Přednáška 01 Úvod + Jednoosá napjatost

Rozměr: px
Začít zobrazení ze stránky:

Download "Přednáška 01 Úvod + Jednoosá napjatost"

Transkript

1 Přednáška 01 Úvod + Jednoosá napjatost Pružnost a pevnost A (PRA) Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St Webové stránky předmětu PRA Domácí úkoly, přednášky, podmínky zápočtu a zkoušky Podmínky pro udělení zápočtu 10 domácích úkolů, včasné odevzdání na webových stránkách a cvičícímu, 2 semestrální testy á 17 bodů, min. 14 bodů Copyright (c) 2015 Vít Šmilauer Czech Technical University in Prague, Faculty of Civil Engineering, Department of Mechanics, Czech Republic Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no FrontCover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License" found at 1

2 PRA Organizace výuky Zkouška Zápočtové testy (34) + příklady (36) + zkouškový test (30) ústní otázka (0-5) = 100 bodů Statistika úspěšnosti PRA Zapsaných Zápočet udělen Úspěšnost získání zápočtu Zkouškových pokusů - účast Známku A-E získalo Pokusů/úspěch Úspěšnost (A-E/zapsaných) A (%) B (%) C (%) D (%) E (%) F na 3. pokus VS Z 2012/2013 VS L 2012/2013 VS Z 2013/2014 VS L 2013/2014 VS Z 2014/2015 VS L 2014/2015 VS Z 2015/2016 VS L 2015/2016 VS Z 2016/2017 VS L 2016/ % % 2.8% 8.5% 21.1% 38.0% 29.6% % % 0.0% 8.1% 11.3% 43.5% 37.1% % % 3.3% 10.4% 29.0% 39.3% 18.0% % % 12.3% 21.1% 26.3% 26.3% 14.0% % % 4.5% 13.5% 20.5% 40.4% 21.2% % % 0.0% 1.8% 7.0% 33.3% 26.3% % % 1.6% 8.6% 25.0% 42.2% 22.7% % % 0.0% 6.0% 18.0% 40.0% 36.0% % % 1.4% 13.9% 18.1% 38.9% 22.2% % % 0.0% 6.1% 24.2% 15.2% 33.3% 3 Studenti, kteří získají z SMA1+PRA+SMA2 známky A,B budou pozváni na exkurzi po zajímavých stavbách v Praze v ~10/

3 Exkurze pro vynikající studenty Studenti se zkouškami A až B ze SMA1, PRA a SMA2 budou pozváni na exkurzi po zajímavých stavebních objektech v Praze Exkurze Strahovský klášter 2015, Malostranská beseda 2016, Churchill residence

4 Co se naučíte v PRA Porozumět/navrhnout/posoudit základní namáhání prvků Určit deformace prvků Jak se vyvarovat podobných problémů Marina, Praha, Vybočení vzpěry, stabilita Česká Třebová, Chybný návrh dolního pasu vazníku, pevnost Trojská lávka, Praha, Koroze ocelových lan, pevnost 4

5 PRA Organizace výuky Sylabus: Analýza prutů tah, tlak, jednoduchý a složený ohyb, vzpěr Elastický a elastoplastický materiál Rovinná napjatost stěny Trojrozměrná napjatost tělesa Smyk za ohybu Volné kroucení Skripta (teorie a příklady): Šejnoha J., Bittnarová J.: Pružnost a pevnost, ES ČVUT, 2004 Bittnarová J. a kol.: Pružnost a pevnost - příklady, ES ČVUT, 2007 (dotisk) Šmiřák S.: Pružnost a plasticita I, PC-DIR, Brno 1996 (dotisk 1999) Jirásek M., Šmilauer V., Zeman J.: Fragmenty skript PRPE, stránky PRA 5

6 Základní pojmy Pružnost (elasticita) je schopnost materiálu deformovat se takovým způsobem, že nedochází k jeho nevratným změnám. Po odtížení nastává jeho návrat do původního stavu. Teorie pružnosti matematicky popisuje mechanické chování pružných těles. Cílem je určit deformaci pružných těles, velikosti vnitřních sil a napětí. Pevnost je schopnost materiálu přenést určité zatížení. Homogenní materiál má stejné vlastnosti ve všech bodech na určité úrovni rozlišení. 6

7 Zatížení Vnější silové Objemové síly [kn/m3] vlastní tíha Povrchové síly Plošné [kn/m2] tlak kapaliny Liniové [kn/m] Bodové [kn] DT Vnější nesilové Teplotní změny Předepsané přemístění podpor 7

8 Model kontinua Kontinuum popisuje prostředí spojitě vyplněné hmotou na určité úrovni rozlišení. Těleso rozdělíme na nekonečně malé objemy, na kterých požadujeme splnění statických, geometrických a fyzikálních rovnic stav napjatosti (1D, 2D, 3D). Vnitřní síly na nekonečně malých objemech = napětí 8

9 Vektor napětí Vnitřní síla F na plošce DA F (F - Newton, 1687) Ft Fn DA Limitním přechodem na kontinuu defnujeme vektor napětí σ σ = lim D A 0 DF DA τt σn n n = t =1 σ=σn n+ τ t (σ - Cauchy, 1822) σn normálové napětí (vždy jen jedna n) DA τ smykové (tečné) napětí (lze rozkládat i do dalších směrů) 9

10 Složky napětí na elementárním kvádru σx Směr normály k ploše Pole napětí τxz Směr osy, se kterou je napětí rovnoběžné σx σy σ = σz τ yz τ zx τ xy {} Pozn.: Napětí v materiálovém bodě je tenzor 2. řádu, který můžeme zapsat do matice. Násobením tensoru (matice) vektorem normály dostaneme právě vektor napětí na orientované plošce. σx σ = τ yx τ zx [ τ xy σy τ zy τ xz 1 σx τ yz 0 = τ xy σz 0 τ xz ]{ } { } 10

11 Model prutu Řešení 3D napjatosti těles je pro technickou praxi příliš složité. Model prutu představuje účinné zjednodušení. Lokální soustava souřadnic y Průřez z Střednice prutu spojuje těžiště všech průřezů Těžiště 3D model - napětí τxz x Prut je prvek, jehož délka výrazně převyšuje ostatní rozměry. Prizmatický prut je prut stálého průřezu po celé jeho délce. 11

12 Ohyb Kroucení 12

13 Aplikace modelu prutu ve stavebním inženýrství [Atrium D Stavební fakulty ČVUT v Praze, 2008] [Skelet budovy PPF Gate na Evropské, Praha, 2006] [Krov historických objektů, 2012] [Lešení, oblouk mostu přes Oparenské údolí, 2009] 13

14 Jednoosý (prostý) tah / tlak Uvažujme homogenní, prismatický prut, který je zatížený pouze na koncích F F x L Protažení DL ε=εx = DL DL L F σ=σ x = A Poměrné protažení (relativní deformace) Normálové napětí (normálové). Předpokládáme rovnoměrné rozdělení napětí po průřezu prutu. N (x)= σ x ( x, y, z)dydz Integrální defnice normálové síly N(x) A 14

15 Geometrická rovnice - přemístění a přetvoření Výchozí stav x původní délka segmentu Dx x u(x+dx) u(x) Dx Du Stav po zatížení Protažení segmentu D x o D u du ( x) d 2 u( x ) 2 D u=d x +u ( x + D x) D x u( x) u( x)+ D x+ (D x ) + u( x) 2 2! du( x ) D u= D x absolutní protažení segmentu D u du ( x) = relativní protažení segmentu Dx du ( x) εx= geometrická rovnice =0 D x 0 15

16 Materiálová (fyzikální) rovnice - Hookeův zákon 1660 anagram ceiiinosssttuv, 1678 Ut tensio, sic vis Pro lineárně pružný materiál je za jednoosého tahu/tlaku napětí úměrné relativnímu prodloužení. Materiálová ε =α D T (fyzikální, konstitutivní) rovnice σ T ε x= σ x =E (εx εt ) T x E +α T D T Prismatický prut s konstatní N: D L= E Youngův modul pružnosti [Pa] αt Součinitel délkové teplotní roztažnosti [K-1] NL + L αt D T EA Ocel σ Mez pevnosti E~210 GPa Materiál E (GPa) Pevnost (MPa) αt (10 K ) Beton, 28 d Ocel ±( ) Dřevo ±(5..50) Plasty ±(0..50) -6 Mez kluzu Mez pružnosti Mez úměrnosti -1 E Velká plastická oblast Tah 1 ε Tlak Lineárně elastický materiál 16

17 Statická rovnice - rovnováha pro segment prutu Vnější síly (zatížení) fx(x+dx/2)dx N(x) x N(x+Dx) Dx Podmínka rovnováhy N ( x)+ N ( x +D x)+ f x ( x +D x / 2) D x=0 dn ( x ) d2 N ( x ) df ( x ) D x 2 N ( x)+ N ( x)+ D x+ (D x ) + + f ( x )+ + D x=0 x 2 2 2! =0 D x 0 [ =0 D x 0 ] dn ( x) + f x ( x )=0 17

18 Tontiho diagram pro prut s vlivem teploty Obecný matematický popis mechanického chování materiálu na kontinuu Přemístění u(x) du ( x ) d EA εt = f x ( x ) [ ( )] (deformace) (silové zatížení) Geometrická rovnice Spojitost (kompatibilita) Statická rovnice Rovnováha du ( x) ε x= Přetvoření εx(x) (relativní deformace) Vnější síly fx(x),f dn ( x) = f x ( x) σ x ( x)=e [ ε x ( x) εt ] Materiálová rovnice Odpor materiálu vůči přetvoření Vnitřní síly Nx(x) Napětí σx(x) 18

19 Příklad sloup zatížený silou a vlastní tíhou fx N 6 kn/m -10 kn σx u εx -41,67 kpa -1,39e-6 +3,788e-5 m + L/2-58 kn b = 0,4 m h = 0,6 m E = 30 GPa g = 25 kn/m3 f x =g A=6 kn/m' dn ( x) = f x N (0)= 10 kn N (x)= 6 x 10 C 1, N (0)= 10 kn + L=8 m x +2,556e-5 m F=10 kn -241,67 kpa -8.06e-6 6 x 10 (kpa) A 6 x 10 ε x (x)= (-) EA 3 x 2 10 x 272 u ( x)= + EA EA σ x (x)= C 2,u (L)=0 19

20 Staticky neurčitý prut určení reakcí N 2.53 MPa 3.13e kn u εx + σx b Ra E=10 GPa α=3e-6 K kn MPa x 0,2 x 0,2 mr -0,3 + 0,3 MN 6.26e-4 m + 0,1 x 0,1 m DT=+20oC L2=1 m L1=2 m Rb Rb Předpoklad -6.27e-4 Deformační (přetvárná) podmínka (po odstranění podpory b) u (3)=0, 2 Rb N N T u( 3)=D L1 +D L2 + D L =0 1( R b 0.3) + + 3e = , ,2 0,0225 R b =0,00057, R b=0,02533 MN 0, ,2747 σ 1= =2,53 MPa, σ = = 6,87 MPa ,1 0,2 20

21 Otázky 1. Kolik je složek napětí v obecném 3D materiálovém bodě? 2. Které tři rovnice používáme při popisu chování prutu a co popisují? 3. Čím se liší přemístění a přetvoření? 4. Defnujte Youngův modul pružnosti. Jaké je jeho hodnota pro ocel? 5. Jakého řádu jsou posuny a přetvoření na prizmatickém prutu zatíženém pouze na okrajích a při zatížení vlastní tíhou? 6. Kolik okrajových podmínek lze defnovat na obecné rovnici pro jednoosou napjatost? 7. Kolik lineárně nezávislých podmínek umíme defnovat na okrajích prutu? Jsou tyto podmínky statické, kinematické, nebo to může být jejich kombinace? 8. Proč se vliv teploty přímo neobjeví v geometrické rovnici a jak se do ní dostane? 9. Umíme z pole posunů jednoznačně určit přetvoření? A naopak? 10. Jsou geometrické rovnice algebraického či diferenciálního tvaru? Vytvořeno 02/2011 v OpenOfce 3.2, Ubuntu 10.04, Vít Šmilauer. Poděkování patří zejména M. Jiráskovi za inspiraci jeho přednáškami. 21

22 Havárie hotelové lávky 1981 Kansas City, Missouri, USA, Hyatt Regency walkway Táhlo ø32 mm, původní zatížení matice P=90 kn

Přednáška 01 PRPE + PPA Organizace výuky

Přednáška 01 PRPE + PPA Organizace výuky Přednáška 01 PRPE + PPA Organizace výuky Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny Út 8.30 9.45 St 14.00 15.45, B286, PRPE (Stav. Inženýrství) + PPA (Arch. a stavitelství) přednáška

Více

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu Přednáška 08 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův ákon Příklad emní tlak v klidu Copyright (c) 2011 Vít Šmilauer Cech Technical University in

Více

Přednáška 08. Obecná trojosá napjatost

Přednáška 08. Obecná trojosá napjatost Přednáška 8 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Objemový modul pružnosti Oedometrický modul pružnosti Hlavní napětí, hlavní deformace

Více

Pružnost a pevnost. zimní semestr 2013/14

Pružnost a pevnost. zimní semestr 2013/14 Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:

Více

Jednoosá tahová zkouška betonářské oceli

Jednoosá tahová zkouška betonářské oceli Přednáška 06 Nepružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram N, M Příklady Copyright

Více

Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy)

Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy) SMA Přednáška Informace o předmětu Energie vnějších a vnitřních sil Virtuální energie vnějších a vnitřních sil Princip virtuálních prací a sil Příklady Copyright (c) Vít Šmilauer Czech Technical University

Více

Platnost Bernoulli Navierovy hypotézy

Platnost Bernoulli Navierovy hypotézy Přednáška 03 Diferenciální rovnice ohybu prutu Platnost Bernoulli Navierovy hypotézy Schwedlerovy věty Rovnováha na segmentech prutu Clebschova metoda integrace Příklady Copyright (c) 011 Vít Šmilauer

Více

Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy)

Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy) SMA Přednáška Informace o předmětu Energie vnějších a vnitřních sil Virtuální energie vnějších a vnitřních sil Princip virtuálních prací a sil Příklady Copyright (c) Vít Šmilauer Czech Technical University

Více

Vícerozměrné úlohy pružnosti

Vícerozměrné úlohy pružnosti Přednáška 07 Rovinná napjatost nosné stěny Rovinná deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro rovinnou napjatost Laméovy rovnice Příklady Copyright (c) 011 Vít Šmilauer Czech Technical

Více

Platnost Bernoulli Navierovy hypotézy

Platnost Bernoulli Navierovy hypotézy Přednáška 0 Platnost Bernoulli Navierovy hypotézy Diferenciální rovnice ohybu prutu Schwedlerovy věty Rovnováha na segmentech prutu Clebschova metoda integrace Vliv teploty na průhyb a křivost prutu Příklady

Více

Jednoosá tahová zkouška betonářské oceli

Jednoosá tahová zkouška betonářské oceli Přednáška 06 epružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram, M Příklady Copyright (c)

Více

Integrální definice vnitřních sil na prutu

Integrální definice vnitřních sil na prutu Přednáška 04 Integrální definice vnitřních sil Ohb prutu v rovinách x, x Šikmý ohb Kombinace normálové síl s ohbem Poloha neutrální os Jádro průřeu Příklad Copright (c) 011 Vít Šmilauer Cech Technical

Více

Princip virtuálních posunutí (obecný princip rovnováhy)

Princip virtuálních posunutí (obecný princip rovnováhy) SMA2 Přednáška 05 Princip virtuálních posunutí Deformační metoda Matice tuhosti prutu pro tah/tlak Matice tuhosti prutu pro ohyb Program EduBeam Příklady Copyright (c) 2012 Vít Šmilauer Czech Technical

Více

Přednáška 10. Kroucení prutů

Přednáška 10. Kroucení prutů Přednáška 1 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem ) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným c) Tenkostěnným uzavřeným ) Ohybové (vázané) kroucení Příklady Copyright

Více

Princip virtuálních posunutí (obecný princip rovnováhy)

Princip virtuálních posunutí (obecný princip rovnováhy) SMA Přednáška 5 Princip virtuálních posunutí Deformační metoda Matice tuhosti prutu pro tahtlak Matice tuhosti prutu pro ohyb Program EduBeam Příklady Copyright (c) Vít Šmilauer Czech Technical University

Více

Přednáška 10. Kroucení prutů

Přednáška 10. Kroucení prutů Přednáška 10 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem 2) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným, střed smyku c) Tenkostěnným uzavřeným 3) Ohybové (vázané) kroucení

Více

Princip virtuálních prací (PVP)

Princip virtuálních prací (PVP) Zatěžujme pružinu o tuhosti k silou F k ū F Princip virtuálních prací (PVP) 1 ū u Energie pružné deformace W ext (skalár) je definována jako součin konstantní síly a posunu. Protože se zde síla během posunu

Více

Kinematická metoda výpočtu reakcí staticky určitých soustav

Kinematická metoda výpočtu reakcí staticky určitých soustav Kinematická metoda výpočtu reakcí staticky určitých soustav 1) Uvolnění jednoho stupně volnosti odpovídající reakci, kterou chceme určit (vytvoření kinematického mechanismu o jednom stupni volnosti). Zavedení

Více

Redukční věta princip

Redukční věta princip SA Přednáška 4 Redukční věta Staticky neurčité příhradové konstrukce Spojité nosníky Uzavřené rámy Oecné vlastnosti staticky neurčitých konstrukcí Copyright (c) Vít Šmilauer Czech Technical University

Více

PRUŽNOST A PLASTICITA

PRUŽNOST A PLASTICITA PRUŽNOST A PLASTICITA Ing. Vladimíra Michalcová LPH 407/1 tel. 59 732 1348 vladimira.michalcova@vsb.cz http://fast10.vsb.cz/michalcova Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená

Více

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu

Více

Vícerozměrné úlohy pružnosti

Vícerozměrné úlohy pružnosti Přednáška 07 Víceroměrné úlohy Rovinná napjatost a deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro úlohu rovinné napjatosti Příklady Copyright (c) 0 Vít Šmilauer Cech Technical University

Více

SMA2 Přednáška 09 Desky

SMA2 Přednáška 09 Desky SMA Přednáška 09 Desk Měrné moment na deskách Diferenciální rovnice tenké izotropní desk Metod řešení diferenciální rovnice desk Přibližné řešení obdélníkových desek Příklad Copright (c) 01 Vít Šmilauer

Více

Rovnoměrně ohýbaný prut

Rovnoměrně ohýbaný prut Přednáška 02 Prostý ohb Hpotéa o achování rovinnosti průřeu Křivost prutu, vtah mei momentem a křivostí Roložení napětí při ohbu Pružný průřeový modul Vliv teplot na křivost Copright (c) 2011 Vít Šmilauer

Více

Přednáška 10. Kroucení prutů

Přednáška 10. Kroucení prutů Přednáška 1 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem ) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným, střed smyku c) Tenkostěnným uzavřeným ) Ohybové (vázané) kroucení

Více

Přednáška 09. Smyk za ohybu

Přednáška 09. Smyk za ohybu Přednáška 09 Smk a ohbu Vnitřní síl na nosníku ve vtahu k napětí Smkové napětí pro obdélníkový průře Smkové napětí pro obecný průře Smkové ochabnutí Svar, šroub, spřahovací trn Příklad Copright (c) 2011

Více

PRUŽNOST A PLASTICITA

PRUŽNOST A PLASTICITA PRUŽNOST A PLASTICITA Ing. Petr Konečný LPH 407/3 tel. 59 732 1384 petr.konecny@vsb.cz http://fast10.vsb.cz/konecny Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená literatura

Více

Rekapitulace princip virtuálních sil pro tah/tlak

Rekapitulace princip virtuálních sil pro tah/tlak SMA Přednáška Doplňková virtuální práce momentů Metody integrace dvou spojitých funkcí Doplňková virtuální práce posouvajících sil Vliv rovnoměrné a nerovnoměrné teploty Formulace principu virtuálních

Více

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze

Více

FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW:

FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA Bakalářské studium, 4. ročník Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz

Více

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti

Více

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající

Více

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady SA2 Přednáška 08 Symetriké konstruke Symetriké a anti(sy)metriké zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady Copyright () 2012 Vít Šmilauer Czeh Tehnial University in Prague,

Více

Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice. Geometrické rovnice

Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice. Geometrické rovnice Přednáška 1 Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice Rozšířený Hookův zákon Geometrické rovnice Ondřej Jiroušek Ústav mechaniky a materiálů Fakulta

Více

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -

Více

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu

Více

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu

Více

Téma 2 Napětí a přetvoření

Téma 2 Napětí a přetvoření Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram

Více

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled

Více

Stupně volnosti a vazby hmotných objektů

Stupně volnosti a vazby hmotných objektů Stupně volnosti a vazby hmotných objektů Reálnou konstrukci či její části idealizujeme výpočetním modelem, který se obvykle skládá z objektů typu hmotný bod model prvku na který působí svazek sil (často

Více

Přednáška 05. Vybočení ideálně přímého prutu Vybočení prutu s počáteční deformací Okrajové podmínky a staticky neurčité případy Příklady

Přednáška 05. Vybočení ideálně přímého prutu Vybočení prutu s počáteční deformací Okrajové podmínky a staticky neurčité případy Příklady Přednáška 05 Vybočení ideálně přímého prutu Vybočení prutu s počáteční deformací Okrajové podmínky a staticky neurčité případy Příklady Copyright (c) 011 Vít Šmilauer Czech Technical University in Prague,

Více

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině

Více

FAKULTA STAVEBNÍ. Telefon: WWW:

FAKULTA STAVEBNÍ. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Více

Složené soustavy v rovině, stupně volnosti

Složené soustavy v rovině, stupně volnosti Složené soustavy v rovině, stupně volnosti Složená soustava vznikne spojením hmotných bodů, tuhých desek a tuhých těles Foto: autor Maloměřický most s mezilehlou mostovkou, Brno, tři paralelní trojkloubové

Více

Rozdíly mezi MKP a MHP, oblasti jejich využití.

Rozdíly mezi MKP a MHP, oblasti jejich využití. Rozdíly mezi, oblasti jejich využití. Obě metody jsou vhodné pro určitou oblast problémů. základě MKP vyžaduje rozdělení těles na vhodný počet prvků, jejichž analýza je poměrně snadná a pro většinu částí

Více

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady SA2 Přednáška 08 Symetriké konstruke Symetriké a anti(sy)metriké zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady Copyright () 2012 Vít Šmilauer Czeh Tehnial University in Prague,

Více

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška 1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební

Více

Pružnost a pevnost. 2. přednáška, 10. října 2016

Pružnost a pevnost. 2. přednáška, 10. října 2016 Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné

Více

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady. Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových

Více

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov 3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je

Více

16. Matematický popis napjatosti

16. Matematický popis napjatosti p16 1 16. Matematický popis napjatosti Napjatost v bodě tělesa jsme definovali jako množinu obecných napětí ve všech řezech, které lze daným bodem tělesa vést. Pro jednoznačný matematický popis napjatosti

Více

4. Napjatost v bodě tělesa

4. Napjatost v bodě tělesa p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.

Více

Vybrané metody řešení soustavy rovnic. Podmínky rovnováhy či ekvivalence vedou často na soustavu rovnic, např.

Vybrané metody řešení soustavy rovnic. Podmínky rovnováhy či ekvivalence vedou často na soustavu rovnic, např. : 4 2 R 1 1 R 2 0,8 R 3 : 8 0 R 1 1 R 2 0,8 R 3 : 2 1 R 1 2 R 2 0 R 3 [2 1 0,8 ] 0 1 0,8 1 2 0 A Vbrané metod řešení soustav rovnic Podmínk rovnováh či ekvivalence vedou často na soustavu rovnic, např.

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze

Více

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak. 00001 Definujte mechanické napětí a uved te jednotky. 00002 Definujte normálové napětí a uved te jednotky. 00003 Definujte tečné (tangenciální, smykové) napětí a uved te jednotky. 00004 Definujte absolutní

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

Nelineární problémy a MKP

Nelineární problémy a MKP Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)

Více

Pružnost a plasticita CD03

Pružnost a plasticita CD03 Pružnost a plasticita CD03 Luděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechaniky tel: 541147368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVOD DO MODELOVÁNÍ V MECHANICE PRUŽNOST A PEVNOST Přednáška č. 5 Prof. Ing. Vladislav Laš. CSc. MECHANIKA PODDAJNÝCH TĚLES Úkolem PP z inženýrského hlediska je navrhnout součásti nebo konstrukce, které

Více

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace

Více

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.

Více

vztažný systém obecné napětí předchozí OBSAH další

vztažný systém obecné napětí předchozí OBSAH další p05 1 5. Deformace těles S deformací jako složkou mechanického pohybu jste se setkali už ve statice. Běžně je chápána jako změna rozměrů a tvaru tělesa. Lze ji popsat změnami vzdáleností různých dvou bodů

Více

Statika 1. Prostý tah & tlak. Prostý smyk. ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Metody posuzování spolehlivosti

Statika 1. Prostý tah & tlak. Prostý smyk. ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Metody posuzování spolehlivosti 6. přednáška Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 19. května 2014 stavebních konstrukcí Vývoj metod pro posuzování stavebních konstrukcí: 1. Historické a empirické

Více

Přibližné řešení úloh mechaniky

Přibližné řešení úloh mechaniky SMA Přednáška 1 Přibližné metody řešení úloh mechaniky Funkcionál energie Metoda konečných prvků Konečněprvkové programy EduBeam Časté problémy při řešení pomocí MKP Příklady Copyright (c) 1 Vít Šmilauer

Více

Cvičení 7 (Matematická teorie pružnosti)

Cvičení 7 (Matematická teorie pružnosti) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:

Více

PRUŽNOST A PEVNOST II

PRUŽNOST A PEVNOST II VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ PRUŽNOST A PEVNOST II Navazující magisterské studium, 1. ročník Alois Materna (přednášky) Jiří Brožovský (cvičení) Kancelář: LP C 303/1

Více

Pružnost a pevnost I

Pružnost a pevnost I Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická

Více

1 Ohyb desek - mindlinovské řešení

1 Ohyb desek - mindlinovské řešení 1 OHYB DESEK - MINDLINOVSKÉ ŘEŠENÍ 1 1 Ohyb desek - mindlinovské řešení Kinematika přemístění Posun w se po tloušťce desky mění málo (vzhledem k hodnotě průhybu) w(x, y, z) = w(x, y) Normály ke střednicové

Více

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury.

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury. ocelových 5. přednáška Vybrané partie z plasticity Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 2. prosince 2015 Pracovní diagram ideálně pružného materiálu ocelových σ

Více

Nejpoužívanější podmínky plasticity

Nejpoužívanější podmínky plasticity Nejpoužívanější podmínky plasticity Materiály bez vnitřního tření (např. kovy): Trescova Misesova Materiály s vnitřním třením (beton, horniny, zeminy): Mohrova-Coulombova, Rankinova Druckerova-Pragerova

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků

Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2014 Obsah Variační principy

Více

Pružnost a plasticita II DD6

Pružnost a plasticita II DD6 Pružnost a plasticita II DD6 Lud ě k Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechaniky tel: 541147368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm

Více

PRUŽNOST A PLASTICITA I

PRUŽNOST A PLASTICITA I Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice

Více

Stavební mechanika 1 - K132SM1 Structural mechanics

Stavební mechanika 1 - K132SM1 Structural mechanics Stavební mechanika 1 - K132SM1 Structural mechanics Přednášející Vít Šmilauer, Ing., Ph.D. katedra Mechaniky vit.smilauer@fsv.cvut.cz místnost D2034, konzultační hodiny Út 10:00 11:30 Literatura Kufner,

Více

Reologické modely technických materiálů při prostém tahu a tlaku

Reologické modely technických materiálů při prostém tahu a tlaku . lekce Reologické modely technických materiálů při prostém tahu a tlaku Obsah. Základní pojmy Vnitřní síly napětí. Základní reologické modely technických materiálů 3.3 Elementární reologické modely creepu

Více

2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3.

2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3. obsah 1 Obsah Zde je uveden přehled jednotlivých kapitol a podkapitol interaktivního učebního textu Pružnost a pevnost. Na tomto CD jsou kapitoly uloženy v samostatných souborech, jejichž název je v rámečku

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

Analýza napjatosti PLASTICITA

Analýza napjatosti PLASTICITA Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném

Více

Nejpoužívanější podmínky plasticity

Nejpoužívanější podmínky plasticity Nejpoužívanější podmínky plasticity Materiály bez vnitřního tření (např. kovy): Trescova Misesova Materiály s vnitřním třením (beton, horniny, zeminy): Mohrova-Coulombova, Rankinova Druckerova-Pragerova

Více

1 Zatížení konstrukcí teplotou

1 Zatížení konstrukcí teplotou 1 ZATÍŽENÍ KONSTRUKCÍ TEPLOTOU 1 1 Zatížení konstrukcí teplotou Časově proměnné nepřímé zatížení Klimatické vlivy, zatížení stavebních konstrukcí požárem Účinky zatížení plynou z rozšířeného Hookeova zákona

Více

Název materiálu: Hydrostatická tlaková síla a hydrostatický tlak

Název materiálu: Hydrostatická tlaková síla a hydrostatický tlak Reg.č. CZ.1.07/1.4.00/21.1720 Příjemce: Základní škola T. G. Masaryka, Hrádek nad Nisou, Komenského 478, okres Liberec, příspěvková organizace Název projektu: Kvalitní podmínky- kvalitní výuka Název materiálu:

Více

MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ

MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTERSKÉHO PROGRAMU STAVEBNÍ INŽENÝRSTVÍ -GEOTECHNIKA A PODZEMNÍ STAVITELSTVÍ MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ

Více

7 Lineární elasticita

7 Lineární elasticita 7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový

Více

Desky. Petr Kabele. Pružnost a pevnost 132PRPE Přednášky. Deska/stěna/skořepina, desky základní předpoklady, proměnné a rovnice

Desky. Petr Kabele. Pružnost a pevnost 132PRPE Přednášky. Deska/stěna/skořepina, desky základní předpoklady, proměnné a rovnice Pružnost a pevnost 13PRPE Přednášk Desk Deska/stěna/skořepina, desk ákladní předpoklad, proměnné a rovnice Petr Kabele České vsoké učení technické v Prae Fakulta stavební Úvod Přemístění, deformaci a napjatost

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

Téma 12, modely podloží

Téma 12, modely podloží Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení

Více

Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)

Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5) Nosné desky Deska je těleso, které má jeden rozměr mnohem menší než rozměry zbývající. Zatížení desky je orientováno výhradně kolmo k její střednicové rovině. 1. Kirchhoffova teorie ohybu tenkých desek

Více

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky. POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1 Mechanické vlastnosti technických materiálů a jejich měření Metody charakterizace nanomateriálů 1 Základní rozdělení vlastností ZMV Přednáška č. 1 Nejobvyklejší dělení vlastností materiálů v technické

Více

Technologie a procesy sušení dřeva

Technologie a procesy sušení dřeva strana 1 Technologie a procesy sušení dřeva 5. Deformačně-napěťové pole ve dřevě během sušení Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v

Více

A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku

A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku 1. Úlohy a cíle teorie plasticity chopnost tuhých těles deformovat se působením vnějších sil a po odnětí těchto sil nabývat původního tvaru a rozměrů se nazývá pružnost. 1.1 Plasticita, pracovní diagram

Více

1 Vedení tepla stacionární úloha

1 Vedení tepla stacionární úloha 1 VEDENÍ TEPLA STACIONÁRNÍ ÚLOHA 1 1 Vedení tepla stacionární úloha Typický představitel transportních jevů Obdobným způsobem možno řešit například Fyzikální jev Neznámá Difuze koncentrace [3] Deformace

Více

Přetváření a porušování materiálů

Přetváření a porušování materiálů Přetváření a porušování materiálů Přetváření a porušování materiálů 1. Viskoelasticita 2. Plasticita 3. Lomová mechanika 4. Mechanika poškození Přetváření a porušování materiálů 2. Plasticita 2.1 Konstitutivní

Více

8. Základy lomové mechaniky. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

8. Základy lomové mechaniky. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík Únava a lomová mechanika Koncentrace napětí nesingulární koncentrátor napětí singulární koncentrátor napětí 1 σ = σ + a r 2 σ max = σ 1 + 2( / ) r 0 ; σ max Nekonečný pás s eliptickým otvorem [Pook 2000]

Více

Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování.

Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Předpjatý beton Přednáška 9 Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Analýza napjatosti namáhání předpjatých prvků Analýza napjatosti namáhání předpjatých prvků Ohybový

Více

Příklad oboustranně vetknutý nosník

Příklad oboustranně vetknutý nosník Příklad oboustranně vetknutý nosník výpočet podle viskoelasticity: 4 L fˆ L w, t J t, t 384I 0 průhyb uprostřed co se změní v případě, fˆ že se zatížení M mění x t v čase? x Lx L H t t0 1 fl ˆ M fˆ 0,

Více

Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění )

Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění ) 1 Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění ) 1. Rozšířený Hookeův zákon pro jednoosou napjatost Základním materiálovým vztahem lineární teorie pružnosti

Více

7. Základní formulace lineární PP

7. Základní formulace lineární PP p07 1 7. Základní formulace lineární PP Podle tvaru závislosti mezi vnějšími silami a deformačně napěťovými parametry tělesa dělíme pružnost a pevnost na lineární a nelineární. Lineární pružnost vyšetřuje

Více