(je okamžitě srozumitelné, jaké konkrétní racionální čísl máme na mysli, napíšemeli 5nebo 2 3
|
|
- Jiří Vávra
- před 6 lety
- Počet zobrazení:
Transkript
1 29./ Počítání v tělesech Uvažujme množinu všech racionálních čísel Q spolu s obvyklými operacemi + a a všimněme si běžných vlastností obou operací(tj. takových, jichž jsme bez rozmýšlení ochotni a schopni používat). Nejprve zaznamenejme takové vlastnosti sčítání: 1. a,b,c Qplatírovnost(a+b)+c=a+(b+c)(tétovlastnostioperace se obvykle říká asociativita), 2. a,b Qplatí,že a+b=b+a(tétovlastnosti+říkámekomutativita), 3. a Qplatí,že a+0=a(tedy0jetzv.neutrálníprvekoperace+), 4. a Qexistujeracionálníčíslo,kteréoznačujeme a,proněž a+( a)=0 (tedy ajeopačnýprvekka). Velmi podobný soubor vlastností splňuje i násobení: 5. a,b,c Q:(a b) c=a (b c)(asociativita), 6. a,b Q: a b=b a(komutativita), 7. a Qplatí,že a 1=a(tedy1jeneutrálníprvekoperace ), 8. a Q\{0}existujeracionálníčíslo,kteréoznačujeme a 1,proněž a a 1 = 1(a 1 jetzv.inverzníprvekka). Doposud jsme neuvedli žádnou vlastnost, která by uvažované operace nějak svazovala. Uvědomme si, že velmi silný požadavek na spolupráci + a na racionálních číslech vyjadřuje pravidlo distributivity: 9. a,b,c Q: a (b+c)=a b+a c. Není těžké nahlédnout, že jsme právě shrnuli důležité vlastnosti uvažovaných operací jako takových a že mnohé další samozřejmé vlastnosti lze z axiomů odvodit.napříkladfakt,že (a b)=( a) b,plynezaxiomů9.a4.azfaktu 0 b=0(konkrétně a b+( a) b=(a+( a)) b=0 b=0)adokonceifakt,že 0 b=0můžeme,jakzáhyukážemezaxiomatikyodvodit.tosamozřejměvpřípadě racionálních čísel, s nimiž jsme zvyklí počítat, na nic nepotřebujeme, ale může to být velmi užitečné v okamžiku, kdy se zamyslíme, zda stejný(či podobný) soubor vlastností nesplňují i jiné páry operací(a tím ani nevylučujeme ani nezaručujeme, že budou mít stejný zápis) na jiných množinách a zda právě vyjmenované vlastnosti nepostačují k tomu, abychom uměli zodpovědět otázky, které si záhy v rámci kurzu lineární algebry položíme. Už ve chvíli, kdy jsme sestavovali soupis vlastností 1. 9., jsme si mohli uvědomit, že jsou samozřejmě splněny pro sčítání a násobení na reálných či komplexních číslech (a že například sčítání a násobení na celých číslech splňuje všechny uvedené axiomy s výjimkou axiomu 8.). Sepišme si tedy tyto vlastnosti ještě jednou, ale uvažujme jepronějakouobecnoumnožinutsdvojicíbinárníchoperací+a : 1. a,b,c T:(a+b)+c=a+(b+c), 2. a,b T: a+b=b+a, 3. existujetakovýprvek0 T,že a Tplatírovnost a+0=a, 4. a Texistuje a T,prokteré a+( a)=0, 5. a,b,c T:(a b) c=a (b c), 6. a,b T: a b=b a, 7. existujetakovýprvek1 T,že a Tplatírovnost a 1=a, 1
2 2 8. a T \ {0}existuje a 1 T,prokteré a a 1 =1(a 1 jetzv.inverzní prvekk). 9. a,b,c T: a (b+c)=a b+a c. V novém souboru axiomů jsme do 3. a 7. axiomu přidali formulaci existuje takový prvek, která byla v případě racionálních, reálných či komplexních čísel zbytečná (0 a 1 tam označují zcela konkrétní čísla a my jen zaznamenali jejich charakteristickévlastnosti),alevechvíli,kdynemámekdispozicinicvícneždvěoperacena abstraktní množině T, je nezbytná. Rovněž si všimněme, že jsme v nové axiomatice převzali značení obvyklé u zmiňovaných konkrétních číselných struktur(kromě symbolůproneutrálníprvkytaké a 1 ),kterévobecnésituacinemákonkrétníobsah (je okamžitě srozumitelné, jaké konkrétní racionální čísl máme na mysli, napíšemeli 5nebo 2 3 1,ovšemvjinýchkonkrétníchpříkladechstruktursplňujícíchdanou axiomatikubudousymboly a 1 teprvevýzvouknáslednémuvýpočtu). Než shrneme naší axiomatiku pod pojem těleso, ujasněme si, co by znamenalo, kdybyobavýjimečnéprvky(tj.0a1)splývaly(tj.0=1).potombyprolibovolné a Tplatilo a=a 1=a 0=0,tedymnožinaTbybylapouzejednoprvková. Pro jednoprvkovou množinu a jednoznačně určené(a zjevně totožné) operace + a by všechny axiomy sice platily, ale počítání by v takovém případě nebylo vůbec zajímavé a při budování vektorových prostorů by připuštění jednoprvkových těles přinášelo potíže. Proto přidáme k axiomatice požadavek, aby množina T byla aspoň dvouprvková(nebo ekvivalentně, aby 0 1) Předpokládejme,žeprooperace+a namnožině T platíaxiomy1. 9.Dokažte,žeprokaždé a,b Tplatí: (a) 0 a=0, (b)( 1) a= a, (c) jestliže a 0ab 0,potom a b 0. (a)nejprveuvážíme,žepodle3.axiomumáme0+0 = 0,podle4.axiomu 0 a+( (0 a))=0,proto 0=0 a+( (0 a))=(0+0) a+( (0 a)). Nyníupravímevýraz(0+0) apomocíaxiomu9.apotépoužijemenejprveaxiom 1aponěmopětaxiomy4a3adostaneme 0=(0+0) a+( (0 a))=0 a+0 a+( (0 a))=0 a+0=0 a. (b) Stačí využít axiom 4, distribotivitu(tj. axiom 9) a právě dokázané pozorování (a), abychom dostali 0=(0) a=(1+( 1)) a=1 a+( 1) a. Protože1 a=apodle7.axiomu,vidíme,že( 1) ajeopravduopačnýprvekk prvku a. (c)budemedokazovatobměnutvrzení.předpokládejme,že a b=0aa 0. Potomexistujedíky8.axiomuinverzníprvek a 1.Díkyaxiomu7,8a5tedymáme b=1 b=(a 1 a) b=a 1 (a b). Nynístačípoužítpředpoklad a b=0atvrzení(a),abychomdostali b=a 1 (a b)=a 1 0=0.
3 3 Nyníukážeme,žedobřeznáméstrukturyQ,RčiCnejsouzdalekajediné,které splňují axiomatiku tělesa. Pomineme na tomto místě velké množstí příkladů těles, která bychom mohli najít jako podtělesa reálných čísel a zaměříme se na tělesa s konečným počtem prvků. 6./7.10. Buďvnásledujícím npřirozenéčísloapoložmez n = {0,1,...,n 1}.Nyní definujmenaz n operace+ n a n předpisem a+ n b=(a+b)modnaa n b= (a b)modn, kde modn znamená zbytek po celočíselném dělení hodnotou n Ověřte, že pro všechna celá a, b a libovolné přirozené n platí, že((a)modn + (b)modn)modn=(a+b)modna((a)modn (b)modn)modn=(a b)modn. Zvolme libovolě celá a, b a přirozené n. Předně si rozmyslíme význam zbytku po celočíselném dělení, tedy, že existují(jednoznačně určená) celá q a r, pro něž (a)modn+qn=aa(b)modn+rn=b.navícpřipomeňme,že0 (a)modn < n a0 (b)modn < n.nynípočítejme:(a+b)modn=((a)modn+qn+(b)modn+ rn)modn =((a)modn+(b)modn+(q+r)n)modn =((a)modn+(b)modn)modn Dokažte,žeZ n spolusoperacemi+ n a nsplňujeaxiomy1. 7.a9. Platnost axiomů 2.,3.,6.,7. plyne okamžitě z definice operací a odpovídající vlastnostiproceláčísla,axiomy1.,5.a9.platídíkypozorováníz1.2.konečně 0=0a a=n aprovšechna a Z n \ {0},protože(a+n a)modn=(n)modn= NajděteinverzníprvkyprovšechnynenulovéprvkytělesaZ 5. Vdanémpřípaděmůžemepostupovatzkusmo.Snadnozjistíme,že1 1 =1(to platíostatněvkaždémtělese),zpozorování,že2 53=1,plyne,že2 1 =3iže 3 1 =2,akonečně4 1 =4,protože4 54= Jsou-li r,s N, r >1,s >1apoložme n=rs.dokažte,žez n spolus operacemi+ n a nnenítěleso. Ukázalijsme,žeZ n splňujeaxiomy1. 7.a9,zřejmětedynemůžeplatit8. axiom.protoževíme,ževkaždémtělesemusípodle1.1platitpro a 0ab 0, že a b 0,stačí,abychomtutopodmínkuvyvrátili.Položíme-li a=rab=s,pak vidíme,že a 0ab 0,ovšem a b=(n)modn=0. Nechť a 0 a 1 jsoudvěpřirozenáčísla.připomeňmeeukleidůvalgoritmus hledánínejvětšíhospolečnéhodělitele(nsd)čísel a 0 a a 1 : Známe-li a i 1 a a i spočteme a i+1 =(a i 1 )mod a i.tedyvíme,žeexistujetakové q i Nže a i 1 = q i a i +a i+1 a a i+1 < a i.algoritmusskončí,když a n+1 =0,potom a n =NSD(a 0,a 1 ). 1.6.NajdětepomocíEuklidovaalgoritmutakováceláčísla xay,aby30x+101y= 1. Nejprve si všimněme, že číslo 101 je prvočíslo, tedy největší společný dělitel čísel 30 a 101 je zcela jistě roven jedné. Euklidův algoritmus na nalezení největšího společnéhodělitelečísel30a101námtedysamozřejměmusídátvýsledek1.přestoho použijeme a budeme věnovat pozornost vztahu předchozích a následujících prvků: a 0 =101, a 1 =30,
4 4 a 2 = =11, a 3 = =8, a 4 =11 8=3, a 5 =8 2 3=2, a 6 =3 2=1=NSD(101,30). Vidíme,žekaždé a i+1 jeceločíselnoulineárníkombinacíprvků a i a a i 1,budemeli postupně dosazovat předchozí vyjádření do následujících výrazů, dostaneme každé a i+1 jakoceločíselnoulineárníkombinacíprvků a 0 a a 1 : a 2 =11= , a 3 =8= =30 2 ( )= , a 4 =3=11 8=( ) ( )= , a 5 =2=8 2 3=( ) 2 ( )= , a 6 =1=3 2=( ) ( )= Zjistilijsme,že x= 37ay= Najděteinverzníprvekkprvku30vtěleseZ 101. Potřebujemenajítčíslo x Z 101,kterébyřešilorovnici(30 x)mod101=1,což můžemereformulovattak,žehledámecelá xay,znichž xmáležetvz 101,aby 30x+101y=1.Podobnouúlohuužjsmeřešilivpředchozímpříkladu,nynísistačí uvědomit, že nalezené x, které neleží v požadovaném intervalu můžeme posunout pomocí vhodného násobku čísla 101. Dostaneme tedy zbytek po celočíselném dělení číslem101,tj.30 1 =( 37)mod101=101 37=64,protože 1 = = =(11 30) 101+(101 37) 30. Tedyjsmenašlidalšíapronászajímavějšířešenířešení1= rovnice z / NajdětevtěleseZ 101 prvky63 1,20 1,2 1,(20 63) 1 avyřeštenadním rovnici x=7 U prvních dvou hodnot postupujme stejně jako v předchozích úvahách, tedy využijeme Euklidův algoritmus: 38=101 63, 25=63 38= , 13=38 25= , 12=25 13= , 1=13 12= Zjistilijsme,že63 1 =( 8)mod101=93. PodobněužvprvnímkrokuEuklidovaalgoritmuzjistíme,že1= , tedy20 1 =( 5)mod101=96 Přiurčováníhodnoty2 1 můžemeudělatjednoduchouobecnouúvahuproz p, kde pjelichéprvočíslo,že p+1 2 Z p aže(2 p+1 2 )modp=(p+1)modp=1,tedy 2 1 = =51vtěleseZ 101. Uvážíme-li,žezaxiomatikytělesaplyne(a b) 1 = a 1 b 1 a( a) ( b)=a bpro všechny jeho prvky a a b(zkuste podrobně dokázat!), a využijeme-li vypočítaných hodnot, pak ( ) 1 = =( 5) 101 ( 8)=40.
5 5 Protože obvyklý způsob upravovaní rovnic je ekvivalentní(tj. vratný) i pro rovnicenadobecnýmtělesem,zjišťujeme,žehledané xjetvaru x= = = Dokažte,pomocíEuklidovaalgoritmu,žeZ p spolusoperacemi+ p a psplňuje axiom 8. Uvažujeme stejným způsobem jako v předchozích úlohách. Zvolme libovolně nenulové a Z p.protože pjeprvočíslo,jsou aapnesoudělná,tedypomocíeuklidova algoritmulzenajítcelá xay,proněž ax+py=nsd(a,p)=1.nynístačívzít a 1 =(x)modp. NadálebudemesčítáníanásobenívtěleseZ p psátbezindexu p (tj.jen+a ) SpočítejtevtělesechZ 5 az 7 hodnotuvýrazu( 2) 1 ((2+4) (4+4) 1 )+3. PostupujemepodledefiniceoperacínaZ 5 iz 7,nejprvepočítejmenadZ 5 : ( 2) 1 ((2+4) (4+4) 1 )+3=3 1 (1 3 1 )+3=2 2+3=2. PodobnědostávámenadZ 7 : ( 2) 1 ((2+4) (4+4) 1 )+3=5 1 (6 1 1 )+3=3 6+3= SpočítejtevtělesekomplexníchčíselChodnotuvýrazů(3+i) 1 a(1 2i) 1 (2+3i). Obvyklým způsobem rozšíříme zlomky komplexně sdruženou hodnotou a dostaneme (3+i) 1 = 1 3+i = 1 3 i 3+i 3 i = i a (1 2i) 1 (2+3i)= 2+3i 1 2i =2+3i 1 2i 1+2i 1+2i = i Najděte(nějaká) reálná rešení soustavy rovnic: x + 2y + z = 1 2x + y + 2z = 2 Nejprve si soustavu zapíšeme do matice a poté ji pomocí přičtení vhodného násobku jedné rovnice k rovnici druhé upravíme(na střední škole se tento způsob upravování obvykle nazývá sčítací metoda ): ( ) ( ) , 4 Druhý řádek upravené matice, který odpovídá rovnici 5y + 4z = 4, jsme dostali přičtenímdvojnásobkurovnice x+2y+ z=1krovnici 2x+y+2z=2(tedy přičtenímdvojnásobkuřádku ( ) křádku ( ) ).Snadnosiuvědomíme, že dosadíme-li za z libovolnou hodnotu, pak jednoznačně dopočítáme y a x.položíme-linapříklad z=0,pakzrovnice5y+4 0=4dostáváme,že y= 4 5 a zrovnice x =1spočítáme,že x= 3 5.Našlijsmetedyjednořešenídané
6 6 soustavy,kterémůžemezapsatdotrojice(x,y,z)=( 3 5,4 5,0).Podobnějsmejiné řešenímohlidostatpovolbě z=1ajednoznačnémdopočítání y= x=0. Na tomto místě si uvědomíme geometrický význam řešení dané soustavy: každou zrovnicchápemejakorovinuvr 3 (tvořenouvšemitrojicemi(x,y,z),kterérovnici řeší) a množina řešení celé soustavy je průnik těchto dvou rovin. Všimneme-li si navíc, že roviny zjevně nejsou rovnoběžné, musí množinu všech řešení tvořit přímka, jejížjedenbod( 3 5,4 5,0)užjsmenašli.Nyníbychommohlinajítsměrtétopřímky a najít tak dokonce všechna reálná řešení. Tento úkol ovšem vyřešíme až později negeometricky pro všechna tělesa Najděte(nějaká) racionální rešení soustavy rovnic z úlohy Stačí si rozmyslet, že z množiny řešení předchozí úlohy musíme vybrat ta, která jsouvevšechsložkáchracionální.zřejměmajířešení( 3 5,4 5,0)(0,0,1)všechny složky racionální, tedy jde o hledaná racionální řešení Najděterešenísoustavyrovniczúlohy1.12nadtělesemZ 5. Budeme postupovat stejným formalizmem jako v úloze Snadno si uvědomíme, že stačí postupovat obdobnými úpravami, kterými docílíme maticového zápisu v požadovaném( odstupňovaném či schodišťovém ) tvaru: ( ) ( ) ( ) = , všimněme si, že k témuž výsledku dospějeme, když finální matici z 1.12 jednoduše ve všech složkách upravíme modulo 55: ( ( ) )mod5= , 4 Nyní nejprve opět najdeme jedno řešení nehomogenní soustavy. Z druhé rovnice nutněplyne,že z=1adosadíme-litentokrát y=0dopočítámezprvnírovnice x = 0.Tedyiřešení(0,0,1)úlohy1.12bvyhovujeinyní(vobecnémpřípadě bychom ho museli opět upravit modulo 5, tentokrát taková úprava ovšem řešení nezmění).naopakracionální(areálné)řešení( 3 5,4 5,0)nelze přetlumočit do tělesaz 5,protožezdenelzevydělitčíslem5mod5=0(tj.přesnějiřečenonajítk němu inverzní prvek) Najdětepostupněnadtělesyracionálníchčísel,Z 5,Z 7 az 11 řešenísoustavy x + 2y = 3 rovnic: 3x + 2y = 2 Nejprve otázku pomocí maticového zápisu vyřešíme nad tělesem Q, tentokrát si navíc uvědomíme, že maticově umíme zapsat nalezená řešení: ( ) ( ) ( ) ( ) Zjistilijsme,že(x,y)=( 1 2,7 4 )jejedinéracionálnířešenísoustavy. Nynípodobnějakovpředchozíúlozeuvážíme,žejsmepřiúpraváchnadQnikde ( ) nedělili5,7ani11aprotostačímatici jen upravit modulo příslušné 4 prvočíslo.
7 7 KonkrétněnadtělesemZ 5 je2 1 = 3,4 1 = 4,proto( 1 2 )mod5 = ( )mod5=(4 3)mod5=2a( 7 4 )mod5=(7 4 1 )mod5=(2 4)mod5=3. MaticovězapsánonadZ 5 toznamená,že ( ) ( ) , 3 (x,y)=(2,3)jejedinéřešenísoustavynadtělesemz 5.PodobněuvážímenadZ 7, že =6 4=3a7 4 1 =0,tedynadtímtotělesem ( ) ( ) a(x,y)=(3,0).konečněnadtělesemz 11 stejnouúvahoudostáváme = 10 6=5a7 4 1 =7 3=10,aprotonadtělesemZ 11 dostávámejednoznačné řešení(x,y)=(5,10),jemužodpovídámaticovýzápis ( ) ( ) Další úlohy (1) Dokažte,žeopačnýiinverzníprvekjsoukekaždémuprvkuvtěleseurčeny jednoznačně. (2) Dokažte, že neutrání prvky obou operací v tělese jsou určeny jednoznačně. (3) Dokažte,žeprovšechnyprvky a, bobecnéhotělesaplatí (a b)= a b= a ( b), (a) 1 =( a) 1,(a b) 1 = a 1 b 1 a( a) ( b)=a b. (4) Buď Ttěleso anechť a,b T.Jestliže a a=b b,dokažtezaxiomatiky tělesa,ženutně a=bnebo a= b. (5) SpočítejtevtěleseZ 83 hodnoty15 1 a( ) 1. (6) VyřeštevtěleseZ 97 rovnici7 x+3= (7) NajdětenadtělesyR,Q,C,Z 3,Z 5 az 7 rešenísoustavyrovnic: 2x y + 2z = 1 x + y z = 1 (8) Najděte všechna komplexní řešení soustavy rovnic: ix 2y + z = 1 i x + (1+i)y (2+3i)z = i (9) NajdětenadtělesyZ 5 az 7 aspoňtřiřešenísoustavyrovnic: x + y + z + u = 3 x + 2y + 3z + 4u = 0 x + 4y = 0
modp znamená zbytek po celočíselném dělení hodnotou p 1.1. Ověřte, že pro všechna celá a, b a libovolné přirozené n platí, že((a)modn +
30.9. 1. Tělesa Uvažujme například množinu všech racionálních čísel Q spolu s obvyklými operacemi + a a všimněme si běžných vlastností obou operací(tj. takových, jichž jsme bez rozmýšlení ochotni a schopni
Konečně,všechnyaspoňdvouprvkovémnožinyužzřejměgenerujíceléZ 5.Zjistili jsme,žealgebra(z 5,+)obsahujeprávědvěpodalgebry {0}aZ 5.
1. Algebry a podalgebry 4.10. Buď npřirozenéčísloapoložmez n = {0,1,...,n 1}.DefinujmenaZ n binární operace+a předpisem a+b=(a+b)modnaa b=(a b)modn,kdevlevovždy uvažujeme standardní sčítání a násobení
V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.
nad obecným tělesem a lineární kombinace Odpřednesenou látku naleznete v kapitolách 1.1 1.4 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: A7B01LAG 1.10.2015: 1/20 nad obecným tělesem Co
Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru
2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních
ANALYTICKÁ GEOMETRIE V ROVINĚ
ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii
1 Řešení soustav lineárních rovnic
1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty
ALGEBRA. Téma 4: Grupy, okruhy a pole
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,
Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
pro každé i. Proto je takových čísel m právě N ai 1 +. k k p
KOMENTÁŘE ÚLOH 43. ROČNÍKU MO, KATEGORIE A 1. Přirozené číslo m > 1 nazveme k násobným dělitelem přirozeného čísla n, pokud platí rovnost n = m k q, kde q je celé číslo, které není násobkem čísla m. Určete,
6 Samodružné body a směry afinity
6 Samodružné body a směry afinity Samodružnými body a směry zobrazení rozumíme body a směry, které se v zobrazují samy na sebe. Například otočení R(S má jediný samodružný bod, střed S, anemá žádný samodružný
Lineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
Operace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty.
Kapitola 4 Tělesa Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty. Všechna čísla byla reálná, vektory měly reálné souřadnice, matice měly reálné prvky. Také řešení soustav
Rovnice přímky vypsané příklady. Parametrické vyjádření přímky
Rovnice přímky vypsané příklady Zdroj: Vše kromě příkladu 3.4: http://kdm.karlin.mff.cuni.cz/diplomky/jan_koncel/rovina.php?kapitola=parametrickevyjadre ni Příklady 3.5 a 3.7-1 a 3: http://kdm.karlin.mff.cuni.cz/diplomky/jan_koncel/rovina.php?kapitola=obecnarovnice
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
1 Soustavy lineárních rovnic
1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem
Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1
Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném
Operace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
Úvod do lineární algebry
Úvod do lineární algebry Tomáš Matoušek Tělesa, vektorové prostory Definice. Tělesem nazveme množinu M, na které jsou definována zobrazení, : M M M(binární operace) splňující následující axiomy: (1) (
KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,
5. Lokální, vázané a globální extrémy
5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,
označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,
Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání
pochopení celé kapitoly je myšlenka, že těleso S lze považovat za vektorový prostor
NOVý TEXT O TěLESOVýCH ROZ LÍřENÍCH DAVID STANOVSKÝ 1. Algebraické prvky a rozšíření konečného stupně 1.1. Rozšíření jako vektorový prostor. Buď T S rozšíření těles. Klíčem k pochopení celé kapitoly je
VĚTY Z LINEÁRNÍ ALGEBRY
VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru
x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.
1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné
1 Lineární prostory a podprostory
Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C
Věta o dělení polynomů se zbytkem
Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)
Pomocný text. Polynomy
Pomocný text Polynomy Tato série bude o polynomech a to zejména o polynomech jedné proměnné (pokud nebude uvedeno explicitně, že jde o polynom více proměnných). Formálně je někdy polynom jedné proměnné
Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic
Lineární funkce, rovnice a nerovnice Soustavy lineárních rovnic motivace Využívají se napřklad při analytickém vyšetřování vzájemné polohy dvou přímek v rovině a prostoru. Při řešení některých slovních
příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.
Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl
Teorie grup 1 Příklad axiomatické teorie
Teorie grup 1 Příklad axiomatické teorie Alena Šolcová 1 Binární operace Binary operation Binární operací na neprázdné množině A rozumíme každé zobrazení kartézského součinu A x A do A. Multiplikativní
6 Lineární geometrie. 6.1 Lineární variety
6 Lineární geometrie Motivace. Pojem lineární varieta, který budeme v této kapitole studovat z nejrůznějších úhlů pohledu, není žádnou umělou konstrukcí. Příkladem lineární variety je totiž množina řešení
Lineární algebra Kapitola 1 - Základní matematické pojmy
Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,
1 Analytická geometrie
1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace
Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z
Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.
[1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),
Lingebraické kapitolky - Počítání s maticemi
Lingebraické kapitolky - Počítání s maticemi Jaroslav Horáček KAM MFF UK 20 Rozehřívačka: Definice sčítání dvou matic a násobení matice skalárem, transpozice Řešení: (A + B ij A ij + B ij (αa ij α(a ij
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
Úvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
7. SOUSTAVY LINEÁRNÍCH A KVADRATICKÝCH ROVNIC
7. SOUSTAVY LINEÁRNÍCH A KVADRATICKÝCH ROVNIC 7.1. Řeš pro reálné neznámé a y soustavu lineárních rovnic: = 5 = 1 = 5 / 5 = 1 / 3 1 15y = 15 1+ 15y = 3 31 = 155 = 5 {[ ] K = 5; 5 = 5 / 7 = 1 / 14 1y =
Determinant matice řádu 5 budeme počítat opakovaným použitím rozvoje determinantu podle vybraného řádku nebo sloupce. Aby byl náš výpočet
Řešené příklady z lineární algebry - část 2 Příklad 2.: Určete determinant matice A: A = 4 4. Řešení: Determinant matice řádu budeme počítat opakovaným použitím rozvoje determinantu podle vybraného řádku
55. ročník matematické olympiády
. ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě
Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30
Počítání modulo polynom 3. přednáška z algebraického kódování Alena Gollová, TIK Počítání modulo polynom 1/30 Obsah 1 Polynomy nad Zp Okruh Zp[x] a věta o dělení se zbytkem 2 Kongruence modulo polynom,
Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR
DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y
Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.
4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,
Soustavy linea rnı ch rovnic
[1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.
Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,
E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška sedmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Čísla a číselné obory 2 Princip indukce 3 Vybrané
IB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
Polynomy. Vlasnosti reálných čísel: Polynom v matematice můžeme chápat dvojím způsobem. 5. (komutativitaoperace )provšechnačísla a, b Rplatí
Polynomy Vlasnosti reálných čísel: 1 (komutativitaoperace+)provšechnačísla a, b Rplatí, a+b=b+a 2 (asociativitaoperace+)provšechnačísla a, b, c Rplatí a+(b+c)=(a+b)+c, 3 (existencenulovéhoprvku)provšechnačísla
Historie matematiky a informatiky Cvičení 2
Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n
[1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem
3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům
RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny K nejvýznamnějším patří množina reálných čísel, obsahující jako podmnožiny množiny přirozených, celých, racionálních a iracionálních
Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty
Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
Úlohy krajského kola kategorie A
64. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dán trojúhelník ABC s tupým úhlem při vrcholu C. Osa o 1 úsečky AC protíná stranu AB v bodě K, osa o 2 úsečky BC protíná stranu AB
fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
11. Skalární součin a ortogonalita p. 1/16
11. Skalární součin a ortogonalita 11. Skalární součin a ortogonalita p. 1/16 11. Skalární součin a ortogonalita p. 2/16 Skalární součin a ortogonalita 1. Definice skalárního součinu 2. Norma vektoru 3.
10. Vektorové podprostory
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Definice. Bud V vektorový prostor nad polem P. Podmnožina U V se nazývá podprostor,
9 Kolmost vektorových podprostorů
9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.
grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa
grupa komutativní podgrupa těleso generovaná prvkem, cyklická, řád prvku Malá Fermatova věta konečné těleso charakteristika tělesa polynomy ireducibilní prvky, primitivní prvky definice: G, je grupa kde
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
19 Eukleidovský bodový prostor
19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L
Polynomy v moderní algebře
Polynomy v moderní algebře 2. kapitola. Neutrální a inverzní prvek. Grupa In: Karel Hruša (author): Polynomy v moderní algebře. (Czech). Praha: Mladá fronta, 1970. pp. 15 28. Persistent URL: http://dml.cz/dmlcz/403713
2. V Q[x] dělte se zbytkem polynomy:
Sbírka příkladů z polynomů pro předmět Cvičení z algebry I Dělení v okruzích polynomů 1. V Q[x] dělte se zbytkem polynomy a) (x 5 + x 3 2x + 1) : ( x 3 + x + 1), b) (3x 3 + 10x 2 + 2x 3) : (5x 2 + 25x
K2 7 E=. 2 1 Snadno zjistíme, že všechny nenulové násobky vektoru( 2, 1) jsou vlastními vektorymatice[ϕ]
. Vlastní čísla a vlastní vektory.. Uvažujme endomorfismus ϕ na reálném vektorovém prostoru R s maticí [ϕ] K = vzhledemkekanonickébázi K 6. (a) Najděte všechna vlastní čísla a všechny jim příslušné vlastní
8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice
9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky
Základy matematiky pro FEK
Základy matematiky pro FEK 3. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 21 Co nás dneska čeká... Co je to soustava lineárních
Okruhy, podokruhy, obor integrity, těleso, homomorfismus. 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): f) M = { a
Sbírka příkladů z okruhů a polynomů Algebra I Okruhy, podokruhy, obor integrity, těleso, homomorfismus 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): a) M = {a + i a R}, b) M = {a + i
Úvodní informace Soustavy lineárních rovnic. 12. února 2018
Úvodní informace Soustavy lineárních rovnic Přednáška první 12. února 2018 Obsah 1 Úvodní informace 2 Soustavy lineárních rovnic 3 Matice Frobeniova věta Úvodní informace Olga Majlingová : Na Okraji, místnost
LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2
6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje
Algebraické výrazy - řešené úlohy
Algebraické výrazy - řešené úlohy Úloha č. 1 Určete jeho hodnotu pro =. Určete, pro kterou hodnotu proměnné je výraz roven nule. Za proměnnou dosadíme: = a vypočteme hodnotu výrazu. Nejprve zapíšeme rovnost,
Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...
Polynomy Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Základní vlastnosti polynomů 2 1.1 Teorie........................................... 2 1.1.1 Zavedení polynomů................................
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
Soustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.
KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení
Střípky z LA Letem světem algebry
Střípky z LA Letem světem algebry Jaroslav Horáček Pojem Algebra Laicky řečeno algebra je struktura na nějaké množině, společně s nějakými operacemi, které splňují určité vlastnosti. Případy algebry lineární
y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy
36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem
Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY
Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY VYBRANÉ KAPITOLY Z ELEMENTÁRNÍ ALGEBRY DIPLOMOVÁ PRÁCE Bc. Jiří KRYČ Učitelství pro 2. stupeň ZŠ, obor
HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27
Řetězové zlomky HL Academy - Chata Lopata 2012 13.2. 18.2.2012 Emu (Brkos 2012) Řetězové zlomky 13.2. 18.2.2012 1 / 27 Obsah 1 Úvod 2 Základní pojmy 3 Konečné řetězové zlomky Sblížené zlomky Euklidův algoritmus
Úlohy klauzurní části školního kola kategorie A
6. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A. V oboru reálných čísel řešte soustavu rovnic y + 3x = 4x 3, x + 3y = 4y 3. 2. V rovině uvažujme lichoběžník ABCD se základnami
Afinní transformace Stručnější verze
[1] Afinní transformace Stručnější verze je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím body a vektory: afinní prostor využití například v počítačové grafice a)
Těleso racionálních funkcí
Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso
[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon).
Grupy, tělesa grupa: množina s jednou rozumnou operací příklady grup, vlastnosti těleso: množina se dvěma rozumnými operacemi příklady těles, vlastnosti, charakteristika tělesa lineární prostor nad tělesem