Základním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Základním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo."

Transkript

1 přednáša KOMBINATORIKA Při řešení mnoha praticých problémů se setáváme s úlohami, ve terých utváříme supiny z prvů nějaé onečné množiny Napřílad máme sestavit rozvrh hodin z daných předmětů, potřebujeme rozhodnout, teré týmy budou v turnaji hrát proti sobě, nebo chceme rozdat něoli druhů cen mezi účastníy závodu Řešením těchto úloh se zabývá ombinatoria Kombinatoria je tedy obor matematiy, terý se zabývá uspořádáním daných prvů podle určitých pravidel do určitých supin Záladním pojmem v ombinatorice je pojem (-prvová) supina, nebo taé -tice prvů, de je přirozené číslo S náznay ombinatoriy se setáváme již u starořecých matematiů Počáty hlubšího studia otáze spojených s ombinatoriou vša spadají do období 6 století Zájem o ombinatoriu podnítily v té době různé hazardní hry, napřílad vrchcáby neboli hra v osty Matematici se začali zabývat otázami, jaá možná sesupení mohou nastat při házení určitého počtu hracích oste, jaé jsou pravděpodobnosti výher, později i jinými otázami, a ta se postupně vyvíjel obor, terý v současné době nalézá uplatnění v teorii pravděpodobnosti, v teorii informací, ve statistice a v dalších oborech Záladními větami ombinatoriy jsou tzv ombinatoricé pravidlo součtu a ombinatoricé pravidlo součinu: Věta (pravidlo součinu): Počet všech uspořádaných -tic (dvojic, trojic,), jejichž první člen lze vybrat n způsoby, druhý člen po výběru prvního členu n způsoby atd až -tý člen po výběru všech předcházejících členů n způsoby, je roven n n n Přílad: Při cestě z Ostravy do Tábora (přes Prahu) lze použít tyto dopravní prostředy: Ostrava - Praha: autobus, vla, letadlo, auto Praha - Tábor: autobus, vla, auto Kolia možnými způsoby se dostaneme z Ostravy do Tábora? Řešení: Je zřejmé, že z Ostravy se do Prahy dostaneme pomocí dopravních prostředů a z Prahy do Tábora lze využít možností Ke aždé cestě do Prahy máme možnosti v poračování Je tedy celem = možností, ja cestovat z Ostravy do Prahy

2 Poznáma: Kombinatoricé pravidlo součinu můžeme použít taé v případě, dy něolirát (-rát) opaujeme výběr z určitých prvů a zajímá nás, oli různých pořadí může vzninout Např dyž házíme mincí, jde o opaovaný výběr ze dvou prvů (orel, panna) Po třech hodech může vninout = 8 různých výsledů Věta (pravidlo součtu): Mějme onečné množiny A, A,, A, teré mají po řadě n, n,, n prvů Jsou-li aždé dvě množiny navzájem disjuntní, tzn neobsahují žádný společný prve, pa počet prvů množiny AÈ AÈK A je roven n + n+k n Přílad: Určete počet všech přirozených dvojciferných čísel, v jejichž deadicém zápisu se aždá číslice vysytuje nejvýše jednou Řešení: Všechna přirozená dvojciferná čísla můžeme rozdělit do dvou disjuntních supin ta, že v první jsou dvojciferná čísla s různými číslicemi a ve druhé dvojciferná čísla se stejnými číslicemi Počet všech dvojciferných čísel je 90, počet dvojciferných čísel se stejnými číslicemi je 9 (jsou to čísla,,, 99) Označíme-li hledaný počet dvojciferných čísel s různými číslicemi x, pa platí:x + 9 = 90 Odtud dostáváme, že x = 8 Kombinatoria tedy zoumá supiny (podmnožiny) prvů vybraných z jisté záladní množiny Nejdříve si ujasníme, s jaými výběry se v praxi můžeme setat Prvním ritériem je uspořádanost výběru: Uspořádaný výběr (variace) - záleží na pořadí prvů Napřílad: Koli trojciferných čísel můžeme sestavit z cifer ; ; 8? Číslo 8 a 8 považujeme za různé výběry => záleží na pořadí cifer Neuspořádaný výběr (ombinace) - nezáleží na pořadí prvů Napřílad: Koli je možností při vsázení Sporty? Vždy zašrtnu 7 čísel ze 9, ale volba {; 5; 5; ; ; 9; } je shodná z volbou {; 5; 5; ; ; 9; } => nezáleží na pořadí v jaém čísla šrtám Druhým ritériem je, zda se prvy po výběru do původní množiny vracejí či nioliv Podle toho výběry rozlišujeme na: Výběry s opaováním - vybraný prve se vrací do původní množiny

3 Napřílad: Z cifer {;} můžeme sestavit tato dvojciferná čísla {; ; ; } V se opauje prve - po prvním výběru se vrátila do množiny možných cifer Výběry bez opaování - vybraný prve se nevrací do původní množiny Napřílad: Kolia způsoby lze seřadit 8 sprinterů na startovní čáru Po výběru prvního sprintera už budeme dalšího vybírat pouze ze 7 (vybraného již nemůžeme použít), atd Matematicy je jednodušší popis výběru s opaováním, avša v praxi se častěji setáváme s výběry bez opaování (test není možno opaovat se stejným vzorem, např tažnost truby lze testovat pouze jednou, pro další test se musí použít další truba) ) VARIACE bez opaování Definice: -členná variace z n prvů ( 0 < n ) je uspořádaná -tice sestavená ta, že aždý prve se v ní vysytuje nejvýše jednou Značíme ji (n) - variační číslo V Věta : Počet variací V (n) V ( n) = n ( n-) ( n- ) ( n- + ) = ( n- )! Poznáma: Symbol n! čteme "n fatoriál" a pro aždé přirozené číslo n definujeme: n! = ( n-) n a 0=! Přílad: Členové správní rady hoejového lubu volí prezidenta, viceprezidenta a revizora účtů lubu Určete, oli existuje způsobů, ja mohou být tyto funce obsazeny, víme-li, že členů rady je 8, do funcí lze volit pouze členy správní rady a žádný člen nemůže zastávat více než jednu funci Řešení: Máme dvě možnosti řešení: a) Pomocí ombinatoricého pravidla součinu: Předpoládejme, že nejdříve se volí prezident lubu Je zřejmé, že budeme vybírat z 8 Následuje volba viceprezidenta Počet možností, ja ji provést, je již 7 (prezident už tuto funci vyonávat nemůže) Při poslední volbě revizora připadá do úvahy 6 možných andidátů => možností je celem: 8 7 6= 6 b) Uvědomíme si, že vlastně vybíráme trojici (=) z 8 lidí (n=8) Lidé se nemohou opaovat (jedna osoba nemůže zastávat více funcí) a záleží na tom, v jaém pořadí vybíráme (není jedno, zda jsem prezident nebo viceprezident) => záleží na pořadí a prvy se neopaují => jde o tříčlenné variace z osmi prvů bez opaování 8! 8 7 Máme tedy V (8) = = = 8 7 6= 6 možností, ja obsadit funce (8- )! 5 ) PERMUTACE bez opaování

4 Permutace je zvláštní případ variace, de = n To znamená, že ze zadaných prvů postupně vybereme všechny Každá permutace tedy odpovídá nějaému pořadí zadaných prvů: aždý prve se v pořadí musí objevit, ale žádný tam nemůže být dvarát U permutací tedy v podstatě nejde o výběr, ale o různá uspořádání dané množiny Definice: Permutace z n prvů je uspořádaná n-tice sestavená ta, že aždý prve se v ní vysytuje právě jednou Značíme ji P (n) Věta : Počet permutací P (n) P( n) = Vn ( n) = = = ( n- n)! 0! Přílad: Kolia způsoby lze seřadit 8 sprinterů na startovní čáru? Řešení: Tvoříme osmice z 8 (=8, n=8), záleží na pořadí a jeden sprinter nemůže být na dvou pozicích (prvy se neopaují) => variace bez opaování, de = n, tj hledáme počet permutací z 8 prvů Existuje tedy P ( 8) = 8! = 00 možností, ja seřadit 8 sprinterů na startovní čáru ) VARIACE s opaováním Definice: -členná variace s opaováním z n prvů je uspořádaná -tice sestavená ta, že aždý prve se v ní vysytuje nejvýše -rát Značíme ji V Věta : Počet variací s opaováním V V ) = ( n n Poznáma: Poaždé vybírám ze všech prvů a podle ombinatoricého pravidla součinu tedy existuje n n n (celem se n opauje -rát) Přílad: Určete, oli čtyřciferných přirozených čísel lze sestavit z cifer,, a oli jich je menších než 000 Řešení: V prvním případě hledám čtveřice ze tří prvů (musí se opaovat) a číslo není stejné s číslem (záleží na pořadí) => variace s opaováním (=, n=) Počet všech čtyřciferných přirozených čísel je: V () = 8 = Pro určení, oli z těchto 8 čísel je menších ja 000 si stačí uvědomit, že na pozici tisíců může být pouze nebo (máme možnosti) a pa už hledáme trojice ze všech prvů (poaždé možnosti) => použitím pravidla o součinu dostáváme: V () = 5 čísel =

5 ) PERMUTACE s opaováním Definice: Permutace s opaováním je uspořádaná n-tice z různých prvů, v níž se aždý prve ni -rát opauje ( i =,, ) Značíme ji P n,, n Věta : Počet permutací s opaováním P n,, n = n! n! n! Poznáma: Počet opaování jednotlivých prvů označujeme n,, n a musí platit, že n + + n = n Přílad: Určete, olia způsoby je možné srovnat do řady šedé, modré a černé osty Řešení: Máme prvy (šedá, modrá a černá osta), de první prve se vysytuje -rát ( n = ), druhý -rát ( n = ) a třetí -rát ( n = ), tj máme celem 9 prvů (n=9) Musíme použít všechny, tzn budeme sestavovat 9-tice z 9 - záleží na pořadí a musí se opaovat 9! Existuje P,, = = 60 způsobů, ja dané osty srovnat do řady!!! 5) KOMBINACE bez opaování Definice: -členná ombinace z n prvů ( n ) je neuspořádaná -tice sestavená ta, že aždý prve se v ní vysytuje nejvýše jednou Značíme ji (n) - ombinační číslo C Věta : Počet ombinací C (n) æ nö C ( n) = ç = èø ( n- )!! æ nö Poznáma: ç tedy nazýváme ombinační číslo a čteme n nad èø ænö ænö æn ö æ nö æ n ö Platí: ç = ç =, ç = n a ç = ç è0ø ènø èø èø èn- ø Přílad: Na výtah, do něhož můžou nastoupit nejvýše osoby, čeá 6 osob 5

6 a) Koli je možností, ja vybrat osoby, teří pojedou? b) Koli je možností, ja vybrat osoby, teré nepojedou? Řešení: a) Tvoříme dvojice ze šesti prvů, přičemž nezáleží na pořadí (Mire s Janou je to samé co Jana s Mirem) a nemohou se opaovat => ombinace bez opaování (n=6 a =) æ6ö 6! 6 5! Máme celem C (6) = ç = = = 5 možností, ja mohou lidé nastoupit èø (6- )!!! b) Vybíráme čtveřice ze 6 osob (= a n=6) - opět nezáleží na pořadí a osoby se nemohou opaovat: æ6ö 6! 6 5! Máme celem C (6) = ç = = = 5 možností, ja vybrat osoby, teré èø (6- )!!!! nenastoupí Je vidět, že počet možností, ja vybrat, teří pojedou je stejný jao počet možností, ja æ nö æ n ö vybrat, teří zůstanou čeat (ilustruje platnost vlastnosti ç = ç ) èø èn- ø 6) KOMBINACE s opaováním Definice: -členná ombinace s opaováním z n prvů je neuspořádaná -tice sestavená ta, že aždý prve se v ní vysytuje nejvýše -rát Značíme ji C Věta : Počet ombinací C æn+ -ö ( n+ -)! C ( n) = ç = è ø ( n-)!! Přílad: V curárně prodávají čtyři druhy záusů Kolia způsoby lze naoupit 8 záusů? Řešení: Nezáleží na pořadí a prvy se musí opaovat => 8-členné ombinace ze prvů s opaováním æ+ 8-ö! 0 9 8! Existuje C 8 () = ç = = = 65 možností, ja záusy vybereme è 8 ø!8! 6 8! 6

7 Shrnutí: 7

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a)

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a) 1. KOMBINATORIKA Kombinatoria je obor matematiy, terý zoumá supiny prvů vybíraných z jisté záladní množiny. Tyto supiny dělíme jedna podle toho, zda u nich záleží nebo nezáleží na pořadí zastoupených prvů

Více

0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ. as ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umt použít

0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ. as ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umt použít 0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ as e studiu apitoly: 30 minut Cíl: Po prostudování této apitoly budete umt použít záladní pojmy ombinatoriy vztahy pro výpoet ombinatoricých úloh - 6 - 0.1 Kombinatoria

Více

1. Úvod do základních pojmů teorie pravděpodobnosti

1. Úvod do základních pojmů teorie pravděpodobnosti 1. Úvod do záladních pojmů teore pravděpodobnost 1.1 Úvodní pojmy Většna exatních věd zobrazuje své výsledy rgorózně tj. výsledy jsou zísávány na záladě přesných formulí a jsou jejch nterpretací. em je

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení TYPY VÝBĚRŮ Uspořádanost výběru uspořádaný výběr = VARIACE, záleží na pořadí vybraných prvků neuspořádaný výběr = KOMBINACE, nezáleží na pořadí vybraných prvků Opakované zařazení

Více

VARIACE BEZ OPAKOVÁNÍ

VARIACE BEZ OPAKOVÁNÍ VARIACE BEZ OPAKOVÁNÍ (1) Trezor má 6 otočných zámků s číslicemi 0 9. O kódu víme pouze to, že v něm žádná z číslic není dvakrát. O kolik možných nastavení se může jednat? Analogicky odvoďte obecné řešení.

Více

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109 9.1.11 Kombinatorické úlohy bez opakování Předpoklady: 9109 Pedagogická poznámka: Tato hodina slouží jednak ke zopakování probraného, ale zejména k praktickému nácviku kombinatoriky v situaci, ve které

Více

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení 2. intermezzo - Tucet dalších příkladů. Příklad 1: Čtyři studenti jisté vysoké školy skládají zkoušku z matematiky. Kolik existuje případů, že každý z nich bude mít jinou známku? Počítejte s čtyřstupňovou

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

Mgr. Marcela Sandnerová

Mgr. Marcela Sandnerová Mgr. Marcela Sandnerová Základní kombinatorická pravidla Kombinatorické pravidlo součinu Kombinatorické pravidlo součtu Kombinatorické pravidlo součinu Příklad 1 Kolika způsoby si může Pavel připravit

Více

9.1.1 Základní kombinatorická pravidla I

9.1.1 Základní kombinatorická pravidla I 9.. Základní kombinatorická pravidla I Předpoklady: Př. : Ve třídě je 7 děvčat a 3 kluků. Kolik máme možností jak vybrat dvojici klukholka, která bude mít projev na maturitním plese? Vybíráme ze 7 holek

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor002 Vypracoval(a),

Více

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol OPERACE

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti PRAVDĚPODOBNOST anotace Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti VM vytvořil: Mgr. Marie Zapadlová Období vytvoření VM: září 2013 Klíčová

Více

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k,

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k, Řešení 1. série Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy h = 1 2 v d, h = 1 2 s k, kde h je počet hran, v je počet vrcholů, d je stupeň vrcholu, s je počet stěn a k je počet úhlů

Více

š ó ó Š š ú ž Ó ž ů ď ů ó ů ú ť ť Ú ú ňó ž Ě ň ů ú Š ó ú ó š Ů ď ó ň Ň Ú ú ú ž ó ň ž ú Ú ú Ú ú š ň Ú Ú Ú Ú Ú ú Ú Ú Ó Ú Ú Š Š ú Ú Š Š š ú Ý ď É Š Š ň ň Ú Š É š Ů ň Ú Ď ž ú ž ň ň É É ď Ú Ů Ú Ú Éň ú ú É ň

Více

Í ě ň ó Ř Š ě ě ě ě ě ě ě ě ě ě ó Ř ě ě ě ě ě ě ť ě ť Š ě ě ť ě ť ě ě Š ó Ř ó Ř Ý Ž É Č ň ň ě ě ť Ž ě ě ť ě ě ě ě ě ě ě ě ě ě ě ě ě Š ň ě ó Ř ó Ř ó ť ť ě ť ť ě ě ě ě ě ě ě Š ů ě ó ó Ř ó Ř ě ě ť ě ě ó Ř

Více

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMBINATORIKA Gymázium Jiřího Wolera v Prostějově Výuové materiály z matematiy pro vyšší gymázia Autoři projetu Studet a prahu. století - využití ICT ve vyučováí matematiy a gymáziu INVESTICE DO ROZVOJE

Více

Pravděpodobnost a statistika pro SŠ

Pravděpodobnost a statistika pro SŠ Pravděpodobnost a statistika pro SŠ RNDr. Blanka Šedivá, Ph.D., katedra matematiky, Fakulta aplikovaných věd Západočeské univerzity v Plzni sediva@kma.zcu.cz 28. března 2012 Počátky teorie pravděpodobnosti

Více

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH J. Tesař, P. Batoš Jihočesá univezita, Pedagogicá faulta, Kateda fyziy, Jeonýmova 0, 37 5 Česé Budějovice Abstat V příspěvu

Více

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209 9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů; b) dá alespoň jeden koš; c) dá nejdříve

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

2. STAVBA PARTPROGRAMU

2. STAVBA PARTPROGRAMU Stavba partprogramu 2 2. STAVBA PARTPROGRAMU 2.1 Slovo partprogramu 2.1.1 Stavba slova Elementárním stavebním prvem partprogramu je tzv. slovo (instruce programu). Každé slovo sestává z písmene adresy

Více

Vysokorychlostní železnice úspěchy a výzvy

Vysokorychlostní železnice úspěchy a výzvy Vysoorychlostní železnice úspěchy a výzvy Dr. Gunter Ellwanger, ředitel pro vysoorychlostní železnice, Mezinárodní železniční unie Vysoorychlostní vlay přiláaly na železnici nové cestující především na

Více

Využití expertního systému při odhadu vlastností výrobků

Využití expertního systému při odhadu vlastností výrobků Vužití epertního sstému při odhadu vlastností výrobů ibor Žá Abstrat. Článe se zabývá možností ja vužít fuzz epertní sstém pro popis vlastností výrobu. Důvodem tohoto přístupu je možnost vužití vágních

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

THE POSSIBILITY OF RELOCATION WAREHOUSES IN CZECH-POLISH BORDER MOŽNOSTI RELOKACE SKLADŮ V ČESKO-POLSKÉM PŘÍHRANIČÍ

THE POSSIBILITY OF RELOCATION WAREHOUSES IN CZECH-POLISH BORDER MOŽNOSTI RELOKACE SKLADŮ V ČESKO-POLSKÉM PŘÍHRANIČÍ Jan CHOCHOLÁČ 1 THE POSSIBILITY OF RELOCATION WAREHOUSES IN CZECH-POLISH BORDER MOŽNOSTI RELOKACE SKLADŮ V ČESKO-POLSKÉM PŘÍHRANIČÍ BIO NOTE Jan CHOCHOLÁČ Asistent na Katedře dopravního managementu, maretingu

Více

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

9.2.1 Náhodné pokusy, možné výsledky, jevy

9.2.1 Náhodné pokusy, možné výsledky, jevy 9.2.1 Náhodné pokusy, možné výsedky, jevy Předpokady: 9110, 9114 Hodím kámen za normáních okoností jediný výsedek = spadne na zem Hodíme kámen na terč někoik možných výsedků (trefíme desítku, devítku,,

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Funkce. Definiční obor a obor hodnot

Funkce. Definiční obor a obor hodnot Funkce Definiční obor a obor hodnot Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

9 Skonto, porovnání různých forem financování

9 Skonto, porovnání různých forem financování 9 Sonto, porovnání různých forem financování Sonto je sráža (sleva) z ceny, terou posytuje prodávající upujícímu v případě, že upující zaplatí oamžitě (resp. během dohodnuté ráté lhůty). Výše sonta je

Více

Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM

Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: Název projektu školy: Šablona III/2: CZ.1.07/1.5.00/34.0536 Výuka s ICT na SŠ obchodní České

Více

5 Informace o aspiračních úrovních kritérií

5 Informace o aspiračních úrovních kritérií 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.

Více

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

PRAVDĚPODOBNOST A JEJÍ UŽITÍ PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

Úvod do teorie dělitelnosti

Úvod do teorie dělitelnosti Úvod do teorie dělitelnosti V předchozích hodinách matematiky jste se seznámili s desítkovou soustavou. Umíte v ní zapisovat celá i desetinná čísla a provádět zpaměti i písemně základní aritmetické operace

Více

I. kolo kategorie Z7

I. kolo kategorie Z7 60. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Součin číslic libovolného vícemístného čísla je vždy menší než toto číslo. Pokud počítáme součin číslic daného vícemístného čísla, potom součin

Více

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1. Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Kombinatorika, základní kombinatorická pravidla, pravidlo součtu, pravidlo součinu

Kombinatorika, základní kombinatorická pravidla, pravidlo součtu, pravidlo součinu Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: Název projektu: Číslo projektu: Autor: Tematická oblast: Název DUMu: Kód: III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN

Více

raději na přednáškách a cvičeních předkládal několik interpretací a ukazoval jsem, zda je změna interpretace podstatná.

raději na přednáškách a cvičeních předkládal několik interpretací a ukazoval jsem, zda je změna interpretace podstatná. ! " #%$&(' )+*,.-/-10 Tento učební text začal vzniat v létě rou 1994, dy jsem poprvé přednášel Složitost a NP-úplnost. Přednáša byla inspirována především nihou [1] Structural Complexity I. Značnou část

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Š Ě É ě ě ů ď č ě ě Č Á č ě ě ě é ě é ř ů č ě ý ř ů ě é ř é é ř ú č é ý é ů é č ř ě Ť ů ý ý ů č ě ď é ě ý é é é ř ď ý ř ť ř é ě ň ť č ďě č ě ý é č ě ř ň ů ě ř ě ě ě é ů é é č ě ů é č ě é ě ď č ý ě ů ů

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

Základy práce s databázemi

Základy práce s databázemi Základy práce s databázemi V tabulkách programu MS Excel máme často informace uloženy v různých seznamech. Pokud tyto tabulky splňují kritéria uvedena níže, mluvíme o databázích a pro jejich správu můžeme

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

APLIKACE NÁSTROJE PASW SPSS 18.0 BASE V TRŽNÍ

APLIKACE NÁSTROJE PASW SPSS 18.0 BASE V TRŽNÍ Úvod a záměr práce APLIKACE NÁSTROJE PASW SPSS 18.0 BASE V TRŽNÍ SEGMENTACI Autor: Mgr. Ing. David Vít Faulta eletrotechnicá ČVUT v Praze, atedra eonomiy, manažerství a humanitních věd 1. Úvod a záměr

Více

Rozpis krajského přeboru v minivolejbale pro soutěžní období 2015 2016

Rozpis krajského přeboru v minivolejbale pro soutěžní období 2015 2016 Středočeský krajský volejbalový svaz http://stc.cvf.cz e-mail: stc-vol@seznam.cz Rozpis krajského přeboru v minivolejbale pro soutěžní období 2015 2016 modrý, červený a žlutý volejbal chlapců, dívek a

Více

Diskrétní Matematika (456-533 DIM)

Diskrétní Matematika (456-533 DIM) Diskrétní Matematika (456-5 DIM) Doc. RNDr. Petr Hliněný, Ph.D. petr.hlineny@vsb.cz 7. července 005 Verze.0. Copyright c 004 005 Petr Hliněný. Obsah 0. Předmluva.................................... iv

Více

KAPITOLA 4 ZPRACOVÁNÍ TEXTU

KAPITOLA 4 ZPRACOVÁNÍ TEXTU KAPITOLA 4 ZPRACOVÁNÍ TEXTU TABULÁTORY Jsou to značky (zarážky), ke kterým se zarovná text. Můžeme je nastavit kliknutím na pravítku nebo v dialogovém okně, které vyvoláme kliknutím na tlačítko Tabulátory

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

1. Opakování učiva 6. ročníku

1. Opakování učiva 6. ročníku . Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Základy statistiky, kombinační úsudek v úlohách Klíčová slova: tabulky, grafy, diagramy Autor: Mlynářová 1 Základy statistiky Statistika je vědní obor, který se zabývá

Více

III. 4.2.12 Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208

III. 4.2.12 Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208 4.. Rychlé určování hodnot funkcí sinus a cosinus Předpoklady: 4, 48 Pedagogická poznámka: Tato kapitola nepřináší nic nového a nemá ekvivalent v klasických učebnicích. Cílem hodiny je uspořádat v hlavách

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta informačních technologií DIPLOMOVÁ PRÁCE

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta informačních technologií DIPLOMOVÁ PRÁCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Faulta informačních technologií DIPLOMOVÁ PRÁCE Brno 2002 Igor Potúče PROHLÁŠENÍ: Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením Ing. Martina

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat.

S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat. @08. Derivace funkce S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat. Definice: Součet funkce f a g je takový předpis, taková funkce h, která každému

Více

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost. Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

Vrtání a vyvrtávání. 1.1.1 Charakteristika výrobní metody

Vrtání a vyvrtávání. 1.1.1 Charakteristika výrobní metody Vrtání a vyvrtávání Vrtáním se rozumí obrábění díry do plného materiálu, zatímco vyvrtáváním se díry předvrtané, předlité nebo předované zvětšují na požadovaný průměr. Vrtat lze válcové, uželové a tvarové

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor012 Vypracoval(a),

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor CZ.1.07/1.5.00/34.0797 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT 2M3 Slovní

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D.

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D. Základní pojmy a úvod do teorie pravděpodobnosti Ing. Michael Rost, Ph.D. Co je to Statistika? Statistiku lze definovat jako vědní obor, zabývající se hromadnými jevy a procesy. Statistika zahrnuje jak

Více

Číselné soustavy a převody mezi nimi

Číselné soustavy a převody mezi nimi Číselné soustavy a převody mezi nimi Základní požadavek na počítač je schopnost zobrazovat a pamatovat si čísla a provádět operace s těmito čísly. Čísla mohou být zobrazena v různých číselných soustavách.

Více

Práce, energie, výkon

Práce, energie, výkon I N V E S T I C E D O R O Z V O E V Z D Ě L Á V Á N Í TENTO PROEKT E SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laoratorní práce č. 6 Práce,, výon Pro potřey projetu

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve Příklady k procvičení k průběžnému testu: 1) Při zpracování studie o průměrné výši měsíčních příjmů v České republice jsme získali data celkem od 8 tazatelů. Každý z těchto pěti souborů dat obsahoval odlišný

Více

ČÍSELNÉ SOUSTAVY. Číselnou soustavu, která pro reprezentaci čísel využívá pouze dvou číslic, nazýváme soustavou dvojkovou nebo binární.

ČÍSELNÉ SOUSTAVY. Číselnou soustavu, která pro reprezentaci čísel využívá pouze dvou číslic, nazýváme soustavou dvojkovou nebo binární. Číselné soustavy V běžném životě používáme soustavu desítkovou. Desítková se nazývá proto, že má deset číslic 0 až 9 a v jednom řádu tak dokáže rozlišit deset různých stavů. Mikrokontroléry (a obecně všechny

Více

6. Pravděpodobnost a statistika. 6.1. Pravděpodobnost

6. Pravděpodobnost a statistika. 6.1. Pravděpodobnost 6. Pravděpodobnost a statistika 6.1. Pravděpodobnost Pravděpodobnost (hovorově šance; značka je P z anglického probability) je hodnota vyčíslující jistotu resp. nejistotu výskytu určité události. K pojmu

Více

1. Množiny, zobrazení, relace

1. Množiny, zobrazení, relace Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 1. Množiny, zobrazení, relace První kapitola je věnována základním pojmům teorie množin. Pojednává o množinách

Více

Numerace. Numerace je nauka, jejímž cílem je osvojení pojmu přirozené číslo.

Numerace. Numerace je nauka, jejímž cílem je osvojení pojmu přirozené číslo. Numerace Numerace je nauka, jejímž cílem je osvojení pojmu přirozené číslo. Numerace má tyto dílčí úkoly: 1) Naučit žáky číst číslice a správně vyslovovat názvy čísel. 2) Naučit žáky zapisovat čísla v

Více

TESTY A ODHADY PARETOVA INDEXU

TESTY A ODHADY PARETOVA INDEXU ROBUST 2004 c JČMF 2004 TESTY A ODHADY PARETOVA INDEXU Jan Pice Klíčová slova: Paretův index, rozdělení extrémních hodnot, sféra přitažlivosti, Hillův odhad. Abstrat:Nechť X 1, X 2,...jsounezávisléstejněrozdělenénáhodnéveličiny

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobnost a matematická statistika Mirko Navara Centrum strojového vnímání katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://cmp.felk.cvut.cz/ navara/mvt http://cmp.felk.cvut.cz/

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.0/1.5.00/4.018 Šablona III/ Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY INOVACE_Hor015 Vypracoval(a), dne Mgr.

Více

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. .. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v

Více

PODROBNÁ PRAVIDLA SÁZEK

PODROBNÁ PRAVIDLA SÁZEK PODROBNÁ PRAVIDLA SÁZEK OBSAH: 1 - ÚVODNÍ USTANOVENÍ 2 - VÝKLAD POJMŮ SÁZKY 3 - ZÁKLADNÍ TYPY SÁZKOVÝCH PŘÍLEŽITOSTÍ 4 - DALŠÍ SÁZKOVÉ PŘÍLEŽITOSTI ZÁKLADNÍ DRUHY SÁZEK 5 - SÓLO SÁZKA 6 - AKU SÁZKA ROZPISOVÉ

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

Příklad 1. Z uvedených možností vyberte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Koupím byt nebo nové auto.

Příklad 1. Z uvedených možností vyberte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Koupím byt nebo nové auto. Příklad 1. Z uvedených možností vyberte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Koupím byt nebo nové auto. A: Koupím-li byt, nekoupím nové auto. B: Koupím byt nebo nekoupím nové auto.

Více

Determinanty a matice v theorii a praxi

Determinanty a matice v theorii a praxi Determinanty a matice v theorii a praxi 1. Lineární závislost číselných soustav In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více