Exponenciální výrazy a rovnice

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Exponenciální výrazy a rovnice"

Transkript

1 Epoeciálí výzy ovice

2 Epoeciálí výzy ovice - jou ovice výzy ezáou v epoetu = = 7 =

3 Pvidl po počítáí ocii Při úpvě výzů ocii řešeí epoeciálích ovic je tře dodžovt áledující pvidl (jou uvede v tetických tulkách):,

4 Způo řešeí: Oě ty ovice upvíe do tkového tvu, y kždé tě yl oci o tejé zákldu. Pokud je ovice ve tvu, že kždé tě je pouze jed oci, to o tejé zákldu, zákld odtíe poováváe epoety. Zpíšee ožiu kořeů. y y

5 . ).. 6 Oh 9. ).. ).. 7 c) 6 c).. 9 d).. 9. ). 7 ) 7 9. e) y y... ).. 7 ) 6 c). )... ) 9 9 ) c) 7 6 ) )..

6 Př..) V ožiě R řešte ovici Oě ty ovice upvíe do tkového tvu, y kždé tě yl oci o tejé zákldu. Pokud je ovice ve tvu, že kždé tě je pouze jed oci to o tejé zákldu, zákld odtíe poováváe epoety. Zpíšee ožiu kořeů. N této tě ovice je oci o zákldu. Čílo je uté převét tké ociu o zákldu. K

7 Př..) V ožiě R řešte ovici Oě ty ovice upvíe do tkového tvu, y kždé tě yl oci o tejé zákldu. Pokud je ovice ve tvu, že kždé tě je pouze jed oci to o tejé zákldu, zákld odtíe poováváe epoety. Řešíe ovici. Zpíšee ožiu kořeů. N této tě ovice je oci o zákldu. Čílo je uté převét tké ociu o zákldu. /+ /: K

8 Př..c) V ožiě R řešte ovici Oě ty ovice upvíe do tkového tvu, y kždé tě yl oci o tejé zákldu. Pokud je ovice ve tvu, že je kždé tě pouze jed oci to o tejé zákldu, zákld odtíe poováváe epoety. Řešíe ovici. Zpíšee ožiu kořeů. /+- /: N této tě ovice je oci o zákldu. Duhou tu je uté převét tké ociu (jedu) o zákldu. K,

9 Př..d) V ožiě R řešte ovici Oě ty ovice upvíe do tkového tvu, y kždé tě yl jed oci to o tejé zákldu. Pokud je ovice ve tvu, že je kždé tě pouze jed oci to o tejé zákldu, zákld odtíe poováváe epoety. Řešíe ovici. Zpíšee ožiu kořeů. /: 9 Převedee dle vzoce jediou ociu o zákldu. Duhou tu je uté převét tké ociu (jedu) o zákldu. 9 K 9 9,

10 Př..e) V ožiě R řešte ovici Oě ty ovice upvíe do tkového tvu, y kždé tě yl oci o tejé zákldu. Pokud je ovice ve tvu, že je kždé tě pouze jed oci to o tejé zákldu, zákld odtíe poováváe epoety. Řešíe ovici. Zpíšee ožiu kořeů. /-y /: y y N této tě ovice je oci o zákldu. Duhou tu je uté převét tké ociu (jedu) o zákldu. y y y K y y y y, y

11 Př..) V ožiě R řešte ovici Oě ty ovice upvíe do tkového tvu, y kždé tě yl oci o tejé zákldu. Pokud je ovice ve tvu, že je kždé tě pouze jed oci to o tejé zákldu, zákld odtíe poováváe epoety. Zpíšee ožiu kořeů. N této tě ovice je oci o zákldu. Duhou tu je uté převét tké ociu o zákldu. K,

12 Př..) V ožiě R řešte ovici Oě ty ovice upvíe do tkového tvu, y kždé tě yl oci o tejé zákldu. Pokud je ovice ve tvu, že je kždé tě pouze jed oci to o tejé zákldu, zákld odtíe poováváe epoety. Zpíšee ožiu kořeů. 7 N této tě ovice je oci o zákldu Duhou tu je uté převét tké ociu o toto zákldu. K 7, 7

13 Př..c) V ožiě R řešte ovici Oě ty ovice upvíe do tkového tvu, y kždé tě yl oci o tejé zákldu. Pokud je ovice ve tvu, že je kždé tě pouze jed oci to o tejé zákldu, zákld odtíe poováváe epoety. Zpíšee ožiu kořeů. 6 N této tě ovice je oci o zákldu Duhou tu je uté převét tké ociu o toto zákldu. K 6, 6

14 Př..) V ožiě R řešte ovici Oě ty ovice upvíe do tkového tvu, y kždé tě yl oci o tejé zákldu. Pokud je ovice ve tvu, že je kždé tě pouze jed oci to o tejé zákldu, zákld odtíe poováváe epoety. Řešíe ovici. Zpíšee ožiu kořeů. /- N této tě ovice je oci o zákldu. Duhou tu je uté převét tké ociu (jedu) o zákldu., K,,

15 Př..) V ožiě R řešte ovici Oě ty ovice upvíe do tkového tvu, y kždé tě yl oci o tejé zákldu. Pokud je ovice ve tvu, že je kždé tě pouze jed oci to o tejé zákldu, zákld odtíe poováváe epoety. Řešíe ovici. Zpíšee ožiu kořeů. /- /: 9 N této tě ovice je oci o zákldu. Duhou tu je uté převét tké ociu (jedu) o zákldu., K 7 ) (, 7 7=,,

16 Př..c) V ožiě R řešte ovici Oě ty ovice upvíe do tkového tvu, y kždé tě yl oci o tejé zákldu. Pokud je ovice ve tvu, že je kždé tě pouze jed oci to o tejé zákldu, zákld odtíe poováváe epoety. Řešíe ovici. Zpíšee ožiu kořeů. /+ /: N této tě ovice je oci o zákldu. Duhou tu je uté převét tké ociu o zákldu., K ) (, = ) (,,

17 Př..) V ožiě R řešte ovici Oě ty ovice upvíe do tkového tvu, y kždé tě yl oci o tejé zákldu. Pokud je ovice ve tvu, že je kždé tě pouze jed oci to o tejé zákldu, zákld odtíe poováváe epoety. Řešíe ovici. Zpíšee ožiu kořeů. /-+ /: Upvíe ociu o zákldu. Duhou tu je uté převét tké ociu (jedu) o zákldu. K ) ( =,

18 Př..) V ožiě R řešte ovici Oě ty ovice upvíe do tkového tvu, y kždé tě yl oci o tejé zákldu. Pokud je ovice ve tvu, že je kždé tě pouze jed oci to o tejé zákldu, zákld odtíe poováváe epoety. Řešíe ovici. Zpíšee ožiu kořeů. /-+ /: 9 7 Upvíe ociu o zákldu. Duhou tu je uté převét tké ociu (jedu) o zákldu. K 9 7 ) ( 7=,

19 Př..) V ožiě R řešte ovici Oě ty ovice upvíe do tkového tvu, y kždé tě yl oci o tejé zákldu. Pokud je ovice ve tvu, že je kždé tě pouze jed oci to o tejé zákldu, zákld odtíe poováváe epoety. Zpíšee ožiu kořeů. /:6 9 Levou tu ozáoíe dle vzoce. Vytkee před závoku. K 9 9 Vypočtee oh závoky ,

20 Př..) V ožiě R řešte ovici Upvíe ovici do tkového tvu, y jedé tě yly všechy čley ezáou v epoetu (viz příkld.). Oě ty ovice upvíe do tkového tvu, y kždé tě yl oci o tejé zákldu. Pokud je ovice ve tvu, že je kždé tě pouze jed oci to o tejé zákldu, zákld odtíe poováváe epoety. Zpíšee ožiu kořeů. /:,7 Levou tu ozáoíe dle vzoce. Vytkee před závoku. 6 K Vypočtee oh závoky.,7, 6

21 Př..c) V ožiě R řešte ovici Oě ty ovice upvíe do tkového tvu, y kždé tě yl oci o tejé zákldu. Pokud je ovice ve tvu, že je kždé tě pouze jed oci to o tejé zákldu, zákld odtíe poováváe epoety. Zpíšee ožiu kořeů. /:7 7 Levou tu ozáoíe dle vzoce. Vytkee před závoku. K 7 7 Vypočtee oh závoky , 7 6 7

22 Př. 6.) Zjedodušte výz Rozáoíe dle vzoce. Vytkee před závoku. Vypočtee oh závoky., Vytkee před závoku. Vzoec 6

23 Př. 6.) Vyjádřete jko jediou ociu e záklde výz Upvíe dle vzoce. Vzoec = Vzoec,

24 Děkuji z pozoot Zdoj: - Hudcová, Mild, Sík úloh z tetiky po SOŠ, SOU átvové tudiu, PROMETHEUS, ISBN vltí příkldy - klipt

ó ž Ž ť Ó Ž Č Ž ž ž Ž ž Ž Š Ž ď ž Ž ž ž Š Ž ž Š Ž Ž ó Ž Ž Č ó ž Ž ž ž ž Ů ž ž Ž Ů ť ž Ž ž Ž Ž ž ž Ž É ó É É ž Ž Ž ó Ž Ě ť ó Á Ž Á ť Ó Ů Ů Ý ÓŽ Ž Ó ž Č Ž ž ž Ů Ů ž Ů ž ž ž ž ž ž ž É ť ó Š ž ó Š ž ť ó Ď

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

Univerzita Karlova Přírodovědecká fakulta Katedra analytické chemie

Univerzita Karlova Přírodovědecká fakulta Katedra analytické chemie Uivezit ov Příodovědecká fkut ted ytické chemie Sttitické vyhodoceí výedků Picip: Výedky opkových zkoušek, kteé jou ztížey áhodými chybmi, mjí učité ozděeí (ditibuci). Rozděeím e zde ozumí záviot pvděpodoboti

Více

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26 Zákld mtemtik Číselé oor ČÍSELNÉ OBORY 0 Některé pojm z mtemtické logik 0 Výroková logik 0 Moži vzth mezi imi Možiové operce Grfické zázorěí moži Číselé oor Čísl ázv jejich chrkteristik Chrkteristik číselých

Více

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006 8 ELEKTRCKÉ STROJE TOČVÉ říklad 8 Základí veličiy Určeo pro poluchače akalářkých tudijích programů FS Aychroí motory g Vítězlav Stýkala, hd, úor 006 Řešeé příklady 3 fázový aychroí motor kotvou akrátko

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

Materiál má podobu pracovního listu s úlohami, pomocí nichž si žáci procvičí zobrazení, funkce a

Materiál má podobu pracovního listu s úlohami, pomocí nichž si žáci procvičí zobrazení, funkce a Autor Mgr. Bronislava Salajová Tematický celek Funkce Cílová skupina 3. ročník SŠ s maturitní zkouškou Anotace Materiál má podobu pracovního listu s úlohami, pomocí nichž si žáci procvičí zobrazení, funkce

Více

Algebraické výrazy. Mnohočleny 1) Sčítání (odčítání) mnohočlenů:

Algebraické výrazy. Mnohočleny 1) Sčítání (odčítání) mnohočlenů: Algeicé ýz Výz = ždý zápis, eý je spáě oře podle zásd o zápisech čísel, poěých, ýsledů opecí, hodo fcí. Npř. π,,... Výz číselé s poěo Výzo spi oří loeé ýz s ezáo e jeoeli ( sí ý ede podí, ýz á ssl poze

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

SPS SPRÁVA NEMOVITOSTÍ

SPS SPRÁVA NEMOVITOSTÍ SMLOUVA O REZERVACI POZEMKU A SMLOUVA O BUDOUCÍ SMLOUVĚ O DÍLO Níže uvedeného dne, měsíce roku uzvřeli: 1. EURO DEVELOPMENT JESENICE, s.r.o., IČ 282 44 451, se sídlem Ječná 550/1, Prh 2, PSČ 120 00, zpsná

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

ů ů š Ú š ů š š ů Ú ž Č Š Š š É ň š ž ňš ú š ž ó ů š ó ó žů šů ů š š ů š š ó ó ú ó ó ó š ó ó ůš š ž ú š ú ú ů ž š ó ů ů š ó ž Š š ů š š ů ž š ů ú ž ž š ž š š š š ó ž ó ž ů ú š š ó š Ž š š Ž Ž Ž š š ž š

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

visual identity guidelines Česká verze

visual identity guidelines Česká verze visul identity guidelines Česká verze Osh 01 Filosofie stylu 02 Logo 03 Firemní rvy 04 Firemní písmo 05 Vrice log 06 Komince rev Filosofie stylu Filozofie společnosti Sun Mrketing vychází ze síly Slunce,

Více

CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT

CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Autor Mgr. Lenka Střelcová Tematický celek Posloupnosti Cílová skupina 3. ročník SŠ Anotace Materiál má podobu výkladového a pracovního listu s úlohami, pomocí nichž si žáci osvojí a procvičí využití geometrické

Více

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e M t i c e v e s t ř e d o š k o l s k é m t e m t i c e P t r i k K v e c k ý M e d e l o v o g y m á z i u m v O p v ě S t u d i j í m t e r i á l - M t i c e v e s t ř e d o š k o l s k é m t e m t i

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ, p. o. MATEMATIKA Ig. Rudolf PŠENICA 6 OBSAH:. SHRNUTÍ A PROHLOUBENÍ UČIVA... 5.. Zákldí možiové pojmy... 5.. Číselé možiy... 6.. Itervly... 6.. Absolutí

Více

PÍSEMNÁ ZPRÁVA ZADAVATELE. "Poradenství a vzdělávání při zavádění moderních metod řízení pro. Město Klimkovice

PÍSEMNÁ ZPRÁVA ZADAVATELE. Poradenství a vzdělávání při zavádění moderních metod řízení pro. Město Klimkovice PÍSEMNÁ ZPRÁVA ZADAVATELE pro zjednodušené podlimitní řízení n služby v rámci projektu Hospodárné odpovědné město Klimkovice, reg. č. CZ.1.04/4.1.01/89.00121, který bude finncován ze zdrojů EU "Pordenství

Více

ALGEBRA, ROVNICE A NEROVNICE

ALGEBRA, ROVNICE A NEROVNICE ALGEBRA, ROVNICE A NEROVNICE Gymnázium Jiřího Wolker v Prostějově Výukové mteriály z mtemtiky pro nižší gymnázi Autoři projektu Student n prhu 1. století - využití ICT ve vyučování mtemtiky n gymnáziu

Více

STAVEBNÍ SPOŘENÍ. Finanční matematika 8

STAVEBNÍ SPOŘENÍ. Finanční matematika 8 STAVEBNÍ SPOŘENÍ Finanční matematika 8 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm08

Více

Jednotka pro zvýšení tlaku Ø40

Jednotka pro zvýšení tlaku Ø40 Jednotk pro zvýšení tlku Ø4 Zákldní informce Síl vyvinutá pneumtickým válcem není v některých přípdech dottečná pro plnění poždovné funkce. Pro plnění tohoto problému je pk nutné, pokud je to možné, buď

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

E V R O P S K Á Ú M L U V A O K R A J I NĚ

E V R O P S K Á Ú M L U V A O K R A J I NĚ E V R O P S K Á Ú M L U V A O K R A J I NĚ Sdělení Ministerstv zhrničníh věí č. 13/2005 S.m.s. Ministerstvo zhrničníh věí sděluje, že dne 20. říjn 2000 yl ve Florenii přijt Evropská úmluv o krjině. Jménem

Více

Ý ÚŘ Č Ý Č É Ý ó Ě Ř Ř Ý é Ú ú Č é é ě ě š ů Ú Í ů ů ě ě š ů ú é é é ě ň ě é ú ě é ě ě ů Š ú Ú Ž Č é ě ě ě é é Ú ů ě ů ě Ú Ó ě ú é ň é Ú ě ě é ů ě ě ě Í ň Ú ů ů Š š ě ě Š Ů š ě é é Ž ě š ě Ů ť Š ě é ž

Více

Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM

Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: Název projektu školy: Šablona III/2: CZ.1.07/1.5.00/34.0536 Výuka s ICT na SŠ obchodní České

Více

TECHNICKÁ UNIVERZITA V LIBERCI. Fakulta přírodovědně-humanitní a pedagogická ZÁVĚREČNÁ PRÁCE

TECHNICKÁ UNIVERZITA V LIBERCI. Fakulta přírodovědně-humanitní a pedagogická ZÁVĚREČNÁ PRÁCE TECHNICKÁ UNIVERZITA V LIBERCI Fkult příodovědě-humití pedgogická ZÁVĚREČNÁ PRÁCE LIBEREC 0 Mg. JAROMÍR OSČÁDAL Techická uivezit v Lieci Fkult příodovědě-humití pedgogická Egyptské zlomky Závěečá páce

Více

ZÁKLADNÍ SUMAČNÍ TECHNIKY

ZÁKLADNÍ SUMAČNÍ TECHNIKY Zápdočeská uiverzit v Plzi Fkult pedgogická Bklářská práce ZÁKLADNÍ SUMAČNÍ TECHNIKY Diel Tyr Plzeň Prohlšuji, že jsem tuto práci vyprcovl smosttě s použitím uvedeé litertury zdrojů iformcí. V Plzi,..

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

Zhoubný novotvar ledviny mimo pánvičku v ČR

Zhoubný novotvar ledviny mimo pánvičku v ČR Aktuální informce Ústvu zdrvotnických informcí sttistiky České repuliky Prh 8.1.2004 1 Zhouný novotvr ledviny mimo pánvičku v ČR Počet hlášených onemocnění zhouným novotvrem ledviny mimo pánvičku (dg.

Více

ů ů ř É ř řřň ů ů ř ř Ú ó ó ó ť ň ó ó ř ř ř š ř ů ů ů ů š ů ů ř ů ů ř ř ř ř ř ů ř ř ó ň ó š ř É ó š řó š ó řó óž ř ř ž ř ž ř ř ř ř Í ř š ů Š ů ř š Š ř ň Š š Š Š ř ž ť ň ň Š š š ň ř Š ň ň ř š Š Š š Í š

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ Níže uvedeného dne, měsíce roku uzvřeli: se sídlem: Koterovská 633/29, 326 00 Plzeň, ustnovený prvomocným Usnesením č.j. KSPL 54 INS 378/2012-A-19 ze dne 29.3.2012, insolvenčním správcem dlužník:. prvomocným

Více

3.2.7 Příklady řešené pomocí vět pro trojúhelníky

3.2.7 Příklady řešené pomocí vět pro trojúhelníky ..7 Příkldy řešené pomocí ět pro trojúhelníky Předpokldy:, 6 Pedgogická poznámk: U následujících příkldů ( u mnoh dlších příkldů z geometrie) pltí, že nedílnou součástí řešení je nápd (který se tké nemusí

Více

dvojice těchto prvků. Takto si můžeme například i znázorňovat možnosti jak cestovat z

dvojice těchto prvků. Takto si můžeme například i znázorňovat možnosti jak cestovat z Grfy V této kpitole e enámíme e ákldními pojmy teorie grfů, ukážeme i možnoti jejih použití tké e enámíme některými lgoritmy, které řeší úlohy teorie grfů. Grfy louží čto jko protředek k lepšímu poroumění

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

Virtuální svět genetiky 1

Virtuální svět genetiky 1 Chromozomy obshují mnoho genů pokud nejsou rozděleny crossing-overem, pk lely přítomné n mnoh lokusech kždého homologního chromozomu segregují jko jednotk během gmetogeneze. Rekombinntní gmety jsou důsledkem

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ Níže uvedeného dne, měsíce roku uzvřeli: KOPPA, v.o.s., se sídlem Mozrtov 679/21, 460 01 Liberec, ustnovená prvomocným Usnesením č.j. KSUL 44 INS 5060/2014-A-13, ze dne 04. dubn 2014, insolvenčním správcem

Více

MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinaci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR

MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinaci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR ŘÍJEN 2014 MINISTERSTVO PRO MÍSTNÍ ROZVOJ Odbor řízení

Více

Věta (princip vnořených intervalů). Jestliže pro uzavřené intervaly I n (n N) platí I 1 I 2 I 3, pak

Věta (princip vnořených intervalů). Jestliže pro uzavřené intervaly I n (n N) platí I 1 I 2 I 3, pak Reálná čísl N přirozená čísl: {,, 3, } Z celá čísl: {, ±, ±, ±3, } Q rcionální čísl: { b : Z, b N} R reálná čísl C komplení čísl: { + jy :, y R}, j R \ Q ircionální čísl, π, e, ) Tvrzení Mezi kždými dvěm

Více

Viadukt - Fügnerova - Vratislavice n.n. výh.

Viadukt - Fügnerova - Vratislavice n.n. výh. Viadukt - Fügnerova - Vratislavice n.n. výh. Mrštíkova, Liberec, Tel:85, e-mail: dpmlj@dpmlj.cz. Informace tel: 85, Tato linka je zařazena do tarifního systému IDOL. 7 9 a Rybníček Pro nákup jízdenky pro

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA PEDAGOGICKÁ Ktedr sociálních studií speciální pedgogiky Studijní progrm: Studijní oor: Kód ooru: Sociální práce Sociální prcovník 7502R022 Název klářské práce: NÁHRADNÍ

Více

Budova mateřské školy je řešena jako sendvičová

Budova mateřské školy je řešena jako sendvičová 42 Sendvičová dřevěná stv s jednoduchým půdorysem Stv Mteřské školy Sklníkov v Mriánských Lázních-Úšovcích je příkldem použití dřevěné konstrukční áze pro udovu očnského vyvení. Proszení tkovéto stvy stále

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. ŠVP kuchař-číšník;zpv chemie, 1. ročník

DIGITÁLNÍ UČEBNÍ MATERIÁL. ŠVP kuchař-číšník;zpv chemie, 1. ročník DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ.1.07/1.5.00/34.0763 Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220 Název materiálu INOVACE_32_ZPV-CH 1/04/02/8 Autor Obor; předmět, ročník Tematická

Více

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004.

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004. STÁLÁ UŽITNÁ ZTÍŽENÍ ČSN EN 1991-1-1 (Eurokód 1): Ztížení konstrukcí Objemové tíhy, vlstní tíh užitná ztížení pozemních stveb. Prh : ČNI, 004. 1. Stálá ztížení stálé (pevné) ztížení stvebních prvků zhrnuje

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x)

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x) 9 REGRESE A KORELACE Slovo regrese oecě zmeá poh zpět ústup ávrt regresví = ustupující Opčým termíem je progrese pokrok postup šířeí růst Pojem regrese l do sttstk zvede kocem 9 století rtským učecem Frcsem

Více

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí.

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí. 10. Nebezpečné dotykové npětí zásdy volby ochrn proti němu, ochrn živých částí. Z hledisk ochrny před nebezpečným npětím rozeznáváme živé neživé části elektrického zřízení. Živá část je pod npětím i v

Více

ř ě č ř ě Ý účé ěř Ý é É Ě Ýý ď ý úč č č ú ě é É ť ú Ě óý É ý ó É ý ý ň Ýý ú ť ý úý ó ý ý é ýď é ý ň É ý úú ý ý ó É É ý ý ň É ó Á É Ť ý ě Í É É Ý ě ý č é č Ý ř ó ó ó ó Ý é ó ž é ú Á ď é ď ú ý éž éé Ž É

Více

Výzkumná zpráva pro Lesy České republiky

Výzkumná zpráva pro Lesy České republiky Alrechtová kol: Výzkumná zpráv pro LČR, 2. etp 1 Výzkumná zpráv pro Lesy České repuliky Hodnocení vývoje zdrvotního stvu vyrných stnovišť v Krušnohoří od roku 1998 Etp II: 1) Anlýz mkroskopických mrkerů

Více

pro čajovou ligu družstev Č l á n e k I. - O r g a n i z a c e soutěže

pro čajovou ligu družstev Č l á n e k I. - O r g a n i z a c e soutěže H r í ř á d pro čjovou ligu družstev Č l á n e k I. - O r g n i z e soutěže I-1. Vymezení soutěže Soutěž je pořádán pro družstv složená z hráčů, kteří hrjí go pro zpestření svého volného čsu htějí změřit

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

Poznámky k tématu Korelace a jednoduchá lineární regrese (Téma není ve skriptech)

Poznámky k tématu Korelace a jednoduchá lineární regrese (Téma není ve skriptech) Pozámk k tématu Koelace a jedoduchá leáí egee (Téma eí ve kptech) Mějme data, ),...,(, ), kteá jou áhodým výběem z ějaké populace. Data ted pokládáme za ezávlé ealzace dvojce áhodých velč ( X, Y ). Půmě

Více

Aritmetická posloupnost

Aritmetická posloupnost /65 /65 Obsh Obsh... Aritmetická posloupost.... Soustv rovic, součet.... AP - předpis... 5. AP - součet... 6. AP - prvoúhlý trojúhelík... 7. Součet čísel v itervlu... 8 Geometrická posloupost... 0. Soustv

Více

Úvod do analýzy časových řad

Úvod do analýzy časových řad VŠB TU OSTRAVA, FEI, KATEDRA APLIKOVANÉ MATEMATIKY Úvod do lýz čsových řd [Zdeje podiul dokueu.] Mri Lischová Popis čsových řd Čsová řd je uerická proěá, jejíž hodo podsě závisí čse, v ěž bl získá (posloupos

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE

MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE Zstupitelstvo měst Kopřivnice PŘÍLOHA č. 1 k č. j.: 41/2006/OPE&33934/2010/Šo ZPRACOVATEL: Kteřin Šodková ČÍSLA USNESENÍ: 575-597 Usnesení 26. zsedání Zstupitelstv

Více

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol OPERACE

Více

smlouvu o složení finanční částky do advokátní úschovy Níže uvedeného dne, měsíce a roku uzavřeli

smlouvu o složení finanční částky do advokátní úschovy Níže uvedeného dne, měsíce a roku uzavřeli Níže uvedeného dne, měsíce roku uzvřeli 1. Zdeněk Berntík, nr. 14.5.1954 Jrmil Berntíková, nr. 30.12.1956 ob bytem Stroveská 270/87, Ostrv-Proskovice ob jko Smluvní strn 1 2. Tělovýchovná jednot Petřvld

Více

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ Brnislv Lcko VUT v Brně, Fkult strojního inženýrství, Ústv utomtizce informtiky, Technická 2, 616 69 Brno, lcko@ui.fme.vutbr.cz Abstrkt Příspěvek podává

Více

ě Ň ť Ť ě šň Č ů ě ě Ň ě ě ě ž Ú Ň ě ě ě ě ě Ň ě Ť Ť ě Áě Ú ů ň ě ě ě Ú ě Ť ě ž ů ě ž ě ž ě ů ž ů ě ě ů ě ž ěď Á ů ě Ť ě ž ž ě ů ě ž ů ď ď ď ě ě Ú Ň ů ů ď ě ě ě ů ě Á Ň ě ě ě ď ě ě ď Č ž ě ž ě Ý ě š ě

Více

ř ř ř ó é ř ř é ř ř ů ř ř ó ř ř é ř ť Ď ž ň é ř ň ř ň ř é ž ů ň ř ň řú é ň ř ů ň ř ň ř ž ž ň ř é ž ů é ů é ň ů ů ž ř é ř ů š é ů ř é ř ů ř ů é ň ň é ř ň é ř ř ž ů ů ř ž ž ž ř é ř ř ů ř é ř ů ř ú ů ú ů

Více

Pracovní list č. 3: Pracujeme s kategorizovanými daty

Pracovní list č. 3: Pracujeme s kategorizovanými daty Pracovní lt č. 3: Pracujeme kategorzovaným daty Cíl cvčení: Tento pracovní lt je určen pro cvčení ke 3. a. přednášce předmětu Kvanttatvní metody B (.1 Třídění tattckých dat a. Číelné charaktertky tattckých

Více

Ň Ú ř ř ř Č ř ř š ž Č ř š ž š š š ž š ř ú ř ž š ř ú Š ú ú ú š š ú ú ú ú ť ř š š ř ř ř š š ř ř ž ř ř ř š ř š ó Č ť š š š ř ť ř žš š ž ť ž ž š ř ž ř ť ž ř ř ú Ť ó Č Č šř š žš ř ž ř š ř ř ž Č ř ř ť ř š š

Více

Seznam povinných učebnic pro školní rok 2015/2016

Seznam povinných učebnic pro školní rok 2015/2016 Anglické gymnázium, Střední odborná škola a Vyšší odborná škola, s.r.o., Gorkého 867, Pardubice Seznam povinných učebnic pro školní rok 2015/2016 Obor vzdělání: 69-41-L/02 Masér sportovní a rekondiční,

Více

Smlouva o ustájení a zajišťování veterinární péče pro toulavá a opuštěná zvířata odchycená na území města Česká Lípa

Smlouva o ustájení a zajišťování veterinární péče pro toulavá a opuštěná zvířata odchycená na území města Česká Lípa Smlouv o ustájení zjišťování veterinární péče pro toulvá opuštěná zvířt odchycená n území měst Česká Líp Smluvní strny Objedntel: Město Česká Líp, náměstí TGM 1,47001 Česká Líp Zstoupené : p. Jiřím Pzourkem,

Více

Staveništní malty a suché maltové směsi při obnově památek

Staveništní malty a suché maltové směsi při obnově památek Společnost pro technologie ochrny pmátek Národní technické muzeum Stveništní mlty suché mltové směsi při onově pmátek odorný seminář 18. dun 2013 Národní technické muzeum Kostelní 42, Prh 7 1 Stveništní

Více

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 5. Konstruke trojúhelníků Konstruke trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 1. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit

Více

Viadukt - Fügnerova - Vratislavice n.n. výh.

Viadukt - Fügnerova - Vratislavice n.n. výh. Viadukt - Fügnerova - Vratislavice n.n. výh. Mrštíkova, Liberec, Tel:85, e-mail: dpmlj@dpmlj.cz. Informace tel: 85, Tato linka je zařazena do tarifního systému IDOL. 7 9 a Rybníček LIB Pro nákup jízdenky

Více

SPOŘÍCÍ ÚČET. Finanční matematika 7

SPOŘÍCÍ ÚČET. Finanční matematika 7 SPOŘÍCÍ ÚČET Finanční matematika 7 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm07

Více

HYPOTÉČNÍ ÚVĚRY. Finanční matematika 13

HYPOTÉČNÍ ÚVĚRY. Finanční matematika 13 HYPOTÉČNÍ ÚVĚRY Finanční matematika 13 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm13

Více

Sbírka příkladů do IFJ. Petr Zemek

Sbírka příkladů do IFJ. Petr Zemek Sírk příkldů do IFJ Petr Zemek 11. ledn 2012 Osh Předmluv 1 1 Aeedy, řetěze jzyky 3 2 Úvod do překldčů 5 3 Modely regulárníh jzyků 6 4 Speiální konečné utomty 8 5 Lexikální nlýz 10 6 Modely ezkontextovýh

Více

Gaussovská prvočísla

Gaussovská prvočísla Středoškolská odborná činnost 2005/2006 Obor 01 mtemtik mtemtická informtik Gussovská rvočísl Autor: Jkub Oršl Gymnázium Brno, tř. Kt. Jroše 14, 658 70 Brno, 4.A Konzultnt ráce: Mgr. Viktor Ježek (Gymnázium

Více

dodatek č. 1 ke smlouvě o složení finanční částky do advokátní úschovy Níže uvedeného dne, měsíce a roku uzavřeli

dodatek č. 1 ke smlouvě o složení finanční částky do advokátní úschovy Níže uvedeného dne, měsíce a roku uzavřeli Níže uvedeného dne, měsíce roku uzvřeli 1. Zdeněk Berntík, nr. 14.5.1954 Jrmil Berntíková, nr. 30.12.1956 ob bytem Stroveská 270/87, Ostrv-Proskovice ob jko Smluvní strn 1 2. Tělovýchovná jednot Petřvld

Více

ť Íť š š ž ž š ž š š š ů ů ú š ů ž š š š ů ž ó š š Í š š ó ů š š ůž ž ň Ž ž ň š š ž ž ň ň ž ž š š š š š š ž Ú š Č š ž ú ž ů ď ů Č ž š ú š Í Í š ú ů ú ů ž ť ž ú ů ž š ž ž ž ú ú ď ž Í š š ů ž š š ó Č ó š

Více

e Stavby pro reklamu podle 3 odst. 2. f

e Stavby pro reklamu podle 3 odst. 2. f Jenouhé stvy, terénní úprvy uržoví práe vyžujíí ohlášení 104 ost. 1 stveního zákon Stvení záměr Formulář Umístění Stvy pro ylení pro roinnou rekrei o 150 m 2 elkové zstvěné plohy, s jením pozemním polžím

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský socálí fod Praha & EU: Ivesujee do vaší budoucos Ekooka podku aedra ekooky, aažersví a huaích věd Fakula elekroechcká ČVUT v Praze Ig. učerková Blaka, 20 Úrokový poče, základy fačí aeaky (BI-EP)

Více

II. termodynamický zákon a entropie

II. termodynamický zákon a entropie Přednášk 5 II. termodynmický zákon entropie he lw tht entropy lwys increses holds, I think, the supreme position mong the lws of Nture. If someone points out to you tht your pet theory of the universe

Více

Ulice Agentura sociální práce, o. s. Účetní závěrka za rok 2012

Ulice Agentura sociální práce, o. s. Účetní závěrka za rok 2012 Ulice Agentur sociální práce, o. s. Účetní závěrk z rok 2012 Osh: I. OBECNÉ INFORMACE... 2 1. POPIS ÚČETNÍ JEDNOTKY... 2 2. ZAMĚSTNANCI A OSOBNÍ NÁKLADY... 2 3. POSKYTNUTÉ PŮJČKY, ZÁRUKY ČI JINÁ PLNĚNÍ...

Více

UČEBNICE studijního oboru 64-41-L/51 Podnikání. Cizí jazyk (AJ, NJ) AJ objednáme společně po dohodě s vyučujícím NJ Sprechen Sie Deutsch II

UČEBNICE studijního oboru 64-41-L/51 Podnikání. Cizí jazyk (AJ, NJ) AJ objednáme společně po dohodě s vyučujícím NJ Sprechen Sie Deutsch II 64-41-L/51 Podnikání 1. ročník - dálkové studium Cizí jazyk (AJ, NJ) AJ NJ Sprechen Sie Deutsch II Dějepis (D) Čornej:Dějepis pro SOŠ Matematika (M) Hudcová, Kubičíková: Sbírka úloh z matematiky pro SOŠ,

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma III.2.3, pracovní list 1 Technická měření v MS Excel Základy práce s tabulkou Ing. Jiří Chobot VY_32_INOVACE_323_1

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla)

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla) KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 23TVVM hoogenizce (sěšovcí prvidl) Hoogenizce Stvební teriály sou z hledisk zstoupení doinntních složek několikfázové systéy: Dvoufázové trice, vzduch (póry)

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Viadukt - Fügnerova - Vratislavice n.n. výh.

Viadukt - Fügnerova - Vratislavice n.n. výh. Viadukt - Fügnerova - Vratislavice n.n. výh. Mrštíkova, Liberec, Tel:85, e-mail: dpmlj@dpmlj.cz. Informace tel: 85, Tato linka je zařazena do tarifního systému IDOL. 7 9 a Rybníček LIB UPOZORNĚNÍ: Pro

Více

CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost

CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost Soukromá střední škola a jazyková škola s právem státní jazykové zkoušky Č. Budějovice,

Více

Stabilita atomového jádra. Radioaktivita

Stabilita atomového jádra. Radioaktivita Stbilit tomového jádr Rdioktivit Proton Kldný náboj.67 0-7 kg Stbilní Atomové jádro Protony & Neutrony Neutron Bez náboje.67 0-7 kg Dlouhodobě stbilní jen v jádře Struktur jádr A Z N A nukleonové číslo

Více

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013,

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, EVROPSKÁ KOMISE V Bruselu dne 30.4.2013 C(2013) 2420 finl NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, kterým se mění nřízení (ES) č. 809/2004, pokud jde o poždvky n zveřejňování

Více

FYZIKA Střídavý proud

FYZIKA Střídavý proud Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Střídavý

Více

MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE

MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE Rd měst Kopřivnice PŘÍLOHA č. 1 k č. j.: 19020/2013/KnD ČÍSLA USNESENÍ: 2258-2301 ZPRACOVATEL: Dniel Knpková Usnesení ze 72. schůze Rdy měst Kopřivnice ze dne 30.04.2013

Více