu DCF entity a equity Mařík, M. - Maříková, P.: Ocenění podniku s přihlédnuím k možné insolvenci posup pro meodu DCF eniy a equiy. Odhadce a oceňování podniku č. 3-4/2013, ročník XIX, sr. 4-15, ISSN 1213-8223 Ocenění podniku

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

CZ Štěpán Vimr, student učitelství Zpráva z pracovní návštěvy Sucy-en-Brie, Francie 15.12.-19.12.2008

CZ Štěpán Vimr, student učitelství Zpráva z pracovní návštěvy Sucy-en-Brie, Francie 15.12.-19.12.2008 CZ Šěpán Vimr suden učielsví Zpráva z pracovní návšěvy Sucy-en-Brie Francie 15.12.-19.12.2008 Konaku s učielem-hosielem První (emailové) konaky jsem navazoval se sejnými lidmi což můj poby velmi zjednodušilo

Více

Klíčová slova: Astabilní obvod, operační zesilovač, rychlost přeběhu, korekce dynamické chyby komparátoru

Klíčová slova: Astabilní obvod, operační zesilovač, rychlost přeběhu, korekce dynamické chyby komparátoru Asabilní obvod s reálnými operačními zesilovači Josef PUNČOCHÁŘ Kaedra eoreické elekroechniky Fakula elekroechnicky a informaiky Vysoká škola báňská - Technická universia Osrava ř. 17 lisopadu 15, 708

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský sociální fond Praha & EU: Invesujeme do vaší budoucnosi Ekonomika podniku Kaedra ekonomiky, manažersví a humaniních věd Fakula elekroechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Kriéria efekivnosi

Více

T t. S t krátkodobé náhodná složka. sezónní. Trend + periodická složka = deterministická složka

T t. S t krátkodobé náhodná složka. sezónní. Trend + periodická složka = deterministická složka Analýza časových řad Klasický přísup k analýze ČŘ dekompozice časové řady - rozklad ČŘ na složky charakerizující různé druhy pohybů v ČŘ, keré umíme popsa a kvanifikova rend periodické kolísání cyklické

Více

Analýza citlivosti NPV projektu na bázi ukazatele EVA

Analýza citlivosti NPV projektu na bázi ukazatele EVA 3. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6.-7. září 2006 Analýza cilivosi NPV projeku na bázi ukazaele EVA Dagmar Richarová

Více

Úloha VI.3... pracovní pohovor

Úloha VI.3... pracovní pohovor Úloha VI.3... pracovní pohovor 4 body; průměr,39; řešilo 36 sudenů Jedna z pracoven lorda Veinariho má kruhový půdorys o poloměru R a je umísěna na ložiscích, díky nimž se může oáče kolem své osy. Pro

Více

Pohyb po kružnici - shrnutí. ω = Předpoklady:

Pohyb po kružnici - shrnutí. ω = Předpoklady: .3.3 Pohyb po kružnici - shrnuí Předpokldy: 3 Pomocí dou ě U kruhoého pohybu je ýhodnější měři úhel (kerý je pro šechny body sejný) než dráhu (kerá se pro body s různou zdálenosí od osy liší). Ke kždé

Více

Léto 2005. Výzkumná práce 2 Peníze a ekonomika: Jak se vlastně ovlivňují?

Léto 2005. Výzkumná práce 2 Peníze a ekonomika: Jak se vlastně ovlivňují? NEWTON College, a. s. www.newoncollege.cz Léo 25 Výzkumná práce 2 Peníze a ekonomika: Jak se vlasně ovlivňují? Makroekonomický vývoj 12 Akuální makroekonomický vývoj České republiky 31 Prognóza ekonomických

Více

Jakost, spolehlivost a teorie obnovy

Jakost, spolehlivost a teorie obnovy Jakos, spolehlivos a eorie obnovy opimální inerval obnovy, seskupování obnov, zráy z nedodržení normaivu Jakos, spolehlivos a obnova srojů Jakos vyjadřuje supeň splnění požadavků souborem inherenních znaků.

Více

Příjmově typizovaný jedinec (PTJ)

Příjmově typizovaný jedinec (PTJ) Příjmově ypizovaný jeinec (PTJ) V éo čási jsou popsány charakerisiky zv. příjmově ypizovaného jeince (PTJ), j. jeince, kerý je určiým konkréním způsobem efinován. Slouží jako násroj k posouzení opaů ůchoových

Více

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav 5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických

Více

10 LET ČLENSTVÍ ČESKÉ REPUBLIKY V EVROPSKÉ UNII Z POHLEDU EKONOMICKÉ DEMOGRAFIE A PRŮZKUMU PRACOVNÍCH SIL PODLE EUROSTATU

10 LET ČLENSTVÍ ČESKÉ REPUBLIKY V EVROPSKÉ UNII Z POHLEDU EKONOMICKÉ DEMOGRAFIE A PRŮZKUMU PRACOVNÍCH SIL PODLE EUROSTATU RELIK 214. Reprodukce lidského kapiálu vzájemné vazby a souvislosi. 24. 25. lisopadu 214 1 LET ČLENSTVÍ ČESKÉ REPUBLIKY V EVROPSKÉ UNII Z POHLEDU EKONOMICKÉ DEMOGRAFIE A PRŮZKUMU PRACOVNÍCH SIL PODLE EUROSTATU

Více

Pouť k planetám - úkoly

Pouť k planetám - úkoly Nemůže Slunce náhle ohrozi nečekaným výbuchem Vaši rakeu? záleží, v jaké vzdálenosi se nachází, důležié je uvědomi si akiviu Slunce (skvrny, prouberance, nebezpečné výrysky plazmau a následný proud nabiých

Více

Popis regulátoru pro řízení směšovacích ventilů a TUV

Popis regulátoru pro řízení směšovacích ventilů a TUV Popis reguláoru pro řízení směšovacích venilů a TUV Reguláor je určen pro ekviermní řízení opení jak v rodinných domcích, ak i pro věší koelny. Umožňuje regulaci jednoho směšovacího okruhu, přípravu TUV

Více

1.1.9 Rovnoměrný pohyb IV

1.1.9 Rovnoměrný pohyb IV 1.1.9 Rovnoměrný pohyb IV ředpoklady: 118 V jedné z minulých hodin jme odvodili vzah pro dráhu (nebo polohu) rovnoměrného pohybu = v (dráha je přímo úměrná rychloi a čau). ř. 1: Karel a onza e účaní dálkového

Více

Úloha II.E... je mi to šumák

Úloha II.E... je mi to šumák Úloha II.E... je mi o šumák 8 bodů; (chybí saisiky) Kupe si v lékárně šumivý celaskon nebo cokoliv, co se podává v ableách určených k rozpušění ve vodě. Změře, jak dlouho rvá rozpušění jedné abley v závislosi

Více

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV 3 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6-7 září 2006 Porovnání způsobů hodnocení invesičních projeků na bázi kriéria Dana Dluhošová

Více

LindabCoverline. Tabulky únosností. Pokyny k montáži trapézových plechů Lindab

LindabCoverline. Tabulky únosností. Pokyny k montáži trapézových plechů Lindab LindabCoverline Tabulky únosnosí Pokyny k monáži rapézových plechů Lindab abulky únosnosi rapézových plechů Úvod Přípusné plošné zaížení je určeno v souladu s normou ČSN P ENV 1993-1-3 Navrhování ocelových

Více

Prognózování vzdělanostních potřeb na období 2006 až 2010

Prognózování vzdělanostních potřeb na období 2006 až 2010 Prognózování vzdělanosních pořeb na období 2006 až 2010 Zpráva o savu a rozvoji modelu pro předvídání vzdělanosních pořeb ROA - CERGE v roce 2005 Vypracováno pro čás granového projeku Společnos vědění

Více

Working Paper Solidarita mezi generacemi v systémech veřejného zdravotnictví v Evropě

Working Paper Solidarita mezi generacemi v systémech veřejného zdravotnictví v Evropě econsor www.econsor.eu Der Open-Access-Publikaionsserver der ZBW Leibniz-Informaionszenrum Wirschaf The Open Access Publicaion Server of he ZBW Leibniz Informaion Cenre for Economics Pavloková, Kaeřina

Více

STATISTICKÁ ANALÝZA PORODNOSTI Bakalářská práce

STATISTICKÁ ANALÝZA PORODNOSTI Bakalářská práce MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA PROVOZNĚ EKONOMICKÁ FAKULTA ÚSTAV STATISTIKY A OPERAČNÍHO VÝZKUMU STATISTICKÁ ANALÝZA PORODNOSTI Bakalářská práce Vedoucí bakalářské práce Mgr. Veronika Blašková

Více

1.3.5 Dynamika pohybu po kružnici I

1.3.5 Dynamika pohybu po kružnici I 1.3.5 Dynamika pohybu po kružnici I Předpoklady: 1304 Při pohybu po kružnici je výhodnější popisova pohyb pomocí úhlových veličin, keré korespondují s normálními veličinami, keré jsme používali dříve.

Více

1.1.15 Řešení příkladů na rovnoměrně zrychlený pohyb I

1.1.15 Řešení příkladů na rovnoměrně zrychlený pohyb I ..5 Řešení příkldů n ronoměrně zrychlený pohyb I Předpokldy: 4 Pedgogická poznámk: Cílem hodiny je, by se sudeni nučili smosně řeši příkldy. Aby dokázli njí zh, kerý umožňuje příkld yřeši, dokázli ze zhů

Více

Frézování - řezné podmínky - výpočet

Frézování - řezné podmínky - výpočet Předmě: Ročník: Vyvořil: Daum: Základy výroby 2 M. Geisová 10. červen 2012 Název zpracovaného celku: Frézování - řezné podmínky - výpoče Posup při určování řezných podmínek, výpoče řezné síly Fř, výkonu

Více

Studie proveditelnosti (Osnova)

Studie proveditelnosti (Osnova) Sudie provedielnosi (Osnova) 1 Idenifikační údaje žadaele o podporu 1.1 Obchodní jméno Sídlo IČ/DIČ 1.2 Konakní osoba 1.3 Definice a popis projeku (max. 100 slov) 1.4 Sručná charakerisika předkladaele

Více

10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY

10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY - 54-10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY (V.LYSENKO) Základní princip analogově - číslicového převodu Analogové (spojié) y se v nich ransformují (převádí) do číslicové formy. Vsupní spojiý (analogový) doby

Více

PŘÍLOHA SDĚLENÍ KOMISE. nahrazující sdělení Komise

PŘÍLOHA SDĚLENÍ KOMISE. nahrazující sdělení Komise EVROPSKÁ KOMISE V Bruselu dne 28.10.2014 COM(2014) 675 final ANNEX 1 PŘÍLOHA SDĚLENÍ KOMISE nahrazující sdělení Komise o harmonizovaném rámci návrhů rozpočových plánů a zpráv o emisích dluhových násrojů

Více

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné

Více

Komparace nezaměstnanosti vybraných okresů Olomouckého kraje

Komparace nezaměstnanosti vybraných okresů Olomouckého kraje Mendelova univerzia v Brně Fakula regionálního rozvoje a mezinárodních sudií Úsav demografie a aplikované saisiky Komparace nezaměsnanosi vybraných okresů Olomouckého kraje Bakalářská práce Vedoucí práce:

Více

Název: Měření nabíjecí a vybíjecí křivky kondenzátoru v RC obvodu, určení časové konstanty a její závislosti na odporu

Název: Měření nabíjecí a vybíjecí křivky kondenzátoru v RC obvodu, určení časové konstanty a její závislosti na odporu Název: Měření nabíjecí a vybíjecí křivky kondenzátoru v RC obvodu, určení časové konstanty a její závislosti na odporu Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy

Více

10 Transformace 3D. 10.1 Transformace a jejich realizace. Studijní cíl. Doba nutná k nastudování. Průvodce studiem

10 Transformace 3D. 10.1 Transformace a jejich realizace. Studijní cíl. Doba nutná k nastudování. Průvodce studiem Trnsformce 3D Sudijní cíl Teno blok je věnován rnsformcím 3D grfik. V eu budou popsán ákldní rnsformce v prosoru posunuí oočení kosení měn měřík používné při prcování 3D modelu. Jednolivé rnsformce budou

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/ EU PENÍZE ŠKOLÁM NÁZEV PROJEKU : MÁME RÁDI ECHNIKU REGISRAČNÍ ČÍSLO PROJEKU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Prakická škola rmice Fűgnerova 22 400 04 1 Idenifikáor maeriálu: EU 5 16 Čj

Více

Vybrané metody statistické regulace procesu pro autokorelovaná data

Vybrané metody statistické regulace procesu pro autokorelovaná data XXVIII. ASR '2003 Seminar, Insrumens and Conrol, Osrava, May 6, 2003 239 Vybrané meody saisické regulace procesu pro auokorelovaná daa NOSKIEVIČOVÁ, Darja Doc., Ing., CSc. Kaedra konroly a řízení jakosi,

Více

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny. 1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete

Více

2. ZÁKLADY TEORIE SPOLEHLIVOSTI

2. ZÁKLADY TEORIE SPOLEHLIVOSTI 2. ZÁKLADY TEORIE SPOLEHLIVOSTI Po úspěšném a akivním absolvování éo KAPITOLY Budee umě: orienova se v základním maemaickém aparáu pro eorii spolehlivosi, j. v poču pravděpodobnosi a maemaické saisice,

Více

Fyzikální praktikum II - úloha č. 4

Fyzikální praktikum II - úloha č. 4 Fyzikální prakikum II - úloha č. 4 1 4. Přechodové jevy v obvodech s kapaciory Úkoly 1) 2) 3) 4) Sesave obvod pro demonsraci jevu nabíjení a vybíjení kondenzáoru. Naměře průběhy napěí a proudů na vybraných

Více

Tabulky únosnosti tvarovaných / trapézových plechů z hliníku a jeho slitin.

Tabulky únosnosti tvarovaných / trapézových plechů z hliníku a jeho slitin. Tabulky únosnosi varovaných / rapézových plechů z hliníku a jeho sliin. Obsah: Úvod Základní pojmy Příklad použií abulek Vysvělivky 4 5 6 Tvarovaný plech KOB 00 7 Trapézové plechy z Al a jeho sliin KOB

Více

RŮSTOVÉ MODELY ČESKÉHO STRAKATÉHO SKOTU

RŮSTOVÉ MODELY ČESKÉHO STRAKATÉHO SKOTU RŮSTOVÉ MODELY ČESKÉHO STRAKATÉHO SKOTU Helena Nešeřilová 1, Jan Pulkrábek 2 1 Česká zemědělská universia v Praze 2 Výzkumný úsav živočišné výroby, Praha-Uhříněves Anoace: Na souboru býků českého srakaého

Více

Kinematika hmotného bodu

Kinematika hmotného bodu DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3

Více

POPIS OBVODŮ U2402B, U2405B

POPIS OBVODŮ U2402B, U2405B Novodvorská 994, 142 21 Praha 4 Tel. 239 043 478, Fax: 241 492 691, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = POPIS OBVODŮ U2402B, U2405B Oba dva obvody

Více

( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut.

( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut. 21. konference Klimaizace a věrání 14 OS 01 Klimaizace a věrání STP 14 NÁVRH CHLADIČ VNKOVNÍHO VZDUCHU Vladimír Zmrhal ČVUT v Praze, Fakula srojní, Úsav echniky prosředí Vladimir.Zmrhal@fs.cvu.cz ANOTAC

Více