Základním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo.

Rozměr: px
Začít zobrazení ze stránky:

Download "Základním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo."

Transkript

1 přednáša KOMBINATORIKA Při řešení mnoha praticých problémů se setáváme s úlohami, ve terých utváříme supiny z prvů nějaé onečné množiny Napřílad máme sestavit rozvrh hodin z daných předmětů, potřebujeme rozhodnout, teré týmy budou v turnaji hrát proti sobě, nebo chceme rozdat něoli druhů cen mezi účastníy závodu Řešením těchto úloh se zabývá ombinatoria Kombinatoria je tedy obor matematiy, terý se zabývá uspořádáním daných prvů podle určitých pravidel do určitých supin Záladním pojmem v ombinatorice je pojem (-prvová) supina, nebo taé -tice prvů, de je přirozené číslo S náznay ombinatoriy se setáváme již u starořecých matematiů Počáty hlubšího studia otáze spojených s ombinatoriou vša spadají do období 6 století Zájem o ombinatoriu podnítily v té době různé hazardní hry, napřílad vrchcáby neboli hra v osty Matematici se začali zabývat otázami, jaá možná sesupení mohou nastat při házení určitého počtu hracích oste, jaé jsou pravděpodobnosti výher, později i jinými otázami, a ta se postupně vyvíjel obor, terý v současné době nalézá uplatnění v teorii pravděpodobnosti, v teorii informací, ve statistice a v dalších oborech Záladními větami ombinatoriy jsou tzv ombinatoricé pravidlo součtu a ombinatoricé pravidlo součinu: Věta (pravidlo součinu): Počet všech uspořádaných -tic (dvojic, trojic,), jejichž první člen lze vybrat n způsoby, druhý člen po výběru prvního členu n způsoby atd až -tý člen po výběru všech předcházejících členů n způsoby, je roven n n n Přílad: Při cestě z Ostravy do Tábora (přes Prahu) lze použít tyto dopravní prostředy: Ostrava - Praha: autobus, vla, letadlo, auto Praha - Tábor: autobus, vla, auto Kolia možnými způsoby se dostaneme z Ostravy do Tábora? Řešení: Je zřejmé, že z Ostravy se do Prahy dostaneme pomocí dopravních prostředů a z Prahy do Tábora lze využít možností Ke aždé cestě do Prahy máme možnosti v poračování Je tedy celem = možností, ja cestovat z Ostravy do Prahy

2 Poznáma: Kombinatoricé pravidlo součinu můžeme použít taé v případě, dy něolirát (-rát) opaujeme výběr z určitých prvů a zajímá nás, oli různých pořadí může vzninout Např dyž házíme mincí, jde o opaovaný výběr ze dvou prvů (orel, panna) Po třech hodech může vninout = 8 různých výsledů Věta (pravidlo součtu): Mějme onečné množiny A, A,, A, teré mají po řadě n, n,, n prvů Jsou-li aždé dvě množiny navzájem disjuntní, tzn neobsahují žádný společný prve, pa počet prvů množiny AÈ AÈK A je roven n + n+k n Přílad: Určete počet všech přirozených dvojciferných čísel, v jejichž deadicém zápisu se aždá číslice vysytuje nejvýše jednou Řešení: Všechna přirozená dvojciferná čísla můžeme rozdělit do dvou disjuntních supin ta, že v první jsou dvojciferná čísla s různými číslicemi a ve druhé dvojciferná čísla se stejnými číslicemi Počet všech dvojciferných čísel je 90, počet dvojciferných čísel se stejnými číslicemi je 9 (jsou to čísla,,, 99) Označíme-li hledaný počet dvojciferných čísel s různými číslicemi x, pa platí:x + 9 = 90 Odtud dostáváme, že x = 8 Kombinatoria tedy zoumá supiny (podmnožiny) prvů vybraných z jisté záladní množiny Nejdříve si ujasníme, s jaými výběry se v praxi můžeme setat Prvním ritériem je uspořádanost výběru: Uspořádaný výběr (variace) - záleží na pořadí prvů Napřílad: Koli trojciferných čísel můžeme sestavit z cifer ; ; 8? Číslo 8 a 8 považujeme za různé výběry => záleží na pořadí cifer Neuspořádaný výběr (ombinace) - nezáleží na pořadí prvů Napřílad: Koli je možností při vsázení Sporty? Vždy zašrtnu 7 čísel ze 9, ale volba {; 5; 5; ; ; 9; } je shodná z volbou {; 5; 5; ; ; 9; } => nezáleží na pořadí v jaém čísla šrtám Druhým ritériem je, zda se prvy po výběru do původní množiny vracejí či nioliv Podle toho výběry rozlišujeme na: Výběry s opaováním - vybraný prve se vrací do původní množiny

3 Napřílad: Z cifer {;} můžeme sestavit tato dvojciferná čísla {; ; ; } V se opauje prve - po prvním výběru se vrátila do množiny možných cifer Výběry bez opaování - vybraný prve se nevrací do původní množiny Napřílad: Kolia způsoby lze seřadit 8 sprinterů na startovní čáru Po výběru prvního sprintera už budeme dalšího vybírat pouze ze 7 (vybraného již nemůžeme použít), atd Matematicy je jednodušší popis výběru s opaováním, avša v praxi se častěji setáváme s výběry bez opaování (test není možno opaovat se stejným vzorem, např tažnost truby lze testovat pouze jednou, pro další test se musí použít další truba) ) VARIACE bez opaování Definice: -členná variace z n prvů ( 0 < n ) je uspořádaná -tice sestavená ta, že aždý prve se v ní vysytuje nejvýše jednou Značíme ji (n) - variační číslo V Věta : Počet variací V (n) V ( n) = n ( n-) ( n- ) ( n- + ) = ( n- )! Poznáma: Symbol n! čteme "n fatoriál" a pro aždé přirozené číslo n definujeme: n! = ( n-) n a 0=! Přílad: Členové správní rady hoejového lubu volí prezidenta, viceprezidenta a revizora účtů lubu Určete, oli existuje způsobů, ja mohou být tyto funce obsazeny, víme-li, že členů rady je 8, do funcí lze volit pouze členy správní rady a žádný člen nemůže zastávat více než jednu funci Řešení: Máme dvě možnosti řešení: a) Pomocí ombinatoricého pravidla součinu: Předpoládejme, že nejdříve se volí prezident lubu Je zřejmé, že budeme vybírat z 8 Následuje volba viceprezidenta Počet možností, ja ji provést, je již 7 (prezident už tuto funci vyonávat nemůže) Při poslední volbě revizora připadá do úvahy 6 možných andidátů => možností je celem: 8 7 6= 6 b) Uvědomíme si, že vlastně vybíráme trojici (=) z 8 lidí (n=8) Lidé se nemohou opaovat (jedna osoba nemůže zastávat více funcí) a záleží na tom, v jaém pořadí vybíráme (není jedno, zda jsem prezident nebo viceprezident) => záleží na pořadí a prvy se neopaují => jde o tříčlenné variace z osmi prvů bez opaování 8! 8 7 Máme tedy V (8) = = = 8 7 6= 6 možností, ja obsadit funce (8- )! 5 ) PERMUTACE bez opaování

4 Permutace je zvláštní případ variace, de = n To znamená, že ze zadaných prvů postupně vybereme všechny Každá permutace tedy odpovídá nějaému pořadí zadaných prvů: aždý prve se v pořadí musí objevit, ale žádný tam nemůže být dvarát U permutací tedy v podstatě nejde o výběr, ale o různá uspořádání dané množiny Definice: Permutace z n prvů je uspořádaná n-tice sestavená ta, že aždý prve se v ní vysytuje právě jednou Značíme ji P (n) Věta : Počet permutací P (n) P( n) = Vn ( n) = = = ( n- n)! 0! Přílad: Kolia způsoby lze seřadit 8 sprinterů na startovní čáru? Řešení: Tvoříme osmice z 8 (=8, n=8), záleží na pořadí a jeden sprinter nemůže být na dvou pozicích (prvy se neopaují) => variace bez opaování, de = n, tj hledáme počet permutací z 8 prvů Existuje tedy P ( 8) = 8! = 00 možností, ja seřadit 8 sprinterů na startovní čáru ) VARIACE s opaováním Definice: -členná variace s opaováním z n prvů je uspořádaná -tice sestavená ta, že aždý prve se v ní vysytuje nejvýše -rát Značíme ji V Věta : Počet variací s opaováním V V ) = ( n n Poznáma: Poaždé vybírám ze všech prvů a podle ombinatoricého pravidla součinu tedy existuje n n n (celem se n opauje -rát) Přílad: Určete, oli čtyřciferných přirozených čísel lze sestavit z cifer,, a oli jich je menších než 000 Řešení: V prvním případě hledám čtveřice ze tří prvů (musí se opaovat) a číslo není stejné s číslem (záleží na pořadí) => variace s opaováním (=, n=) Počet všech čtyřciferných přirozených čísel je: V () = 8 = Pro určení, oli z těchto 8 čísel je menších ja 000 si stačí uvědomit, že na pozici tisíců může být pouze nebo (máme možnosti) a pa už hledáme trojice ze všech prvů (poaždé možnosti) => použitím pravidla o součinu dostáváme: V () = 5 čísel =

5 ) PERMUTACE s opaováním Definice: Permutace s opaováním je uspořádaná n-tice z různých prvů, v níž se aždý prve ni -rát opauje ( i =,, ) Značíme ji P n,, n Věta : Počet permutací s opaováním P n,, n = n! n! n! Poznáma: Počet opaování jednotlivých prvů označujeme n,, n a musí platit, že n + + n = n Přílad: Určete, olia způsoby je možné srovnat do řady šedé, modré a černé osty Řešení: Máme prvy (šedá, modrá a černá osta), de první prve se vysytuje -rát ( n = ), druhý -rát ( n = ) a třetí -rát ( n = ), tj máme celem 9 prvů (n=9) Musíme použít všechny, tzn budeme sestavovat 9-tice z 9 - záleží na pořadí a musí se opaovat 9! Existuje P,, = = 60 způsobů, ja dané osty srovnat do řady!!! 5) KOMBINACE bez opaování Definice: -členná ombinace z n prvů ( n ) je neuspořádaná -tice sestavená ta, že aždý prve se v ní vysytuje nejvýše jednou Značíme ji (n) - ombinační číslo C Věta : Počet ombinací C (n) æ nö C ( n) = ç = èø ( n- )!! æ nö Poznáma: ç tedy nazýváme ombinační číslo a čteme n nad èø ænö ænö æn ö æ nö æ n ö Platí: ç = ç =, ç = n a ç = ç è0ø ènø èø èø èn- ø Přílad: Na výtah, do něhož můžou nastoupit nejvýše osoby, čeá 6 osob 5

6 a) Koli je možností, ja vybrat osoby, teří pojedou? b) Koli je možností, ja vybrat osoby, teré nepojedou? Řešení: a) Tvoříme dvojice ze šesti prvů, přičemž nezáleží na pořadí (Mire s Janou je to samé co Jana s Mirem) a nemohou se opaovat => ombinace bez opaování (n=6 a =) æ6ö 6! 6 5! Máme celem C (6) = ç = = = 5 možností, ja mohou lidé nastoupit èø (6- )!!! b) Vybíráme čtveřice ze 6 osob (= a n=6) - opět nezáleží na pořadí a osoby se nemohou opaovat: æ6ö 6! 6 5! Máme celem C (6) = ç = = = 5 možností, ja vybrat osoby, teré èø (6- )!!!! nenastoupí Je vidět, že počet možností, ja vybrat, teří pojedou je stejný jao počet možností, ja æ nö æ n ö vybrat, teří zůstanou čeat (ilustruje platnost vlastnosti ç = ç ) èø èn- ø 6) KOMBINACE s opaováním Definice: -členná ombinace s opaováním z n prvů je neuspořádaná -tice sestavená ta, že aždý prve se v ní vysytuje nejvýše -rát Značíme ji C Věta : Počet ombinací C æn+ -ö ( n+ -)! C ( n) = ç = è ø ( n-)!! Přílad: V curárně prodávají čtyři druhy záusů Kolia způsoby lze naoupit 8 záusů? Řešení: Nezáleží na pořadí a prvy se musí opaovat => 8-členné ombinace ze prvů s opaováním æ+ 8-ö! 0 9 8! Existuje C 8 () = ç = = = 65 možností, ja záusy vybereme è 8 ø!8! 6 8! 6

7 Shrnutí: 7

Základním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo.

Základním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo. přednáša KOMBINATORIKA Kombinatoria je obor matematiy, terý se zabývá uspořádáním daných prvů podle určitých pravidel do určitých supin Záladním pojmem v ombinatorice je pojem (-prvová) supina, nebo taé

Více

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a)

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a) 1. KOMBINATORIKA Kombinatoria je obor matematiy, terý zoumá supiny prvů vybíraných z jisté záladní množiny. Tyto supiny dělíme jedna podle toho, zda u nich záleží nebo nezáleží na pořadí zastoupených prvů

Více

Kombinace s opakováním

Kombinace s opakováním 9..3 Kombinace s opaováním Předpolady: 907. 908, 9, 92 Pedagogicá poznáma: Tato hodina zabere opět minimálně 70 minut. Asi ji čeá rozšíření na dvě hodiny. Netradiční začáte. Nemáme žádné přílady, ale rovnou

Více

Kombinace s opakováním

Kombinace s opakováním 9..3 Kombinace s opaováním Předpolady: 907. 908, 9, 92 Pedagogicá poznáma: Časová náročnost této hodiny je podobná hodině předchozí. Netradiční začáte. Nemáme žádné přílady, ale rovnou definici. Definice

Více

(iv) D - vybíráme 2 koule a ty mají různou barvu.

(iv) D - vybíráme 2 koule a ty mají různou barvu. 2 cvičení - pravděpodobnost 2102018 18cv2tex Definice pojmů a záladní vzorce Vlastnosti pravděpodobnosti Pravděpodobnost P splňuje pro libovolné jevy A a B následující vlastnosti: 1 0, 1 2 P (0) = 0, P

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a záladní vzdělávání Jaroslav Švrče a oletiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematia a její apliace Tematicý oruh: Práce s daty ombinatoria

Více

6 5 = 0, = 0, = 0, = 0, 0032

6 5 = 0, = 0, = 0, = 0, 0032 III. Opaované pousy, Bernoulliho nerovnost. Házíme pětrát hrací ostou a sledujeme výsyt šesty. Spočtěte pravděpodobnosti možných výsledů a určete, terý má největší pravděpodobnost. Řešení: Jedná se o serii

Více

0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ. as ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umt použít

0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ. as ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umt použít 0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ as e studiu apitoly: 30 minut Cíl: Po prostudování této apitoly budete umt použít záladní pojmy ombinatoriy vztahy pro výpoet ombinatoricých úloh - 6 - 0.1 Kombinatoria

Více

Binomická věta

Binomická věta 97 Binomicá věta Předpolady: 96 Kdysi dávno v prvním ročníu jsme se učili vzorce na umocňování dvojčlenu Př : V tabulce jsou vypsány vzorce pro umocňování dvojčlenu Najdi podobnost s jinou dosud probíranou

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Základy kombinatoriky a kombinatorická pravděpodobnost Jan Strejček Obsah IB112 Základy matematiky: Základy kombinatoriky a kombinatorická pravděpodobnost 2/57 Výběry prvků bez

Více

0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ. as ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umt použít

0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ. as ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umt použít 0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ as e studiu apitoly: 30 minut Cíl: Po prostudování této apitoly budete umt použít záladní pojmy ombinatoriy vztahy pro výpoet ombinatoricých úloh - 6 - Výlad: 0.1 Kombinatoria

Více

M - Příprava na 2. čtvrtletku pro třídy 2P a 2VK

M - Příprava na 2. čtvrtletku pro třídy 2P a 2VK M - Příprava na. čtvrtletku pro třídy P a VK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument

Více

KOMBINATORIKA (4.ročník I.pololetí DE, 2.ročník I.pololetí NS)

KOMBINATORIKA (4.ročník I.pololetí DE, 2.ročník I.pololetí NS) KOMBINATORIKA (4.ročník I.pololetí DE,.ročník I.pololetí NS) Kombinatorika je část matematiky, zabývající se uspořádáváním daných prvků podle jistých pravidel do určitých skupin a výpočtem množství těchto

Více

kombinatorika září, 2015 Kombinatorika Opakovací kurz 2015 Radka Hájková

kombinatorika září, 2015 Kombinatorika Opakovací kurz 2015 Radka Hájková Kombinatorika Opakovací kurz 2015 Radka Hájková 1) Děti z hudební školy Písnička, mezi nimiž byla i dvojčata Dita a Zita, psaly v rámci hudební nauky písemnou práci z not. Kolik možností oznámkování mohla

Více

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3.

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3. Zálady matematiy Kombiatoria. KOMBINATORIKA 8.. Záladí pojmy 8... Počítáí s fatoriály a ombiačími čísly 8.. Variace 8.. Permutace 85.. Kombiace 87.5. Biomicá věta 89 Úlohy samostatému řešeí 9 Výsledy úloh

Více

1.5.7 Prvočísla a složená čísla

1.5.7 Prvočísla a složená čísla 17 Prvočísla a složená čísla Předpolady: 103, 106 Dnes bez alulačy Číslo 1 je dělitelné čísly 1,, 3,, 6 a 1 Množinu, terou tvoří právě tato čísla, nazýváme D 1 množina dělitelů čísla 1, značíme ( ) Platí:

Více

Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: matematika a její aplikace

Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: matematika a její aplikace Název: Kombiatoria Autor: Mgr. Haa Čerá Název šoly: Gymázium Jaa Nerudy, šola hl. města Prahy Předmět, mezipředmětové vztahy: matematia a její apliace Ročí: 5. ročí Tématicý cele: Kombiatoria a pravděpodobost

Více

a) 7! 5! b) 12! b) 6! 2! d) 3! Kombinatorika

a) 7! 5! b) 12! b) 6! 2! d) 3! Kombinatorika Kombinatorika Kombinatorika se zabývá vytvářením navzájem různých skupin z daných prvků a určováním počtu takových skupin. Kombinatorika se zabývá pouze konečnými množinami. Při určování počtu výběrů skupin

Více

9 Stupně vrcholů, Věta Havla-Hakimiho

9 Stupně vrcholů, Věta Havla-Hakimiho Typicé přílady pro zápočtové písemy DiM 470-301 (Kovář, Kovářová, Kubesa) (verze: November 5, 018) 1 9 Stupně vrcholů, Věta Havla-Haimiho 9.1. Doážete nareslit graf na 9 vrcholech, ve terém mají aždé dva

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení Co to je kombinatorika Kombinatorika je vstupní branou do teorie pravděpodobnosti. Zabývá se různými způsoby výběru prvků z daného souboru. 2011 Ing. Janurová Kateřina, FEI VŠB-TU

Více

9.1.6 Permutace I. Předpoklady: 9101, 9102, 9104

9.1.6 Permutace I. Předpoklady: 9101, 9102, 9104 9.1.6 Permutace I Předpoklady: 9101, 9102, 9104 Pedagogická poznámka: První tři příklady jsou opakování, je možné je přeskočit, nebo použít na zkoušení. Př. 1: Vyřeš slovní úlohy. a) Na plese se losuje

Více

!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených.

!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených. Kombiatoria Kombiatoria část matematiy, terá se zabývá růzými číselými "ombiacemi". Využití - apř při hledáí počtu možých tipů ve sportce ebo jiých soutěžích hrách, v chemii při spojováí moleul... Záladím

Více

Kombinatorika. 1. Variace. 2. Permutace. 3. Kombinace. Název: I 1 9:11 (1 z 24)

Kombinatorika. 1. Variace. 2. Permutace. 3. Kombinace. Název: I 1 9:11 (1 z 24) Kombinatorika 1. Variace 2. Permutace 3. Kombinace Název: I 1 9:11 (1 z 24) Název: I 1 10:02 (2 z 24) Variace Jsou to skupiny prvků, ve kterých: záleží na pořadí prvků značíme je Název: I 1 10:02 (3 z

Více

NUMP403 (Pravděpodobnost a Matematická statistika I)

NUMP403 (Pravděpodobnost a Matematická statistika I) NUMP0 (Pravděpodobnost a Matematicá statistia I Střední hodnota disrétního rozdělení. V apce máte jednu desetiorunu, dvě dvacetioruny a jednu padesátiorunu. Zloděj Vám z apsy náhodně vybere tři mince.

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení TYPY VÝBĚRŮ Uspořádanost výběru uspořádaný výběr = VARIACE, záleží na pořadí vybraných prvků neuspořádaný výběr = KOMBINACE, nezáleží na pořadí vybraných prvků Opakované zařazení

Více

Geometrická zobrazení

Geometrická zobrazení Pomocný text Geometricá zobrazení hodná zobrazení hodná zobrazení patří nejjednodušším zobrazením na rovině. Je jich vša hrozně málo a často se stává, že musíme sáhnout i po jiných, nědy výrazně složitějších

Více

Teorie. Kombinatorika

Teorie. Kombinatorika Teorie Kombinatorika Kombinatorika Jak obecně vybrat k prvkové množiny z n prvkové množiny? Dvě možnosti: prvky se v množině neopakují bez opakování. prvky se v množině opakují s opakováním. prvky jsou

Více

Při určování počtu výběrů skupin daných vlastností velmi často používáme vztahy, ve kterých figuruje číslo zvané faktoriál.

Při určování počtu výběrů skupin daných vlastností velmi často používáme vztahy, ve kterých figuruje číslo zvané faktoriál. Kombinatorika Kombinatorika se zabývá vytvářením navzájem různých skupin z daných prvků a určováním počtu takových skupin. Kombinatorika se zabývá pouze konečnými množinami. Při určování počtu výběrů skupin

Více

VARIACE BEZ OPAKOVÁNÍ

VARIACE BEZ OPAKOVÁNÍ VARIACE BEZ OPAKOVÁNÍ (1) Trezor má 6 otočných zámků s číslicemi 0 9. O kódu víme pouze to, že v něm žádná z číslic není dvakrát. O kolik možných nastavení se může jednat? Analogicky odvoďte obecné řešení.

Více

2. Elementární kombinatorika

2. Elementární kombinatorika 2.1. Kombinace, variace, permutace bez opakování 2. Elementární kombinatorika Definice 2.1. Kombinace je neuspořádaná k-tice prvků z dané n-prvkové množiny. Variace je uspořádaná k-tice prvků z dané n-prvkové

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška osmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Kombinatorika: pravidla součtu a součinu 2 Kombinatorika:

Více

Kombinatorika. November 12, 2008

Kombinatorika. November 12, 2008 Kombinatorika November 12, 2008 Příklad Do školní jídelny přišla skupina 35 žáků. Určete kolika způsoby se mohli seřadit do fronty u výdeje obědů. Řešení: Počet možností je 1 2... 35 = 35! (Permutace bez

Více

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol VARIACE

Více

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109 9.1.11 Kombinatorické úlohy bez opakování Předpoklady: 9109 Pedagogická poznámka: Tato hodina slouží jednak ke zopakování probraného, ale zejména k praktickému nácviku kombinatoriky v situaci, ve které

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor004 Vypracoval(a),

Více

Obsah přednášky. 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacking 5. Boosting 6. Shrnutí

Obsah přednášky. 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacking 5. Boosting 6. Shrnutí 1 Obsah přednášy 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacing 5. Boosting 6. Shrnutí 2 Meta learning = Ensemble methods Cíl použít predici ombinaci více různých modelů Meta learning (meta

Více

Diskrétní matematika. DiM /01, zimní semestr 2018/2019

Diskrétní matematika. DiM /01, zimní semestr 2018/2019 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

Kombinatorika, základy teorie pravděpodobnosti a statistiky

Kombinatorika, základy teorie pravděpodobnosti a statistiky Kombinatorika, základy teorie pravděpodobnosti a statistiky Jiří Fišer 30.zářía5.října2010 JiříFišer (KMA,PřFUPOlomouc) KMA MAT1,MT1 30.zářía5.října2010 1/12 Variacek-tétřídyznprvků: = uspořádanéskupinyokprvcíchvybranýchznprvků.

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení 2. intermezzo - Tucet dalších příkladů. Příklad 1: Čtyři studenti jisté vysoké školy skládají zkoušku z matematiky. Kolik existuje případů, že každý z nich bude mít jinou známku? Počítejte s čtyřstupňovou

Více

1. Úvod do základních pojmů teorie pravděpodobnosti

1. Úvod do základních pojmů teorie pravděpodobnosti 1. Úvod do záladních pojmů teore pravděpodobnost 1.1 Úvodní pojmy Většna exatních věd zobrazuje své výsledy rgorózně tj. výsledy jsou zísávány na záladě přesných formulí a jsou jejch nterpretací. em je

Více

KOMBINATORIKA - SLOVNÍ ÚLOHY (BEZ OPAKOVÁNÍ) Variace

KOMBINATORIKA - SLOVNÍ ÚLOHY (BEZ OPAKOVÁNÍ) Variace KOMBINATORIKA - SLOVNÍ ÚLOHY (BEZ OPAKOVÁNÍ) Variace 1. Určete počet všech čtyřciferných přirozených čísel sestavených z číslic 1, 3, 5, 8, 9 tak, že se v něm každá číslice vyskytuje nejvýše jednou. (120)

Více

M - Kvadratické rovnice

M - Kvadratické rovnice M - Kvadratické rovnice Určeno jako učební tet pro studenty denního i dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací

Více

Kombinatorika. Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.

Kombinatorika. Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. Variace 1 Kombinatorika Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kombinatorika, faktoriály, kombinační

Více

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní

Více

0 KOMBINATORIKA OPAKOVÁNÍ UČIVA ZE SŠ. Čas ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umět použít

0 KOMBINATORIKA OPAKOVÁNÍ UČIVA ZE SŠ. Čas ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umět použít 0 KOMBINATORIKA OPAKOVÁNÍ UČIVA ZE SŠ Čas ke studiu kapitoly: 30 minut Cíl: Po prostudování této kapitoly budete umět použít základní pojmy kombinatoriky vztahy pro výpočet kombinatorických úloh - 6 -

Více

Diskrétní matematika. DiM /01, zimní semestr 2016/2017

Diskrétní matematika. DiM /01, zimní semestr 2016/2017 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM

Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: Název projektu školy: Šablona III/2: CZ.1.07/1.5.00/34.0536 Výuka s ICT na SŠ obchodní České

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 63. roční matematicé olympiády Úlohy rajsého ola ategorie A 1. Najděte všechna celá ladná čísla, terá nejsou mocninou čísla 2 a terá se rovnají součtu trojnásobu svého největšího lichého dělitele a pětinásobu

Více

1.3.5 Kružnice, kruh. Předpoklady: Narýsuj bod S. Kružítkem narýsuj kružnici se středem v bodu S a poloměrem 3 cm.

1.3.5 Kružnice, kruh. Předpoklady: Narýsuj bod S. Kružítkem narýsuj kružnici se středem v bodu S a poloměrem 3 cm. 1.3.5 Kružnice, ruh Předpolady: 010304 Př. 1: Narýsuj bod. Kružítem narýsuj ružnici se středem v bodu a poloměrem 3 cm. tejně jao přímy označujeme ružnice malým písmenem (většinou začínáme písmenem ;3cm,

Více

5 Pravděpodobnost. Sestavíme pravděpodobnostní prostor, který modeluje vytažení dvou ponožek ze šuplíku. Elementární jevy

5 Pravděpodobnost. Sestavíme pravděpodobnostní prostor, který modeluje vytažení dvou ponožek ze šuplíku. Elementární jevy Typické příklady pro zápočtové písemky DiM 70-30 (Kovář, Kovářová, Kubesa) (verze: November 5, 08) 5 Pravděpodobnost 5.. Jiří má v šuplíku rozházených osm párů ponožek, dva páry jsou černé, dva páry modré,

Více

Motivační úloha: Určete počet přirozených dvojciferných čísel, v jejichž dekadickém zápisu se každá, vyskytuje nejvýše jednou.

Motivační úloha: Určete počet přirozených dvojciferných čísel, v jejichž dekadickém zápisu se každá, vyskytuje nejvýše jednou. KOMBINATORIKA Cíle: 1. Ovládat pojmy faktoriál, kombinační číslo, umět aktivně využít vlastností kombinačních čísel, Pascalův trojúhelník včetně příslušné terminologie a symboliky. 2. Chápat správně pojmy

Více

PRVOČÍSLA 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Obsah

PRVOČÍSLA 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Obsah PRVOČÍSLA Jan Malý UK v Praze a UJEP v Ústí n. L. Obsah. Elementární úlohy o prvočíslech 2. Kongruence 2 3. Algebraicé rovnice a polynomy 3 4. Binomicá a trinomicá věta 5 5. Malá Fermatova věta 7 6. Diferenční

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2016/2017 Tutoriál č. 1: Kombinatorika, úvod do teorie pravděpodobnosti Jan Kracík jan.kracik@vsb.cz Kombinatorika Kombinatorika

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Definice P(A/B) pravděpodobnost nastoupení jevu A za předpokladu, že nastal jev B (P(B) > 0) definujeme vztahem

Více

MATEMATIKA. O paradoxech spojených s losováním koulí

MATEMATIKA. O paradoxech spojených s losováním koulí MATEMATIKA O paradoxeh spojenýh s losováním oulí PAVEL TLUSTÝ IRENEUSZ KRECH Eonomiá faulta JU, Česé Budějovie Uniwersytet Pedagogizny, Kraów Matematia popisuje a zoumá různé situae reálného světa. Je

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOL BÁŇSKÁ TECHICKÁ UIVERZIT OSTRV FKULT STROJÍ MTEMTIK II V PŘÍKLDECH CVIČEÍ Č 0 Ing Petra Schreiberová, PhD Ostrava 0 Ing Petra Schreiberová, PhD Vysoá šola báňsá Technicá univerzita Ostrava

Více

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC Přednáša 04 Přírodovědecá faulta Katedra matematiy KMA/P506 Pravděpodobnost a statistia KMA/P507 Statistia na PC jiri.cihlar@ujep.cz Záon velých čísel Lemma Nechť náhodná veličina nabývá pouze nezáporných

Více

pravděpodobnosti a Bayesova věta

pravděpodobnosti a Bayesova věta NMUMP0 (Pravděpodobnost a matematická statistika I) Nezávislost, podmíněná pravděpodobnost, věta o úplné pravděpodobnosti a Bayesova věta. Házíme dvěma pravidelnými kostkami. (a) Jaká je pravděpodobnost,

Více

Metoda konjugovaných gradientů

Metoda konjugovaných gradientů 0 Metoda onjugovaných gradientů Ludě Kučera MFF UK 11. ledna 2017 V tomto textu je popsáno, ja metodou onjugovaných gradientů řešit soustavu lineárních rovnic Ax = b, de b je daný vetor a A je symetricá

Více

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Bucinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Formalizace rozměrové analýzy ( výsledné jednoty na obou stranách musí souhlasit ). Rozměr fyziální veličiny Mějme nějaou třídu jednote, napřílad [(g,

Více

2. přednáška - PRAVDĚPODOBNOST

2. přednáška - PRAVDĚPODOBNOST 2. přednáška - PRAVDĚPODOBNOST NÁHODNÝ POKUS A JEV Každá opakovatelná činnost prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě, se nazývá náhodný pokus.

Více

Řešené příklady z pravděpodobnosti:

Řešené příklady z pravděpodobnosti: Řešené příklady z pravděpodobnosti: 1. Honza se ze šedesáti maturitních otázek 10 nenaučil. Při zkoušce si losuje dvě otázky. a. Určete pravděpodobnost jevu A, že si vylosuje pouze otázky, které se naučil.

Více

3. Mocninné a Taylorovy řady

3. Mocninné a Taylorovy řady 3. Mocninné a Taylorovy řady A. Záladní pojmy. Obor onvergence Mocninné řady jsou nejjednodušším speciálním případem funčních řad. Jsou to funční řady, jejichž členy jsou mocninné funce. V této apitole

Více

goniometrickém tvaru z 1 = z 1 (cosα 1 +isinα 1 ), z 2 = z 2 (cosα 2 +isinα 2 ) Jejich součin = z 1 ( z 2 z 2 Jejich podíl: n-tá mocnina:

goniometrickém tvaru z 1 = z 1 (cosα 1 +isinα 1 ), z 2 = z 2 (cosα 2 +isinα 2 ) Jejich součin = z 1 ( z 2 z 2 Jejich podíl: n-tá mocnina: KMA/MAT1 Matematika 1 Přednáška č. 2 Jiří Fišer 26. září 2016 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 26. září 2016 1 / 24 Součin, podíl a mocniny komplexních čísel v goniometrickém tvaru Dvě nenulová

Více

1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka;

1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka; I Elementární pravděpodonost 1 Házíme hrací kostkou Určete pravděpodoností těchto jevů: a) A při jednom hodu padne šestka; Řešení: P A) = 1 = 01; Je celkem šest možností {1,,, 4,, } a jedna {} je příznivá

Více

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN prostřednictvím ICT Číslo projektu: CZ.1.07/1.5.00/34.0940

Více

M - Kvadratické rovnice a kvadratické nerovnice

M - Kvadratické rovnice a kvadratické nerovnice M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.

Více

Kombinatorika možnosti využití v učivu matematiky na základní škole

Kombinatorika možnosti využití v učivu matematiky na základní škole Kombinatorika možnosti využití v učivu matematiky na základní škole Růžena Blažková, Irena Budínová Kombinatorika je matematická disciplína, která se zabývá rozdělováním, uspořádáváním, výběrem prvků z

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 1. KAPITOLA - PRAVDĚPODOBNOST 2.10.2017 Kontakt Mgr. Jana Sekničková, Ph.D. jana.seknickova@vse.cz Katedra softwarového inženýrství Fakulta

Více

MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE

MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 PŘEDNÁŠKA 5 MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 Multiriteriální rozhodování

Více

Konstrukce trojúhelníků II

Konstrukce trojúhelníků II .7.0 Konstruce trojúhelníů II Předpolady: 00709 Minulá hodina: Tři věty o shodnosti (odpovídají jednoznačným postupům pro onstruci trojúhelníu): Věta sss: Shodují-li se dva trojúhelníy ve všech třech stranách,

Více

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

( ) Příklady na otočení. Předpoklady: Př. 1: Je dána kružnice k ( S ;5cm)

( ) Příklady na otočení. Předpoklady: Př. 1: Je dána kružnice k ( S ;5cm) 3.5.9 Přílady na otočení Předpolady: 3508 Př. 1: Je dána ružnice ( ;5cm), na teré leží body, '. Vně ružnice leží bod L, uvnitř ružnice bod M. Naresli obrazy bodů L, M v zobrazení řeš bez úhloměru. R (

Více

Variace, permutace, kombinace, faktoriál, kombinační čísla 1. Vypočítejte:

Variace, permutace, kombinace, faktoriál, kombinační čísla 1. Vypočítejte: Variace, permutace, kombinace, faktoriál, kombinační čísla 1. Vypočítejte: 8 4 8 4 + 4 8 4 4. Zjednodušte: [ 1680 ] 5 6 7 4 3 [ 840 ] [ 70 ] 5 1 8 + 9 1 30 9 3. Upravte na společného jmenovatele: 1 7 0

Více

Kombinatorika. Michael Krbek. 1. Základní pojmy. Kombinatorika pracuje se spočitatelnými (tedy obvykle

Kombinatorika. Michael Krbek. 1. Základní pojmy. Kombinatorika pracuje se spočitatelnými (tedy obvykle Kombinatorika Michael Krbek. Základní pojmy. Kombinatorika pracuje se spočitatelnými (tedy obvykle konečnými) strukturami a patří kvůli tomu mezi nejstarší oblasti matematiky. Je těžké podat přesný výčet

Více

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PRAVDĚPODOBNOST

Více

1 Gaussova kvadratura

1 Gaussova kvadratura Cvičení - zadání a řešení úloh Zálady numericé matematiy - NMNM0 Verze z 7. prosince 08 Gaussova vadratura Fat, že pro něterá rovnoměrná rozložení uzlů dostáváme přesnost o stupeň vyšší napovídá, že pro

Více

M - Příprava na pololetní písemku č. 1

M - Příprava na pololetní písemku č. 1 M - Příprava na pololetní písemku č. 1 Určeno pro třídy 3SA, 3SB. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

9.1.1 Základní kombinatorická pravidla I

9.1.1 Základní kombinatorická pravidla I 9.. Základní kombinatorická pravidla I Předpoklady: Př. : Ve třídě je 7 děvčat a 3 kluků. Kolik máme možností jak vybrat dvojici klukholka, která bude mít projev na maturitním plese? Vybíráme ze 7 holek

Více

Opakovací test. Kombinatorika A, B

Opakovací test. Kombinatorika A, B VY_32_INOVACE_MAT_193 Opakovací test Kombinatorika A, B Mgr. Radka Mlázovská Období vytvoření: listopad 2012 Ročník: čtvrtý Tematická oblast: matematické vzdělávání Klíčová slova: maturita, přijímací zkoušky,

Více

( ) ( 1) Permutace II. Předpoklady: c) ( n ) Př. 1: Rozepiš faktoriály. a) 6! b)! ( n + ) a) 6! = = 720

( ) ( 1) Permutace II. Předpoklady: c) ( n ) Př. 1: Rozepiš faktoriály. a) 6! b)! ( n + ) a) 6! = = 720 9..7 Permutace II Předpoklady: 906 Př. : Rozepiš faktoriály. a) 6! b)! n c) ( n + )! d) ( n ) a) 6! = 6 5 4 3 = 70 b) n n ( n )( n ) c) ( n + )! = ( n + ) n ( n )( n )... d) ( n ) ( n )( n )! =...! = 3...

Více

Množiny, relace, zobrazení

Množiny, relace, zobrazení Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,

Více

Příklad 1. Řešení 1a ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 3

Příklad 1. Řešení 1a ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 3 Příklad 1 a) Určete počet všech přirozených trojciferných čísel, v jejichž desítkovém zápisu se vyskytuje každá číslice nejvýše jednou s tím, že na prvním místě nesmí stát nula, jak je obvyklé při chápání

Více

Kombinatorika. Irina Perfilieva. 19. února logo

Kombinatorika. Irina Perfilieva. 19. února logo Kombinatorika Irina Perfilieva Irina.Perfilieva@osu.cz 19. února 2008 Outline 1 Předmět kombinatoriky Základní kombinatorické konfigurace 2 Dvě základní pravidla kombinatoriky 3 Počet základních kombinatorických

Více

Mgr. Marcela Sandnerová

Mgr. Marcela Sandnerová Mgr. Marcela Sandnerová Základní kombinatorická pravidla Kombinatorické pravidlo součinu Kombinatorické pravidlo součtu Kombinatorické pravidlo součinu Příklad 1 Kolika způsoby si může Pavel připravit

Více

3.2.9 Věta o středovém a obvodovém úhlu

3.2.9 Věta o středovém a obvodovém úhlu 3..9 ěta o středovém a obvodovém úhlu Předpolady: ody, rozdělují ružnici na dva oblouy. Polopřímy a pa rozdělují rovinu na dva úhly. rcholy obou úhlů leží ve středu ružnice říáme, že jde o středové úhly

Více

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204 9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými

Více

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC Přednáša 02 Přírodovědecá faulta Katedra matematiy KMA/P506 Pravděpodobnost a statistia KMA/P507 Statistia na PC jiri.cihlar@ujep.cz Náhodné veličiny Záladní definice Nechť je dán pravděpodobnostní prostor

Více

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra: GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového

Více

5.1. Klasická pravděpodobnst

5.1. Klasická pravděpodobnst 5. Pravděpodobnost Uvažujme množinu Ω všech možných výsledků náhodného pokusu, například hodu mincí, hodu kostkou, výběru karty z balíčku a podobně. Tato množina se nazývá základní prostor a její prvky

Více

Úlohy domácího kola kategorie B

Úlohy domácího kola kategorie B 54. roční Matematicé olympiády Úlohy domácího ola ategorie 1. Určete všechny dvojice (a, b) reálných čísel, pro teré má aždá rovnic x + ax + b 0, x + (a + 1)x + b + 1 0 dva růné reálné ořeny, přičemž ořeny

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika 1. KOMBINATORIKA Průvodce studiem Na střední škole se někteří z vás seznámili se základními pojmy z kombinatoriky. V této kapitole tyto pojmy zopakujeme a prohloubíme vaše znalosti. Předpokládané znalosti

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k,

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k, Řešení 1. série Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy h = 1 2 v d, h = 1 2 s k, kde h je počet hran, v je počet vrcholů, d je stupeň vrcholu, s je počet stěn a k je počet úhlů

Více

Reciprokou funkci znáte ze základní školy pod označením nepřímá úměra.

Reciprokou funkci znáte ze základní školy pod označením nepřímá úměra. @091 7. Reciproá funce Reciproou funci znáte ze záladní šoly pod označením nepřímá úměra. Definice: Reciproá funce je dána předpisem ( 0 je reálné číslo) f : y R \ {0} A) Definiční obor funce: Je třeba

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor002 Vypracoval(a),

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Práce s daty, kombinatorika a pravděpodobnost Gradovaný řetězec úloh Téma: Pravděpodobnost

Více