1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V

Rozměr: px
Začít zobrazení ze stránky:

Download "1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V"

Transkript

1 Předáška 1: Vektorové prostory Vektorový prostor Pro abstraktí defiici vektorového prostoru jsou podstaté vlastosti dvou operací, sčítáí vektorů a ásobeí vektoru (reálým číslem) Tyto dvě operace musí být defiováy pro všechy prvky vektorového prostoru (které azýváme vektory) a musí mít stejé vlastosti (tedy musejí fugovat stejě ) jako sčítáí a ásobeí reálých čísel 11 Defiice Reálým vektorovým prostorem azýváme možiu V, pro jejíž prvky jsou defiováy operace sčítáí + :V V V a ásobeí skalárem : R V V tak, že pro každé vektory u, v, w V a každé skaláry a, b R platí: 1 u + v = v + u, tzv komutativí záko, ( u + v ) + w = u + ( v + w ) a ( ab) u = a ( bu), tzv asociativí zákoy, 3 a( u + v) = au + av a ( a + b) u = au + bu, tzv distributiví zákoy, 4 existuje prvek o V, azýváme jej ulový vektor, tak, že u + o = u, 5 ke každému vektoru v V existuje vektor v V, azýváme jej opačý vektor, tak, že v + ( v ) = o, 6 1 u = u Pozámky (i) Operací + :V V V rozumíme předpis, který libovolým dvěma vektorům u, v (prvkům možiy V ) přiřadí jejich součet, tedy vektor u + v (opět prvek možiy V ) Operací : R V V rozumíme předpis, který libovolému reálému číslu k a libovolému vektoru u přiřadí k -ásobek vektoru u, tedy vektor ku Všiměte si, že ve vektorovém prostoru emáme defiová souči dvou vektorů! (ii) Možia skalárů může být i jiá ež R (často potřebujeme mít skaláry zejméa z možiy komplexích čísel C), je v í musí mít sčítáí a ásobeí stejé vlastosti jako v R ; Říkáme, že musí splňovat axiomy komutativího tělesa V tomto textu budeme pracovat pouze s reálými vektorovými prostory, a proto budeme přívlastek reálý vyechávat (iii) Všiměme si, že ve vektorovém prostoru ejsou defiováy body v geometrickém smyslu, vektor zde eí defiová rovicí u = B A jako orietovaá úsečka spojující dva body Prvky vektorového prostoru jsou pouze vektory (iv) Při defiici kokrétího vektorového prostoru je uté zadat jak možiu V tak i defiovat operace sčítáí a ásobeí Růzými defiicemi operací dostáváme růzé vektorové prostory Proto bychom měli vektorový prostor defiovat jako trojici ( V, +, ) My se však ve saze o stručé a jasé vyjadřováí vědomě dopouštíme epřesosti a mluvíme o vektorovém prostoru V 1 Příklady (i) Možia R (ii) Možia všech uspořádaých -tic R s aalogicky defiovaými operacemi 1

2 (iii) Buď C [ 0,1 ] možia všech reálých fukcí spojitých a uzavřeém itervalu [0,1] R (iv) Možia Z všech celých čísel etvoří vektorový prostor V ásledující větě uvedeme tři užitečé vlastosti počítáí s vektory: 13 Věta Nechť je V vektorový prostor a echť v V Pak platí 1 0 v = o, je-li v + w = o, pak je w = v (jedozačost opačého vektoru), 3 ( 1) v = v Důkaz Lieárí (e)závislost vektorů Již z defiice vektorového prostoru vidíme, že sčítáí vektorů a ásobeí vektoru reálým číslem hrají při studiu vektorů podstatou roli Tyto operace určují dále pojem lieárí kombiace vektorů 14 Defiice Lieárí kombiací vektorů u, v s koeficiety a, b R rozumíme vektor au + bv Obecěji, lieárí kombiací vektorů u 1, u s koeficiety c1, c,, c R rozumíme vektor c1u 1 + cu + + cu Je-li c1 = c = = c = 0, azýváme lieárí kombiaci triviálí 15 Aplikace (i) Ve fyzikálích oborech, které mají lieárí charakter (a těch je většia), jsou základími rovicemi tzv lieárí difereciálí rovice, pro jejichž řešeí platí pricip superpozice Například v kvatové mechaice platí Pricip superpozice stavů: Jestliže se kvatový systém může acházet ve stavech popsaých vektory ψ1, ψ, pak je také v pricipu realizovatelý také stav ψ = kψ 1 + lψ, kde k, l jsou libovolá komplexí čísla Toho se využívá při formulaci zámého myšlekového experimetu o Schrödigerově kočce (ii) Jsou-li x 1, x dvě řešeí homogeí soustavy lieárích rovic, pak je x = ax + bx 1 také řešeím (pro všecha a, b ), viz čtvrtá předáška,věta 44

3 Pomocí pojmu lieárí kombiace defiujeme velmi důležité pojmy lieárí závislosti (a také lieárí ezávislosti) Motivací ám budou ásledující dva speciálí případy z geometrie: 1 Uvažujme dva vektory u, v Jsou-li u, v kolieárí, tedy platí-li u = k v (často se epřesě říká, že leží a jedé přímce ), pak platí, že k v + ( 1) u = o a tedy, že ulový vektor lze apsat jako etriviálí lieárí kombiaci vektorů u, v Podobě jsou-li tři vektory u, v, w komplaárí (často epřesě říkáme, že leží v jedé roviě ), pak se dá ulový vektor apsat jako etriviálí lieárí kombiace vektorů u, v, w 16 Defiice Říkáme, že vektory u 1, u jsou lieárě závislé, lze-li aspoň jede z ich vyjádřit jako etriviálí lieárí kombiaci ostatích V opačém případě říkáme, že vektory jsou lieárě ezávislé u u w v u Obrázek 1 Lieárě závislé vektory 17 Věta (1) Platí-li pro ějakou etriviálí lieárí kombiaci vektorů u 1, u rovost c1u 1 + cu + + cu = o, (11) tedy je-li alespoň jedo z čísel c1, c,, c růzé od uly, jsou vektory u 1, u lieárě závislé () Je-li rovice (11) splěa pouze pro triviálí lieárí kombiaci, tedy platí-li c1 = c = = c = 0, azýváme vektory u 1, u jsou lieárě ezávislé 18 Příklady (LNZ): (i) Ukažte, že vektory u = (1,0, 1), v = (,,0), w = ( 3,,1) jsou lieárě závislé 3

4 (ii) Zjistěte, zda jsou vektory u = (1,,3), v = (1,1,0), w = ( 1,0,0) lieárě závislé 19 Aplikace: Rovoběžost lieárích útvarů v geometrii Jsou-li dvě přímky p, q rovoběžé, pak jsou jejich směrové vektory s, s lieárě závislé Je-li přímka p rovoběžá s roviou ρ, pak je její směrový s p vektor lieárí kombiací směrových vektorů s 1, s roviy ρ Jsou-li dvě roviy α, β rovoběžé, pak lze každý směrový vektor roviy α vyjádřit jako lieárí kombiaci směrových vektorů roviy β 1 Rychleji a saději se ovšem zkotroluje lieárí závislost jejich ormálových vektorů Podrobosti viz šestá předáška, odstavec 63 p q Báze, souřadice, dimeze Pojmy lieárí kombiace a lieárí ezávislosti ám umoží vybrat ze všech vektorů prostoru V meší možiu výzačých vektorů, z ichž půjde jakýkoliv vektor v V vytvořit pomocí lieárí kombiace Pro áš ejčastější model V =R bude tato možia koečá, a dokoce ukážeme, že bude mít právě prvků 1 Pochopitelě lze také každý směrový vektor roviy β vyjádřit jako lieárí kombiaci směrových vektorů roviy α 4

5 110 Defiice Bází vektorového prostoru V azýváme možiu vektorů u 1, u takovou, že 1 u 1, u jsou lieárě ezávislé, u 1, u,, u geerují vektorový prostor V, tedy pro každý vektor v V existují skaláry c1, c,, c takové, že Píšeme V = u 1, u v = c u + c u + + c u (1) Příklad Ve vektorových prostorech Speciálě v R je to báze (1,0), (0,1) R existuje tzv kaoická (eboli přirozeá) báze e1 = (1,0,0,,0), e = (0,1,0,,0), e = (0,0,0,,1) (13) 11 Pozámka V každém prostoru existuje ekoečě moho bází Máme-li a vektorovém prostoru V defiová skalárí souči, můžeme vybírat báze, jejichž vektory mají velikost rovu jedé (jsou ormalizovaé) a každé jejich dva růzé bázové vektory jsou avzájem kolmé (eboli ortogoálí) Tyto výzamé báze azýváme ortoormálí Kaoická báze do této skupiy také patří 113 Příklad (báze) Ukažte, že vektory u = (1,,3), v = (1,1, 0), w = ( 1, 0, 0) tvoří bázi vektorového prostoru 3 R 114 Věta Buď V = u 1, u Pak je vyjádřeí libovolého vektoru v ve tvaru lieárí kombiace z rovice (1) jedozačé Důkaz 5

6 e v u 1 e 1 u Obrázek Vektor a jeho souřadice ve dvou růzých bázích Díky této větě můžeme pomocí báze defiovat a vektorovém prostoru V soustavu souřadic: 115 Defiice Koeficiety c1, c,, c z rovice (1) azýváme souřadicemi vektoru v vzhledem k bázi u 1, u 116 Příklad: 3 Určete souřadice vektoru (7,11,1) vzhledem ke kaoické bázi v R a vzhledem k bázi u = (1,,3), v = (1,1,0), w = ( 1,0,0) 1) vzhledem ke kaoické bázi platí, že čley uspořádaé -tice jsou přímo souřadice vektoru, jelikož platí (7,11,1) = 7 (1, 0, 0) + 11 (0,1, 0) + 1 (0, 0,1) Hledaé souřadice jsou tedy (7,11,1) To, co jsme doposud rozuměli pod pojmem souřadice vektoru, jsou tedy souřadice vzhledem k přirozeé bázi prostoru R Tato kaoická báze je takto těsě spjata se strukturou R, je přítoma aiž bychom vůbec o ějakou bázi usilovali To ilustruje její edoceitelý výzam ) vzhledem k bázi u = (1,, 3), v = (1,1, 0), w = ( 1, 0, 0) zjistíme souřadice vektoru (7,11,1) jako koeficiety lieárí kombiace bázových vektorů Hledáme tedy koeficiety 3 ( a, b, c) R tak, aby a (1,,3) + b (1,1,0) + c ( 1,0,0) = (7,11,1) Porováím souřadic vektorů a obou straách rovosti dostáváme soustavu lieárích rovic a + b c = 7 a + b = 11 3a = 1 Jediým řešeím této soustavy je uspořádaá trojice (4,3,0), což jsou hledaé souřadice vzhledem k bázi u, v, w 6

7 Buď V vektorový prostor Jelikož všechy jeho báze mají stejý počet vektorů, můžeme takto velmi sado defiovat dimezi prostoru: 117 Defiice Dimezí vektorového prostoru V rozumíme počet prvků jeho libovolé báze Píšeme dimv = Vektorový prostor dimeze začíme V 118 Příklad Pro V =R máme k dispozici kaoickou bázi (13), která má samozřejmě právě prvků Proto je dimr = 119 Věta Každý vektorový prostor V, <, lze jedozačě popsat pomocí prostoru R v tom smyslu, že existuje předpis, který každému vektoru v V jedozačě přiřadí uspořádaou -tici ( v1,, v ) R, tedy souřadice vektoru v v kaoické bázi prostoru R Vektorový podprostor Vektorové prostory často obsahují podmožiy, které jsou samy o sobě též vektorovými prostory To ám jedak umožňuje studovat strukturu vektorových prostorů, apř rozkládat vektorové prostory a meší stavebí celky, ale také má velké využití v aplikacích, apříklad řešeí soustavy homogeích lieárích algebraických rovic o ezámých tvoří vždy podprostor ve V 10 Defiice Bud V vektorový prostor Podmožiu U V azýváme podprostorem, jestliže platí 1 0 U, u + v U pro všechy u, v U (uzavřeost a sčítáí); 3 ku U pro každý vektor u U a každý skalár k R Vektorový podprostor je sám o sobě vektorovým prostorem, proto můžeme ajít jeho bázi a spočítat jeho dimezi Mějme k -dimezioálí podprostor U s bází u 1, u k Pak říkáme, že U je geerová vektory u 1, u k Pro ízkodimezioálí vektorové prostory se ujalo geometrické ozačeí i pojmeováí podprostorů: Jedodimezioálí podprostory se často ozačují malými písmey p, q, k, a mluví se o ich jako o přímkách, dvoudimezioálí podprostory se ozačují malými písmey řecké abecedy a mluví se o ich jako o roviách Uveďme si kokrétí příklady 7

8 11 Aplikace v aalytické geometrii (i) Možia všech vektorů p = {( t, t) R t R } je jedorozměrý podprostor v R, který je geerová vektorem s = (1, ) Ukažme, že p splňuje požadavky předchozí defiice: Geometricky můžeme podprostor p iterpretovat jako přímku v roviě, která prochází počátkem a má parametrické vyjádřeí p : x = t, y = t, t R, resp obecou rovici p : x y = 0 (ii) Možia všech vektorů je dvourozměrý podprostor v α = {( r, r,0),(0, s, s) r, s R } u = (1,,0) a u = (0,1, ) 3 R, který je geerová vektory 1 Aalogicky jako v předchozím případě se dá kázat, že α splňuje požadavky defiice 10 Geometricky jej můžeme iterpretovat jako roviu v prostoru, která prochází počátkem a má parametrické vyjádřeí α : x = r, y = r + s, z = s, r, s R, resp obecou rovici α : x y + z = 0, viz pátá předáška, odstavce 57 a 510 Pozameejme, že vektorový prostor jsme zde chápali jako speciálí případ tzv afiího prostoru, ve kterém se vektory defiují vztahem u = B A zámým ze středí školy Afií prostor je jedozačě urče defiováím počátku Souřadice bodů pak získáme jako souřadice polohových vektorů v = V P V ašem případě (pro vektorové prostory) jsme 0,0 P = 0,0,0 zvolili počátek v bodě P = [ ], resp [ ] 1 Aplikace pro řešeí soustav rovic Možia všech řešeí homogeí soustavy lieárích rovic tvoří vektorový podprostor, více viz čtvrtá předáška, Věta 44 8

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

Kapitola 4 Euklidovské prostory

Kapitola 4 Euklidovské prostory Kapitola 4 Euklidovské prostory 4.1. Defiice euklidovského prostoru 4.1.1. DEFINICE Nechť E je vektorový prostor ad tělesem reálých čísel R,, : E 2 R. E se azývá euklidovský prostor, platí-li: (I) Pro

Více

Analytická geometrie

Analytická geometrie Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí

Více

Přednáška 7: Soustavy lineárních rovnic

Přednáška 7: Soustavy lineárních rovnic Předáška 7: Soustavy lieárích rovic 7.1. Příklad (geometrie v roviě) Rozhoděte o vzájemé poloze přímky p : x y 1 a přímky a) a : x y 3, b) b : 2x 2y 3, c) c :3x 3y 3. Jak víme ze středí školy, lze o vzájemé

Více

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13). 37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým

Více

GEOMETRIE I. Pavel Burda

GEOMETRIE I. Pavel Burda GEOMETRIE I Pavel Burda Obsah Úvod... 4 1. Vektorové prostory... 5. Vektorové prostory se skalárím ásobeím... 9. Afií prostory... 19 4. Afií přímka ( A 1 )... 5 5. Afií rovia (A )... 6 6. Afií prostor

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

11. přednáška 16. prosince Úvod do komplexní analýzy.

11. přednáška 16. prosince Úvod do komplexní analýzy. 11. předáška 16. prosice 009 Úvod do komplexí aalýzy. Tři závěrečé předášky předmětu Matematická aalýza III (NMAI056) jsou věováy úvodu do komplexí aalýzy. Což je adeseá formulace eboť časový rozsah ám

Více

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

7. Analytická geometrie

7. Analytická geometrie 7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp

Více

Kapitola 5 - Matice (nad tělesem)

Kapitola 5 - Matice (nad tělesem) Kapitola 5 - Matice (ad tělesem) 5.. Defiice matice 5... DEFINICE Nechť T je těleso, m, N. Maticí typu m, ad tělesem T rozumíme zobrazeí možiy {, 2,, m} {, 2,, } do T. 5..2. OZNAČENÍ Možiu všech matic

Více

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

Analytická geometrie

Analytická geometrie 7..06 Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí

Více

7.2.4 Násobení vektoru číslem

7.2.4 Násobení vektoru číslem 7..4 Násobeí vektor číslem Předpoklady: 703 Tetokrát začeme hed defiicí. Násobek lového vektor číslem k je lový vektor. Násobek elového vektor = B Ačíslem k je vektor C A, přičemž C je bod, pro který platí:

Více

definované pro jednotlivé řády takto: ) řádu n nazýváme číslo A = det( A) a a a11 a12

definované pro jednotlivé řády takto: ) řádu n nazýváme číslo A = det( A) a a a11 a12 Předáška 3: Determiaty Pojem determiatu se prosadil původě v souvislosti s potřebou řešit soustavy lieárích rovic v 8 století (C Maclauri, G Cramer) Teprve později se pojem osamostatil, zjedodušilo se

Více

Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti

Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Ivaa Pultarová Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat Komplexí čísla Hoza Krejčí Abstrakt. Co jsou to komplexí čísla? K čemu se používají? Dá se s imi dělat ěco cool? Na tyto a další otázky se a předášce/v příspěvku pokusíme odpovědět. Proč vzikla komplexí

Více

c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x),

c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x), a) Vyslovte a dokažte Liouvillovu větu o šaté aroximovatelosti algebraického čísla řádu d b) Defiujte Liouvillovo číslo c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je trascedetí 2 a) Defiujte

Více

20. Eukleidovský prostor

20. Eukleidovský prostor 20 Eukleidovský prostor V této kapitole budeme pokračovat ve studiu dalších vlastostí afiích prostorů avšak s tím rozdílem že místo obecého vektorového prostoru budeme uvažovat prostor uitárí Proto bude

Více

2. Náhodná veličina. je konečná nebo spočetná množina;

2. Náhodná veličina. je konečná nebo spočetná množina; . Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika Přijímací řízeí akademický rok 0/0 c. studium Kompletí zěí testových otázek matematika Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá. Které číslo doplíte místo 8? 6 6 8 C. Které číslo

Více

Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení

Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení Přijímací řízeí akademický rok 0/0 Kompletí zěí testových otázek matematické myšleí Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá odpověď. Které číslo doplíte místo otazíku? 6 8 8 6?.

Více

1 Uzavřená Gaussova rovina a její topologie

1 Uzavřená Gaussova rovina a její topologie 1 Uzavřeá Gaussova rovia a její topologie Podobě jako reálá čísla rozšiřujeme o dva body a, rozšiřujeme také možiu komplexích čísel. Nepřidáváme však dva body ýbrž je jede. Te budeme začit a budeme ho

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

1.2. NORMA A SKALÁRNÍ SOUČIN

1.2. NORMA A SKALÁRNÍ SOUČIN 2 NORMA A SKALÁRNÍ SOUČIN V této kapitole se dozvíte: axiomatickou defiici ormy vektoru; co je to ormováí vektoru a jak vypadá Euklidovská orma; axiomatickou defiici skalárího (také vitřího) součiu vektorů;

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Užití binomické věty

Užití binomické věty 9..9 Užití biomické věty Předpoklady: 98 Často ám z biomického rozvoje stačí pouze jede kokrétí čle. Př. : x Urči šestý čle biomického rozvoje xy + 4y. Získaý výraz uprav. Biomický rozvoj začíá: ( a +

Více

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky

Více

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor . LINEÁRNÍ LGEBR Vektorový prostor.. Defiice Nechť V e moži které sou defiováy operce sčítáí + : t. zobrzeí V V V ásobeí i : t zobrzeí R V V. Možiu V zýváme vektorovým prostorem, sou-li splěy ásleduící

Více

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře

Více

2.4. INVERZNÍ MATICE

2.4. INVERZNÍ MATICE 24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad... Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1

Více

5 Křivkové a plošné integrály

5 Křivkové a plošné integrály - 7 - Křivkové a plošé itegrály 5 Křivkové a plošé itegrály 51 Křivky Pozámka V této kapitole se budeme zabývat obecými křivkami v Vždy však můžeme položit = 2 či = a přejít tak k speciálím případům roviy

Více

8.1.3 Rekurentní zadání posloupnosti I

8.1.3 Rekurentní zadání posloupnosti I 8.. Rekuretí zadáí poslouposti I Předpoklady: 80, 80 Pedagogická pozámka: Podle mých zkušeostí je pro studety pochopitelější zavádět rekuretí posloupost takto (sado kotrolovatelou ukázkou), ež dosazováím

Více

Přednáška 7, 14. listopadu 2014

Přednáška 7, 14. listopadu 2014 Předáška 7, 4. listopadu 204 Uvedeme bez důkazu klasické zobecěí Leibizova kritéria (v ěmž b = ( ) + ). Tvrzeí (Dirichletovo a Abelovo kritérium). Nechť (a ), (b ) R, přičemž a a 2 a 3 0. Pak platí, že.

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

1 PSE Definice základních pojmů. (ω je elementární jev: A ω (A ω) nebo (A );

1 PSE Definice základních pojmů. (ω je elementární jev: A ω (A ω) nebo (A ); 1 PSE 1 Náhodý pokus, áhodý jev. Operace s jevy. Defiice pravděpodobosti jevu, vlastosti ppsti. Klasická defiice pravděpodobosti a její použití, základí kombiatorické vzorce. 1.1 Teoretická část 1.1.1

Více

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a) Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a

Více

3. ELEMENTÁRNÍ FUNKCE A POSLOUPNOSTI. 3.1 Základní elementární funkce. Nejprve uvedeme základní elementární funkce: KONSTANTNÍ FUNKCE

3. ELEMENTÁRNÍ FUNKCE A POSLOUPNOSTI. 3.1 Základní elementární funkce. Nejprve uvedeme základní elementární funkce: KONSTANTNÍ FUNKCE ELEMENTÁRNÍ FUNKCE A POSLOUPNOSTI Základí elemetárí fukce Nejprve uvedeme základí elemetárí fukce: KONSTANTNÍ FUNKCE Nechť a je reálé číslo Potom kostatí fukcí rozumíme fukce f defiovaou předpisem ( f

Více

5. Lineární diferenciální rovnice n-tého řádu

5. Lineární diferenciální rovnice n-tého řádu 5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

1 Základní pojmy a vlastnosti

1 Základní pojmy a vlastnosti Základí pojmy a vlastosti DEFINICE (Trigoometrický polyom a řada). Fukce k = (a cos(x) + b si(x)) se azývá trigoometrický polyom. Řada = (a cos(x) + b si(x)) se azývá trigoometrická řada. TVRZENÍ (Ortogoalita).

Více

8.2.1 Aritmetická posloupnost

8.2.1 Aritmetická posloupnost 8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž

Více

a logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n.

a logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n. Matematická aalýza II předášky M. Málka cvičeí A. Hakové a R. Otáhalové Semestr letí 2005 6. Nekoečé řady fukcí V šesté kapitole pokračujeme ve studiu ekoečých řad. Nejprve odvozujeme základí tvrzeí o

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem. z k k!. ( ) e z = k=0

I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem. z k k!. ( ) e z = k=0 8. Elemetárí fukce I. Expoeciálí fukce Defiice: Pro komplexí hodoty z defiujeme expoeciálí fukci předpisem ) e z = z k k!. Vlastosti expoeciálí fukce: a) řada ) koverguje absolutě v C; b) pro z = x + jy

Více

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH IVAN KŘIVÝ ČÍSLO OPERAČNÍHO PROGRAMU: CZ..07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0 Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada

Více

Zkoušková písemná práce č. 1 z předmětu 01MAB3

Zkoušková písemná práce č. 1 z předmětu 01MAB3 Katedra matematiky Fakulty jaderé a fyzikálě ižeýrské ČVUT v Praze Příjmeí a jméo 1 2 3 4 5 BONUS CELKEM (13 bodů) Zkoušková písemá práce č. 1 z předmětu 01MAB3 14. leda 2016, 9:00 11:00 Pro kvadratickou

Více

8.2.1 Aritmetická posloupnost I

8.2.1 Aritmetická posloupnost I 8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu

Více

3. DIFERENCIÁLNÍ ROVNICE

3. DIFERENCIÁLNÍ ROVNICE 3 DIFERENCIÁLNÍ ROVNICE Difereciálí rovice (dále je DR) jsou veli důležitou částí ateatické aalýz, protože uožňují řešit celou řadu úloh z fzik a techické prae Občejé difereciálí rovice: rovice, v íž se

Více

I. TAYLORŮV POLYNOM ( 1

I. TAYLORŮV POLYNOM ( 1 I. TAYLORŮV POLYNOM Připomeňme si defiice elemetárích fukcí: a si( = 2+ = ( (2+! b cos( = 2 = ( (2! c e = =!. Dokažte, že Taylorův polyom k-tého řádu v bodě pro fukce f je rove polyomu P : (tyto výsledky

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Matematická analýza I

Matematická analýza I 1 Matematická aalýza ity posloupostí, součty ekoečých řad, ity fukce, derivace Matematická aalýza I látka z I. semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia a další 2 Matematická

Více

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu):

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu): Pricip matematické idukce PMI) se systematicky probírá v jié části středoškolské matematiky. a tomto místě je zařaze z důvodu opakováí matka moudrosti) a proto, abychom ji mohli bez uzarděí použít při

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

n-rozměrné normální rozdělení pravděpodobnosti

n-rozměrné normální rozdělení pravděpodobnosti -rozměré ormálí rozděleí pravděpodobosti. Ortogoálí a pozitivě defiití symetrické matice. Reálá čtvercová matice =Ha i j L řádu se azývá ortogoálí, je-li regulárí a iverzí matice - je rova traspoovaé matici

Více

Analýza a zpracování signálů. 4. Diskrétní systémy,výpočet impulsní odezvy, konvoluce, korelace

Analýza a zpracování signálů. 4. Diskrétní systémy,výpočet impulsní odezvy, konvoluce, korelace Aalýza a zpracováí sigálů 4. Diskrétí systémy,výpočet impulsí odezvy, kovoluce, korelace Diskrétí systémy Diskrétí sytém - zpracovává časově diskrétí vstupí sigál ] a produkuje časově diskrétí výstupí

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

ŘADY Jiří Bouchala a Petr Vodstrčil

ŘADY Jiří Bouchala a Petr Vodstrčil ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická

Více

Definice obecné mocniny

Definice obecné mocniny Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma

Více

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU Matematické modelováí (KMA/MM Téma: Model pohybu mraveců Zdeěk Hazal (A8N18P, zhazal@sezam.cz 8/9 Obor: FAV-AVIN-FIS 1. ÚVOD Model byl převzat z kihy Spojité modely v biologii

Více

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel KAPITOLA : Číselé řdy MA-8:P.] Ozčeí: R {, +} R R C {} C rozšířeá komplexí rovi evlstí hodot, číslo, bod U ε {x C x < ε } pro C, ε > 0 U K {x C x > K } pro K 0 defiujeme pro C: ±, je pro 0, edefiujeme:

Více

Matematika přehled vzorců pro maturanty (zpracoval T. Jánský) Úpravy výrazů. Binomická věta

Matematika přehled vzorců pro maturanty (zpracoval T. Jánský) Úpravy výrazů. Binomická věta Matematika přehled vzorců pro maturaty (zpracoval T. Jáský) Úpravy výrazů a r. a s = a r+s a r = ar s as a r s = a r.s a. b r = a r b r a b r = ar b r a. b a b = a b = a. b ( a) m = a m m a m. = a a k.

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL Difereciálí počet fukcí jedé reálé proměé - 6. - PRVNÍ DIFERENCIÁL TAYLORŮV ROZVOJ FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL PŘÍKLAD Pomocí věty o prvím difereciálu ukažte že platí přibližá rovost

Více

5 PŘEDNÁŠKA 5: Jednorozměrný a třírozměrný harmonický oscilátor.

5 PŘEDNÁŠKA 5: Jednorozměrný a třírozměrný harmonický oscilátor. 5 PŘEDNÁŠKA 5: Jedorozměrý a třírozměrý harmoický oscilátor. Půjde o spektrum harmoického oscilátoru emá to ic společého se spektrem atomu ebo se spektrálími čarami atomu. Liší se to právě poteciálem!

Více

1 Základní matematické pojmy Logika Množiny a jejich zobrazení... 7

1 Základní matematické pojmy Logika Množiny a jejich zobrazení... 7 Semiář z matematické aalýzy I Čížek Jiří-Kubr Mila 8 září 007 Obsah Základí matematické pojmy Logika Možiy a jejich zobrazeí 7 Reálá a komplexí čísla 6 Poslouposti 7 Základí vlastosti posloupostí 7 Limita

Více

S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické

S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické 5 Itegrace racioálích fukcí 5 Itegrace racioálích fukcí Průvodce studiem V předcházejících kapitolách jsme se aučili počítat eurčité itegrály úpravou a základí itegrály, metodou per partes a substitučí

Více

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou 4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,

Více

DIM PaS Připomenutí poznatků ze střední školy. Faktoriály a kombinační čísla základní vzorce: n = k. (binomická věta) Příklady: 1.

DIM PaS Připomenutí poznatků ze střední školy. Faktoriály a kombinační čísla základní vzorce: n = k. (binomická věta) Příklady: 1. DIM PaS. Připomeutí pozatků ze středí školy Faktoriály a kombiačí čísla základí vzorce: ( )( 2 )...2.! =. 0! = =! ( k)! k! ( )...( k ). + = k! = k + + = k + k + 2 2 ( a + b) = a + a b+ a b +... + a b +...

Více

1 Diferenciální počet funkcí jedné reálné proměnné

1 Diferenciální počet funkcí jedné reálné proměnné Spojitost a limity - 7 - Difereciálí počet fukcí jedé reálé proměé Spojitost a limity Defiice -okolím bodu a azýváme iterval ( a a ) Redukovaým -okolím bodu a azýváme sjedoceí itervalů a a a a Spojitost

Více

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost Číselé řady Defiice (Posloupost částečých součtů číselé řady). Nechť (a ) =1 je číselá posloupost. Pro všecha položme s = ak. Posloupost ( s ) azýváme posloupost částečých součtů řady. Defiice (Součet

Více

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem ukce, gra ukce De: Fukcí reálé proměé azýváme pravidlo, které každému reálému číslu D přiřazuje právě jedo reálé číslo y H Toto pravidlo začíme ejčastěji

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více

Lineární programování

Lineární programování Lieárí programováí Adjugovaý problém lieárího programováí V případě řešeí problému lieárího programováí LP ma{ c T : A b 0} získáváme výchozí přípustou jedotkovou bázi u doplňkových proměých a za předpokladu

Více

Iterační metody řešení soustav lineárních rovnic

Iterační metody řešení soustav lineárních rovnic Iteračí metody řešeí soustav lieárích rovic Matice je: diagoálě domiatí právě tehdy, když pozitivě defiití (symetrická matice) právě tehdy, když pro x platí x, Ax a ij Tyto vlastosti budou důležité pro

Více

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC 5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

5. Posloupnosti a řady

5. Posloupnosti a řady Matematická aalýza I předášky M. Málka cvičeí A. Hakové a R. Otáhalové Zimí semestr 2004/05 5. Poslouposti a řady 5.1 Limita a hromadé hodoty. Mějme posloupost x ) prvků Hausdorffova topologického prostoru

Více

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( ) DSM Cv 9 Vytvořující fukce Vytvořující fukcí ekoečé poslouposti a0, a,, a, reálých čísel mííme formálí ekoečou řadu =. f a i= 0 i i Příklady: f = + = + + + + + ) Platí: (biomická věta). To zameá, že fukce

Více

1 Základy Z-transformace. pro aplikace v oblasti

1 Základy Z-transformace. pro aplikace v oblasti Základy Z-trasformace pro aplikace v oblasti číslicového zpracováí sigálů Petr Pollák 9. říja 29 Základy Z-trasformace Teto stručý text slouží k připomeutí základích vlastostí Z-trasformace s jejími aplikacemi

Více

M - Posloupnosti VARIACE

M - Posloupnosti VARIACE M - Poslouposti Autor: Mgr Jromír Juřek - http://wwwjrjurekcz Kopírováí jkékoliv dlší využití výukového mteriálu je povoleo pouze s uvedeím odkzu wwwjrjurekcz VARIACE Teto dokumet byl kompletě vytvoře,

Více

NMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) =

NMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) = NAF61, ZS 17 18 Zápočtová písemá práce VZOR 5. leda 18 Jedotlivé kroky při výpočtech stručě, ale co ejpřesěji odůvoděte. Pokud používáte ějaké tvrzeí, ezapomeňte ověřit splěí předpokladů. Jméo a příjmeí:

Více