Kvadratické rovnice a jejich užití
|
|
- Martin Kopecký
- před 8 lety
- Počet zobrazení:
Transkript
1 Kvadraické rovnice a jejich užií Určeno udenům ředního vzdělávání mauriní zkouškou, první ročník, okruh Rovnice a nerovnice Pracovní li vyvořil: Mgr. Helena Korejková Období vyvoření VM: proinec 2012 Klíčová lova: řešení kvadraických rovnic, dikriminan, aplikace eorie ve lovních úlohách Maeriál je určen k procvičení probíraného učiva, pro práci pod vedením učiele, amoanou práci v hodině nebo k domácí přípravě. Práci pracovním liem předchází výklad vyučujícího. Kvadraická rovnice je maemaický výraz, kerý je možno ekvivalenními úpravami převé na var ax 2 +bx+c=0, kde a,b,c jou reálná číla, a 0, x je neznámá Vzorec pro výpoče dikriminanu: D = O čem dikriminan rozhoduje? Vypočěe x z rovnic: x = 9 x 2 = 25 x = c x = 0 Př.1: Přiřaďe právné dikriminany k daným rovnicím: 1) x 2 3x 4 = 0 A) D = 4 2) 12 7x + x 2 = 0 B) D = 25 3) x 2 2x = 0 C) D = 1 1., 2., 3. Vzorec pro výpoče kořenů kvadraické rovnice x 1,2 = Př.2: Řeše v R rovnici 2x x + 9 = 0 Auorem maeriálu a všech jeho čáí, není-li uvedeno jinak, je Mgr.Helena Korejková. Doupné z Meodického porálu financovaného z ESF a áního rozpoču ČR. Provozováno Sřední školou echnickou a řemelnou Nový Bydžov.
2 Př.3: 3 x Řeše v R rovnici 1 x 2 Neúplné kvadraické rovnice ryze kvadraické např. x 2 = 64 bez aboluního členu např. 5x 2 125x = 0 Př.4: Řeše v R bez použií dikriminanu rovnice: a) x 2 1 = 0 b) x = 0 c) 6x x = 0 Př.5: Zvěšíme li ranu čverce o 3 dm, zdevíináobí e jeho obah. Určee délku rany ohoo čverce. Př.6: Na rae dlouhé km léají leadla dvou ypů. Jeden yp doahuje rychloi o 100 km/h vyšší a jeho leový ča je edy o hodinu kraší. Vypočěe rychloi obou ypů leadel. Návod: 1 = 2 = km v 1 = v vzorec v = Př.7: Dva závodníci vyběhli oučaně z mía A ejným měrem. První závodník má rychlo o 0,2 m/ věší než druhý. První závodník doběhl do cíle vzdáleného merů o 20 ekund dříve než druhý. Určee rychloi obou závodníků. Návod: proveďe ejný rozbor jako u předcházející úlohy. Auorem maeriálu a všech jeho čáí, není-li uvedeno jinak, je Mgr.Helena Korejková. Doupné z Meodického porálu financovaného z ESF a áního rozpoču ČR. Provozováno Sřední školou echnickou a řemelnou Nový Bydžov.
3 Kvadraické rovnice a jejich užií - řešení Kvadraická rovnice je maemaický výraz, kerý je možno ekvivalenními úpravami převé na var ax 2 +bx+c=0, kde a,b,c jou reálná číla, a 0, x je neznámá Vzorec pro výpoče dikriminanu: D = b 2 4ac O čem dikriminan rozhoduje? Rozhoduje o poču kořenů dané rovnice. Vypočěe x z rovnic: x = 9 x 1,2 = 3 x 2 = 25 x 1,2 = 5 x = c x 1,2 = c x = 0 x = 0 Př.1: Přiřaďe právné dikriminany k daným rovnicím: 1) x 2 3x 4 = 0 A) D = 4 2) 12 7x + x 2 = 0 B) D = 25 3) x 2 2x = 0 C) D = 1 1 B, 2 C, 3 A Vzorec pro výpoče kořenů kvadraické rovnice x 1,2 = Př.2: Řeše v R rovnici 2x x + 9 = 0 D = 49 x 1 = 1, x 2 = 4,5 Př.3: b 2 a D 3 x Řeše v R rovnici 1 x 2 /.(x+8)(x-2) podm. x -8, x 2 x 2 16 = 0 x 1,2 = 4 Auorem maeriálu a všech jeho čáí, není-li uvedeno jinak, je Mgr.Helena Korejková. Doupné z Meodického porálu financovaného z ESF a áního rozpoču ČR. Provozováno Sřední školou echnickou a řemelnou Nový Bydžov.
4 Př.4: Řeše v R bez použií dikriminanu rovnice: a) x 2 1 = 0 x 1,2 = 1 b) x = 0 x = 16 rovnice nemá řešení v R c) 6x x = 0 x 1 = 0, x 2 = 2 Př.5: Zvěšíme li ranu čverce o 3 dm, zdevíináobí e jeho obah. Určee délku rany ohoo čverce. S = a 2, zvěšíme ranu o 3 dm na (a+3), pak S = (a+3) 2 9a 2 = (a+3) 2 8a 2 6a 9 = 0 D = 81, x 1 = 1,5 dm, x 2 = Př.6: 6 8 nevyhovuje délka rany čverce je 1,5 dm Na rae dlouhé km léají leadla dvou ypů. Jeden yp doahuje rychloi o 100 km/h vyšší a jeho leový ča je edy o hodinu kraší. Vypočěe rychloi obou ypů leadel. Návod: 1 = 2 = km v 1 = v vzorec v = = 0 D = , 1 = 10 hod, 2 = -9 nevyhovuje Ča = 10 hod, 1.leadlo má ča o 1 hod kraší, edy 9 hod. Rychloi 1.leadlo v = = 1000 km/h, 2.leadlo v = 9 10 = 900 km/h Auorem maeriálu a všech jeho čáí, není-li uvedeno jinak, je Mgr.Helena Korejková. Doupné z Meodického porálu financovaného z ESF a áního rozpoču ČR. Provozováno Sřední školou echnickou a řemelnou Nový Bydžov.
5 Př.7: Dva závodníci vyběhli oučaně z mía A ejným měrem. První závodník má rychlo o 0,2 m/ věší než druhý. První závodník doběhl do cíle vzdáleného merů o 20 ekund dříve než druhý.určee rychloi obou závodníků. Návod: 1 = 2 = m v 1 = v 2 + 0,2 vzorec v = 20 0,2 0, = 0 D = = 320, 2 = -300 nevyhovuje, ča = 320 = 5 min 20, první závodník má ča o 20 kraší, edy 300 Rychloi 1.závodník v = = 3,2 m/, 2.závodník = 3 m/ Použiá lieraura: Sbírka úloh z maemaiky pro SOU a SOŠ, RNDr.Hudcová, Mgr.Kubičíková, Promeheu,pol..r.o., 2008 Sbírka úloh z maemaiky pro SŠ VÝRAZY, ROVNICE, NEROVNICE A JEJICH SOUSTAVY, F.Janeček, Proméheu pol..r.o., 2002 Sbírka úloh z maemaiky, ROVNICE A NEROVNICE I., David Zámek, ARCTUROS 1992 Auorem maeriálu a všech jeho čáí, není-li uvedeno jinak, je Mgr.Helena Korejková. Doupné z Meodického porálu financovaného z ESF a áního rozpoču ČR. Provozováno Sřední školou echnickou a řemelnou Nový Bydžov.
Rovnice s neznámou ve jmenovateli a jejich užití
Rovnice s neznámou ve jmenovateli a jejich užití Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, okruh Rovnice a nerovnice Pracovní list vytvořil: Mgr. Helena Korejtková Období
Lineární rovnice o jedné neznámé a jejich užití
Lineární rovnice o jedné neznámé a jejich užití Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, okruh Rovnice a nerovnice Pracovní list vytvořil: Mgr. Helena Korejtková Období
Rovnice s absolutní hodnotou
Rovnice s absolutní hodnotou Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, okruh Rovnice a nerovnice Pracovní list vytvořil: Mgr. Helena Korejtková Období vytvoření VM: prosinec
Rovnice s neznámou pod odmocninou a jejich užití
Rovnice s neznámou pod odmocninou a jejich užití Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, okruh Rovnice a nerovnice Pracovní list vytvořil: Mgr. Helena Korejtková Období
FINANČNÍ MATEMATIKA- ÚVĚRY
Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-
Slovní úlohy na pohyb
VY_32_INOVACE_M-Ar 8.,9.09 Sloní úlohy na pohyb Anoace: Praconí li ukazuje žákoi poup řešení loních úloh na pohyb. Jou zde rozebrány ypy, keré mohou naa. Poupy řešení zoroých příkladů jou žákům promínuy
SLOVNÍ ÚLOHY VEDOUCÍ K ŘEŠENÍ KVADRATICKÝCH ROVNIC
Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ..0/.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol SLOVNÍ ÚLOHY VEDOUCÍ
x udává hodnotu směrnice tečny grafu
Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je
NUMP403 (Pravděpodobnost a Matematická statistika II) 1. Na autě jsou prováděny dvě nezávislé opravy a obě opravy budou hotovy do jedné hodiny.
Spojiá rozdělení I.. Na auě jou prováděny dvě nezávilé opravy a obě opravy budou hoovy do jedné hodiny. Předpokládejme, že obě opravy jou v akové fázi, že rozdělení čau do ukončení konkréní opravy je rovnoměrné.
MATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická
Soustavy lineárních a kvadratických rovnic o dvou neznámých
Soustavy lineárních a kvadratických rovnic o dvou neznámých obsah 1.a) x + y = 5 x 2 + y 2 = 13 3 b) x - y = 7 x 2 + y 2 = 65 5 c) x - y = 3 x 2 + y 2 = 5 6 3. a) x + 2y = 9 x. y = 10 12 b) x - 3y = 1
KINEMATIKA. 1. Základní kinematické veličiny
KINEMATIKA. Základní kinemaické veličiny Tao čá fyziky popiuje pohyb ěle. VZTAŽNÁ SOUSTAVA je ěleo nebo ouava ěle, ke kerým vzahujeme pohyb nebo klid ledovaného ělea. Aboluní klid neexiuje, proože pohyb
MECHANIKA - KINEMATIKA
Projek Efekivní Učení Reformou oblaí gymnaziálního vzdělávání je polufinancován Evropkým ociálním fondem a áním rozpočem Čeké republiky. Implemenace ŠVP MECHANIKA - KINEMATIKA Učivo - Fyzikální veličiny
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.2 Kvadratické funkce, rovnice a nerovnice
Digitální učební materiál
Čílo rojeku Náze rojeku Čílo a náze šablony klíčoé akiiy Digiální učební maeriál CZ..07/..00/4.080 Zkalinění ýuky rořednicím ICT III/ Inoace a zkalinění ýuky rořednicím ICT Příjemce odory Gymnázium, Jeíčko,
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
13. Kvadratické rovnice 2 body
13. Kvadratické rovnice 2 body 13.1. Rovnice x 2 + 2x + 2 m = 0 (s neznámou x) má dva různé reálné kořeny, které jsou oba menší než tři, právě a) m (1, 17), b) m = 2, c) m = 2 m = 5, d) m 2, 5, e) m >
Téma: Měření tíhového zrychlení.
PRACOVNÍ LIST č. 2 Téma úlohy: Měření íhového zrychlení Pracoval: Třída: Daum: Spolupracovali: Teploa: Tlak: Vlhko vzduchu: Hodnocení: Téma: Měření íhového zrychlení. Míní hodnou íhového zrychlení lze
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y
Předmě: Ročník: Vvořil: Daum: MATEMATIKA ČTVRTÝ Mgr Tomáš MAŇÁK 5 srpna Název zpracovaného celku: DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE je monoónní na celém svém deiničním oboru D
Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s
Ronoměrný poyb eliko rycloi ále ejná (konanní) základní za:. graf záiloi dráy na čae: polopřímka ycázející z počáku (pokud poyb začíná z klidu) m graf záiloi rycloi na čae: ronoběžka odoronou ou m. U poybu
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
Frézování - řezné podmínky - výpočet
Předmě: Ročník: Vyvořil: Daum: Základy výroby 2 M. Geisová 10. červen 2012 Název zpracovaného celku: Frézování - řezné podmínky - výpoče Posup při určování řezných podmínek, výpoče řezné síly Fř, výkonu
FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ
Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ
1.1.9 Rovnoměrný pohyb IV
1.1.9 Rovnoměrný pohyb IV ředpoklady: 118 V jedné z minulých hodin jme odvodili vzah pro dráhu (nebo polohu) rovnoměrného pohybu = v (dráha je přímo úměrná rychloi a čau). ř. 1: Karel a onza e účaní dálkového
MO-ME-N-T MOderní MEtody s Novými Technologiemi
Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.7/1.5./34.93 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší odborná
Řešení úloh 1. kola 55. ročníku fyzikální olympiády. Kategorie D
1.a) Graf v km h 1 Řešení úloh 1. kola 55. ročníku fyzikální olympiády. Kaegorie D 50 Auor úloh: J. Jírů 40 30 0 10 0 0 1 3 4 5 6 7 8 9 10 11 1 13 14 6bodů b) Pomocí obahu plochy pod grafem určíme dráhu
Rovnice a nerovnice v podílovém tvaru
Rovnice a nerovnice v podílovém tvaru Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu
FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ
Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ
Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.
4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV..1 Algebraické výrazy, výrazy s mocninami
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.1 Algebraické výrazy, výrazy s mocninami
4. KINEMATIKA - ZÁKLADNÍ POJMY
4. KINEMATIKA - ZÁKLADNÍ POJMY. Definuj pojem hmoný bod /HB/. 2. Co o je vzažná ouava? 3. Co je o mechanický pohyb? 4. Podle jakých krierií můžeme mechanický pohyb rozlišova? 5. Vyvělee relaivno klidu
IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,
IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
Zvyšování kvality výuky technických oborů
Zvšování kvalit výuk technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuk směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.1 Algebraické výrazy, výrazy s mocninami
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.2 Kvadratické funkce, rovnice a nerovnice
METODICKÉ LISTY. výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Chebu
METODICKÉ LISTY výup projeku Vzdělávací řediko pro další vzdělávání pedagogických pracovníků v Chebu reg. č. projeku: CZ. 1. 07/1. 3. 11/02. 0007 Sada meodických liů: KABINET FYZIKY Název meodického liu:
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
FUNKCE VE FYZICE. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Miroslava Jarešová Ivo Volf
FUNKCE VE FYZICE Sudijní ex pro řešiele FO a oaní zájemce o fyziku Mirolava Jarešová Ivo Volf Obah Elemenární funkce na CD ROMu 2 1 Základní pojmy 4 1.1 Pojemfunkce............................ 4 1.2 Graffunkce.............................
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
Rovnice s parametrem (17. - 18. lekce)
Rovnice s parametrem (17. - 18. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října 2011 Lineární rovnice s parametrem
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.1 Algebraické výrazy, výrazy s mocninami
Parciální funkce a parciální derivace
Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.2 Kvadratické funkce, rovnice a nerovnice
CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT
Autor Mgr. Lenka Střelcová Tematický celek Posloupnosti Cílová skupina 3. ročník SŠ Anotace Materiál má podobu výkladového a pracovního listu s úlohami, pomocí nichž si žáci osvojí a procvičí využití geometrické
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV..1 Algebraické výrazy, výrazy s mocninami
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické unkce, rovnice a nerovnice
Obr. PB1.1: Schématické zobrazení místa.
97 Projekové zadání PB1 Poouzení nehodové udáoi Na zákadě chémau nehody oveďe vyhodnocení nehodové udáoi. Určee: - paramery oai řeu pode chémau na orázku Or. PB1.1 ( x1, x, y1, y, x1, x, y1, y ); - zda
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.1 Algebraické výrazy, výrazy s mocninami
1 1 3 ; = [ 1;2]
Soustavy lineárních rovnic - Příklady k procvičení ) + y= y= [ ; ] ) + y= = ) y= y 0 y ; + = [ ;] ) y= + y= [ ;] ) + y= = ; ) y= = y ) y = y= 8) y= + y= 9) = 8 y 0) y=, y= ) a+ = a b ) = y 9 ) u ( ) v
Digitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/ Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_3_INOVACE_CH9_1_07 ŠVP Podnikání RVP 64-41-L/51
NA POMOC FO. Pád vodivého rámečku v magnetickém poli
NA POMOC FO Pád vodivého rámečku v maneickém poli Karel auner *, Pedaoická akula ZČU v Plzni Příklad: Odélníkový rámeček z vodivého dráu má rozměry a,, hmonos m a odpor. Je zavěšen ve výšce h nad horním
Mgr. Lenka Jančová 20. 3. 2014 IX.
Jméno Mgr. Lenka Jančová Datum 20. 3. 2014 Ročník IX. Vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Vzdělávací obor MATEMATIKA Tematický okruh SLOVNÍ ÚLOHY Téma klíčová slova Slovní úlohy o pohybu, soustavy
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Tematická oblast: Rovnice (VY_32_INOVACE_05_1)
Tematická oblast: (VY_32_INOVACE_05_1) Autor: RNDr. Yvetta Bartáková, Mgr. Petra Drápelová, Mgr. Jaroslava Vrbková, Mgr. Jarmila Zelená Vytvořeno: 2013-2014 Anotace: Digitální učební materiály slouží k
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN 80-860-7323-8.
Idenifiáor maeriálu: ICT 1 9 Regisrační číslo rojeu Název rojeu Název říjemce odory název maeriálu (DUM) Anoace Auor Jazy Očeávaný výsu Klíčová slova Druh učebního maeriálu Druh ineraiviy Cílová suina
Soustavy rovnic a nerovnic
Soustavy rovnic a nerovnic Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 2. září 20 Příklad Příklad Určete všechna čísla x, y R
Učebnice a sbírky úloh z matematiky
Učebnice a sbírky úloh z matematiky V přehledu jsou uvedeny učebnice zahrnující předepsané učivo. Konkrétní tituly doporučí jednotliví vyučující. I. Učebnice a pracovní sešity pro studijní obory 1. díl
6. Lineární (ne)rovnice s odmocninou
@06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou
ODHADY VARIABILITY POSLOUPNOSTÍ
ÚVOD MÍRY VARIABILITY, ODHADY VLASTNOSTI FF SEGMENTACE ZÁZNAMU MINIMALIZACE MSE SNÍŽENÍ ROZPTYLU ODHADY VARIABILITY POSLOUPNOSTÍ NEURONOVÝCH IMPULSŮ Kamil Rajdl Úsav maemaiky a saisiky Přírodovědecká fakula
73-01 KONEČNÝ NÁVRH METODIKY VÝPOČTU KAPACITU VJEZDU DO OKRUŽNÍ KOMENTÁŘ 1. OBECNĚ 2. ZOHLEDNĚNÍ SKLADBY DOPRAVNÍHO PROUDU KŘIŽOVATKY
PŘÍLOHA 73-01 73-01 KONEČNÝ NÁVRH METODIKY VÝPOČTU KAPACITU VJEZDU DO OKRUŽNÍ KŘIŽOVATKY Auor: Ing. Luděk Baroš KOMENTÁŘ Konečný návrh meodiky je zpracován ormou kapioly Technických podmínek a bude upřesněn
MO-ME-N-T MOderní MEtody s Novými Technologiemi
Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší
Rovnice v oboru komplexních čísel
Rovnice v oboru komplexních čísel Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu Šablona CZ.1.07/1.5.00/34.0218 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_01a
Digitální učební materiál
Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova
Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar
Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na
SEZNAM ANOTACÍ. Číslo projektu Číslo a název šablony klíčové aktivity Označení sady DUM Tematická oblast
SEZNAM ANOTACÍ Číslo projektu Číslo a název šablony klíčové aktivity Označení sady DUM Tematická oblast CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA2 Funkce,
M - Kvadratické rovnice a kvadratické nerovnice
M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.
CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde
Výukový materiál zpracovaný v rámci projektu EU peníze školám
Výukový materiál zpracovaný v rámci projektu EU peníze školám Regitrační čílo projektu: Šablona: Název materiálu: Autor: CZ..07/..00/.56 III/ Inovace a zkvalitnění výuky protřednictvím ICT VY INOVACE_0/07_Úlohy
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.7/1.5./34.5 Šablona: III/ Přírodovědné předměty
Digitální učební materiál
Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova
14. Soustava lineárních rovnic s parametrem
@66 4. Sousava lineárních rovnic s aramerem Hned úvodem uozorňuji, že je velký rozdíl mezi sousavou rovnic řešenou aramerizováním, roože má nekonečně mnoho řešení zadaná sousava rovnic obsahuje jen číselné
Diferenciální počet funkcí více reálných proměnných SLOŽENÉ FUNKCE. PŘÍKLAD 1 t, kde = =
Diferenciální poče funkcí více reálných proměnných -- SLOŽENÉ FUNKCE PŘÍKLAD Určee derivaci funkce h ( = f( g( g( kde g ( = + g ( = f ( / = e Podle pravidla o derivování složených funkcí více proměnných
PŘÍKLAD 6: Řešení: Příprava k přijímacím zkouškám na střední školy matematika 29. Určete, pro které x je hodnota výrazu 8x 6 rovna: a) 6 b) 0 c) 34
Příprava k přijímacím zkouškám na střední školy matematika 29 PŘÍKLAD 6: Určete, pro které x je hodnota výrazu 8x 6 rovna: a) 6 b) 0 c) 34 Chceme-li vypočítat hodnotu výrazu za daného předpokladu, pak
(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení
(). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,9 s do 6,5 s. 3. Jakou rychlosí
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: geometrická posloupnost, geometrická
Úloha V.E... Vypař se!
Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee
2. Řešení algebraické
@016 2. Řešení algebraické Definice: Nechť a, c jsou reálná čísla. Rovnice v R (s neznámou x) daná formulí se nazývá lineární rovnice a ax + c = 0 se nazývají lineární nerovnice. ax + c 0 ax + c < 0 ax
Slouží k opakování učiva 8. ročníku na začátku školního roku list/anotace
Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 utor Mgr. Martina Smolinková Datum 9. 8. 2014 Ročník 8. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika
Pasivní tvarovací obvody RC
Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :
Práce a výkon při rekuperaci
Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
ŠABLONY INOVACE OBSAH UČIVA
ŠABLONY INOVACE OBSAH UČIVA Číslo a název projektu CZ.1.07/1.5.00/34. 0185 Moderní škola 21. století Číslo a název šablony IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické klíčové aktivity
II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.
Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.1 Algebraické výrazy, výrazy s mocninami
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické unkce, rovnice a nerovnice
Digitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_09 ŠVP Podnikání RVP 64-41-L/51
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Slovní úlohy II Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_19a
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.2 Kvadratické funkce, rovnice a nerovnice
ROVNICE, NEROVNICE A JEJICH SOUSTAVY
Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ ÚLOH ROVNICE, NEROVNICE A JEJICH SOUSTAVY CIFRIK C. Úloha 1 [kvadratická rovnice s kořeny y_1=x_1^2+x_2^2, y_2=x_1^3+x_2^3]
Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti
PRAVDĚPODOBNOST anotace Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti VM vytvořil: Mgr. Marie Zapadlová Období vytvoření VM: září 2013 Klíčová
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
3.3. EXPONENCIÁLNÍ A LOGARITMICKÁ ROVNICE A NEROVNICE
3.3. EXPONENCIÁLNÍ A LOGARITMICKÁ ROVNICE A NEROVNICE V této kapitole se dozvíte: jak je definována eponenciální a logaritmická rovnice a nerovnice a jaká je základní strategie jejich řešení. Klíčová slova
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Úlohy klauzurní části školního kola kategorie A
6. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A. V oboru reálných čísel řešte soustavu rovnic y + 3x = 4x 3, x + 3y = 4y 3. 2. V rovině uvažujme lichoběžník ABCD se základnami