Jaké je maximální zrychlení osobního automobilu?
|
|
- Marta Procházková
- před 8 lety
- Počet zobrazení:
Transkript
1 Veetr nápdů učiteů fyziky 18 Jké je mximání zrycení osobnío utomobiu? ZDENĚK BOCHNÍČEK Přírodovědecká fkut Msrykovy univerzity, Brno Úvod De informce z médií [1] připrvuje německá firm sportovní utomobi, který zvýší rycost z nuy n sto kiometrů z odinu z méně než jednu sekundu. yzik ned npdne: Je to vůbec možné? Jké jsou fyzikání imity kceerce vozid s poáněnými koy? Součsné sportovní utomobiy nezrycí z 0 n 100 km/ z méně než dvě sekundy. o dokáží jen vysokovýkonné závodní vozy se speciáními pneumtikmi, viz tb. 1. typ vozu zrycování km/ [s] zrycení [m/s - ] Renut 1 1,7 16,3 Bugtti Veyron,46 11,3 Porsce 911 urbo,7 10,3 errri 1 Berinett 3,1 9,0 buk 1 V příspěvku budou prezentovány dv různé modey výpočtu meze zrycení. První, čsto prezentovný, není fyzikáně správný, e z jistýc podmínek může být vyovující proximcí. Diskuse výsedků druéo modeu v podsttě vyoučí, by vozido s poáněnými náprvmi dosáo tk vekéo zrycení, které výrobce očekává. Mode 1 Čsto njdeme násedující postup řešení: Předpokádejme, že utomobi má nnou jednu náprvu (npříkd zdní ko) podéná poo těžiště utomobiu je uprostřed mezi náprvmi. Dáe znedbejme viv rotční moty ko. Mode vycází z obr. 1. Ve svisém směru je tíová sí kompenzován tkovými simi podožky, které při zvoené pooze těžiště jsou sodné. Mximání urycující sí je dán součiniteem smykovéo tření f ptí pro ni 1 mg mx f N1 f f, (1) kde m je motnost utomobiu. Mximání zrycení je pk rovno N 1 N Obrázek 1 1 Symboy pro vektorové veičiny - síu, moment síy zrycení, které nejsou zvýrzněné tučným písmem oznčují veikosti těcto veičin nebo sožky těcto si do vodorovnéo či sviséo směru. Situce je vždy zřejmá z obrázku či kontextu. 14
2 Veetr nápdů učiteů fyziky 18 g () m mx mx,1 f. Dostáváme vemi jednoducý výsedek. Je všk podivné, že při výpočtu neby nikde použit předpokd zdní nné náprvy i když ze zkušenosti víme, že utomobiy se zdní poáněnou náprvou se stejným poměrovým ztížením náprv zrycují n kuzkém povrcu épe. Mode č. 1 tedy zrycení utomobiu nepopisuje správně. Mode Siový rozbor uvedený n obr. 1 je cybný. Víme, že při kceerci se vůz poybuje čistě trnsčním poybem, nerotuje. Výsedný moment působícíc si musí tedy být roven nue, což síy z obr. 1 evidentně nespňují. Aby síy N 1 N, kompenzovy moment urycující síy (moment počítáme vzedem k těžišti), musí mít sí N 1 větší veikost než sí N. Správný rozbor si je n obr.. Ve svisém směru vozido nezrycuje, pro vertikání síy tedy musí ptit siová rovnová N N. (3) 1 Z podmínky momentové rovnováy ptí / mx N N1, (4) kde mx je mximání urycující sí, pro kterou ptí N 1 N Obrázek mx f N1. (5) Význm osttníc symboů je zřejmý z obr.. Rovnice (4), (5) (6) tvoří soustvu o třec neznámýc m, N 1 N. Jejím řešením získáme g 1 mx, f. f (6) N jedné strně výsedek modeu spni nše očekávání: vede k vyšší odnotě mximánío zrycení než mode č. 1. Při kceerci jsou více ztížen zdní ko (n úkor ko předníc), proto má vůz s poonem zdníc ko výodu. N drué strně všk se výsedek smysupný nezdá: s kesjící výškou těžiště rostoucím rozvorem náprv roste mximání zrycení nde všecny meze dokonce může nbýt i zápornýc odnot! Podobně při zpomení jsou účinnější ko přední náprvy, proto jsou přední brzdy více dimenzovné než zdní. 15
3 Veetr nápdů učiteů fyziky 18 Omezení modeu č. Zrycení utomobiu by moo divergovt, pokud by divergov i sí N 1. Pk by ovšem sí N muse mířit směrem doů, což pro jízdu utomobiu není reáné. Mode č. tedy ptí pouze z předpokdu, že N >0. Při porušení této podmínky by došo ke zvednutí předníc ko vozid. Z rovnic (4), (5) (6) vyjádříme vertikání sožku síy N. Z podmínky N >0 pyne nerovnost N f mg 1. f f 1. (8) Z spnění této podmínky bude pro kceerci imitující smykové tření mezi pneumtikou vozovkou. V opčném přípdě kceerci omezí zvednutí předníc ko. Omezení modeu č. 1 Srovnejme výsedky modeů 1 (rovnice () (6)). Vidíme, že zpočtení momentové rovnováy v modeu přináší korekci rostoucí s odnotou součinitee sttickéo tření f. Pro dosttečně má f by tedy i mode 1 by scopen poskytnout výsedky s přijtenou přesností. Pro iustrci spočítejme, z jkýc podmínek by mode 1 poskyt výsedky s odcykou menší než 10%, tedy Po doszení z () (6) úprvě dostneme 0,1. (9) mx, mx,1 mx, f 0,1. (10) Mode 1 tedy může být dobrou proximcí pro dosttečně mé odnoty součinitee smykovéo tření nízké těžiště. Vozido s poonem všec čtyř ko Řešení mximánío zrycení vozid s poonem všec ko je překvpivě jednodušší, než u vozid s jednou nnou náprvou. Při kceerci sice docází k přerozděení tkovýc si mezi přední zdní náprvu, e veikost jejic součtu je vždy rovn veikosti tíové síy. Pokud by utomobi dokáz řídit trkci obou náprv tk, by součsně dosáy meze smyku, mximání zrycení by byo rovno mx f mg mx f g. (11) m m (7) 16
4 Veetr nápdů učiteů fyziky 18 Srnutí Výsedky jsou srnuty n obr. 3, kde je zobrzeno mximání zrycení utomobiu s poonem zdní náprvy jko funkce poměru /. Jednotivé křivky odpovídjí různým součiniteům sttickéo smykovéo tření (čís uvnitř grfu). Reáné situce vymezuje pouze šrfovná obst, vně této obsti se utomobi převrátí. Křivk n rnici šrfovné obsti udává součsně mximání zrycení utomobiu s poonem všec ko, které nezávisí n pooze těžiště. V ustě šrfovné obsti je cyb modeu 1 menší než 10%. Aby utomobi zryci z kidu n 100 km/ z 1 s, muse by mít průměrné zrycení si 8 m s-. to odnot je v grfu vyznčen tustou vodorovnou črou. Pro dosžení této odnoty by koeficient smykovéo tření mezi pneumtikou vozovkou muse být nejméně 3, bez oedu n konstrukci utomobiu. Obvyké odnoty součinitee sttickéo smykovéo tření mezi pneumtikou betonem se udávjí v intervu 0,7 0,8, n sftu je dokonce nižší. Vyššíc odnot je možné dosánout jen se speciáními pneumtikmi přípdně n speciáně uprveném povrcu (závody drgsterů). Z vyšší součinite smykovéo tření všk ptíme vemi mou životností pneumtik. Zrycení z 0 n 100 km/ z 1 s, které německý výrobce očekává u připrvovnéo utomobiu, je vemi prvděpodobně nereáné. 30 3,5 3,0,5,0 1,6 1,4 1, 1,0 5 0,8 - mx [ms ] ,6 5 0, , / Obrázek 3 Možnosti experimentánío ověření v bortorníc podmínkác Přímé experimentání ověření jevů při vysokém zrycení je obtížné. Krátká dob rozjíždění douá jízdní drá v podsttě vyučují reizci těcto experimentů ve škoníc bortorníc podmínkác. Je všk možné využít nogie mezi rovnoměrně 17
5 Veetr nápdů učiteů fyziky 18 zryceným vodorovným poybem rovnoměrným poybem po nkoněné rovině, viz obr. 4. y x / N 1 α N v / N 1 α N v Obrázek 4 () Obrázek 4 (b) S využitím této nogie získjí rovnice (3), (4) (5) tvr mg cos N1 N, (1) mx N N1, (13) mx f N1, (14) kde nvíc tová sí motoru kompenzuje průmět tíové síy do směru poybu, tedy Řešením soustvy rovnic dostneme mx mg sin. (15) f sin. f f 41 Probém měření zrycení tk převedeme n experimentáně mnoem jednodušší probém určení úu nkoněné roviny, při kterém dojde k prokuzu nné náprvy respektive k překopení modeu vozid. (16) Litertur [1] ttp://uto.idnes.cz/geniove-nebo-tucubove-z-nuy-n-sto-pry-pod-sekundupd-/k_ktu.spx?c=a11087_05_k_ktu_d 18
Nakloněná rovina Premium, kompletní souprava Kat. číslo
akoněná rovina Premium, kompetní souprava Kat. číso 113.2020 Strana 1 z 12 Předmuva akoněnou rovinou se v mecanice rozumí poca nakoněná vůči orizontáe. Používá se ke zmenšení síy, která se musí vynaožit
Řešení úloh celostátního kola 49. ročníku fyzikální olympiády. Autořiúloh:P.Šedivý(1),L.Richterek(2),I.Volf(3)aB.Vybíral(4)
Řešení úoh ceostátního ko 49. ročníku fyzikání oympiády. Autořiúoh:.Šedivý(1),L.Richterek(),I.Vof(3)B.Vybír(4) 1.) Oznčme t 1, t, t 3čsyzábesků, v 1, v, v 3přísušnérychostistředukoue, veikost zrychení
Téma 8 Přetvoření nosníků namáhaných ohybem I.
Pružnost psticit, ročník kářského studi Tém 8 Přetvoření nosníků nmáhných ohem Zákdní vzth předpokd řešení Přetvoření nosníků od nerovnoměrného otepení etod přímé integrce diferenciání rovnice ohové čár
Smyk při brzdění vozidel
Smyk při rzdění vozide Téma 8 VOZ KVM Určuje se pro nepružná koa ztrátu staiity ZN VOZ KVM Za ztrátu staiity je pokádán a) očátek smýkání vnitřnío koa ) očátek očnío skouznutí při smýkání vnitřnío koa
PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ
Zdání PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ Příkd č. Uvžujte příhrdovou konstruki z Or., vypočítejte svisý posun v odě (znčený ). odře vyznčené pruty (pruty 3, 4, 5, 6 7) jsou ztíženy rovnoměrným otepením
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y
( ) 1.5.2 Mechanická práce II. Předpoklady: 1501
1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením
Téma 2 Úvod ke staticky neurčitým prutovým konstrukcím
Stvební mechnik,.ročník bkářského studi AST Tém Úvod ke stticky neurčitým prutovým konstrukcím Ktedr stvební mechniky Fkut stvební, VŠB - Technická univerzit Ostrv Osnov přednášky Stticky neurčité konstrukce,
Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím
Sttik stvebních konstrukcí I.,.ročník bkářského studi Tém 3 Úvod ke stticky neurčitým prutovým konstrukcím Ktedr stvební mechniky Fkut stvební, VŠB - Technická univerzit Ostrv Osnov přednášky Stticky neurčité
Modelování kmitavých soustav s jedním stupněm volnosti
Modeování kmitavých soustav s jedním stupněm vonosti Zpracova Doc. RNDr. Zdeněk Haváč, CSc 1. Zákadní mode Zákadním modeem kmitavé soustavy s jedním stupněm vonosti je tzv. diskrétní podéně kmitající mode,
JAN VÁLEK, PETR SLÁDEK Katedra fyziky, chemie a odborného vzdělávání, Pedagogická fakulta, Masarykova univerzita, Poříčí 7, Brno
Veletrh nápdů učitelů fyziky 18 Fyzik cyklist JAN VÁLEK, PETR SLÁDEK Ktedr fyziky, chemie odorného vzdělávání, Pedgogická fkult, Msrykov univerzit, Poříčí 7, 603 00 Brno Astrkt Jízdní kolo spojuje mnoho
4. cvičení z Matematiky 2
4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y
II. 5. Aplikace integrálního počtu
494 II Integrální počet funkcí jedné proměnné II 5 Aplikce integrálního počtu Geometrické plikce Určitý integrál S b fx) dx lze geometricky interpretovt jko obsh plochy vymezené grfem funkce f v intervlu
x + F F x F (x, f(x)).
I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných
Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů
Řešení úo. koa 59. ročníku fyzikání oympiáy. Kategorie D Autor úoh: J. Jírů Obr. 1 1.a) Označme v veikost rychosti pavce vzheem k voě a v 0 veikost rychosti toku řeky. Pak patí Číseně vychází α = 38. b)
Nosné stavební konstrukce, výpočet reakcí
Stvení sttik.ročník kářského studi Nosná stvení konstrukce Nosné stvení konstrukce výpočet rekcí Nosná stvení konstrukce souží k přenosu ztížení ojektu do horninového msívu n němž je ojekt zožen. Musí
Univerzita Tomáše Bati ve Zlíně, Fakulta technologická Ústav fyziky a materiálového inženýrství
Univerzita Tomáše Bati ve Zíně, Fakuta technoogická Ústav fyziky a materiáového inženýrství Jméno a příjmení Josef Novák Ročník / Skupina x Předmět Laboratorní cvičení z předmětu Datum měření xx. xx. xxxx
Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6)
Řešení úoh 1. koa 60. ročníku fyzikání oympiády. Kategorie B Autoři úoh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6) h 1.a) Protože vzdáenost bodů K a O je cos α, je doba etu kuičky z bodu K do bodu
Téma 5 Spojitý nosník
Stvení mechnik.očník kářského studi AST Tém 5 Spojitý nosník Zákdní vstnosti spojitého nosníku Řešení spojitého nosníku siovou metodou yužití symetie spojitého nosníku Kted stvení mechniky Fkut stvení
(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a
Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:
Mezní napětí v soudržnosti
Mení napětí v soudržnosti Pro žebírkovou výtuž e stanovit návrhovou hodnotu meního napětí v soudržnosti vtahu: = η η ctd kde je η součinite ávisý na kvaitě podmínek v soudržnosti a pooe prutu během betonáže
Téma Přetvoření nosníků namáhaných ohybem
Pružnost psticit,.ročník bkářského studi Tém Přetvoření nosníků nmáhných ohbem Přetvoření nosníků - tížení nerovnoměrnou tepotou Přetvoření nosníků tížení siové Zákdní vth předpokd řešení Vth mei sttickými
Lineární nerovnice a jejich soustavy
teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice
Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou
MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností
Vzorová řešení čtvrté série úloh
FYZIKÁLNÍ SEKCE Přírodovědecká fkult Msrykovy univerzity v Brně KORESPONDENČNÍ SEMINÁŘ Z FYZIKY 8. ročník 001/00 Vzorová řešení čtvrté série úloh (5 bodů) Vzorové řešení úlohy č. 1 (8 bodů) Volný pád Měsíce
6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.
KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou
Křivkový integrál prvního druhu verze 1.0
Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm
Téma 9 Přetvoření nosníků namáhaných ohybem II.
Pružnost psticit,.ročník kářského studi Tém 9 Přetvoření nosníků nmáhných ohem. ohrov metod Přetvoření nosníků proměnného průřeu Sttick neurčité přípd ohu Viv smku n přetvoření ohýného nosníku Ktedr stvení
Kmitavý pohyb trochu jinak
Kmitavý pohyb trochu jinak JIŘÍ ESAŘ, PER BAROŠ Katedra fyziky, Pedaoická fakuta, JU České Budějovice Kmitavý pohyb patří mezi zákadní fyzikání děje. Většinou se tato část fyziky redukuje na matematický
Posouvající síla V. R a. R b. osa nosníku. Kladné směry kolmé složky vnitřních sil. Výpočet nosníku v příčné úloze (ve svislé hlavní rovině xz)
Posouvjící sí Posouvjící síu v zdném průřezu c ze vypočítt jko gerický součet všech svisých si po jedné strně průřezu. Postupujei se z evé strny, do součtu se zhrnou kdně síy půsoící zdo nhoru, záporně
PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.19 Název: Měření s torzním magnetometrem
Odděení fyzikáních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. úohač.19 Název: Měření s torzním magnetometrem Pracova: Lukáš Ledvina stud.skup.14 dne:16.10.2009 Odevzdadne: Možný počet
DERIVACE A INTEGRÁLY VE FYZICE
DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická
Téma 6 Staticky neurčitý rovinný oblouk
ttik stveních konstrukcí I.,.ročník kářského studi Tém 6 tticky neurčitý rovinný oouk Zákdní vstnosti stticky neurčitého rovinného oouku Dvojkouový oouk Dvojkouový oouk s táhem Vetknuté oouky Přiižný výpočet
Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.
7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1
( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306
7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu
Příklad 33 : Energie elektrického pole deskového kondenzátoru. Ověření vztahu mezi energií, kapacitou a veličinami pole.
Přík 33 : Energie eektrického poe eskového konenzátoru. Ověření vzthu mezi energií, kpcitou veičinmi poe. Přepokáné znosti: Eektrické poe kpcit eskového konenzátoru Přík V eskovém konenzátoru je eektrické
11. cvičení z Matematické analýzy 2
11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y
2.1 Stáčivost v závislosti na koncentraci opticky aktivní látky
1 Pracovní úkoy 1. Změřte závisost stočení poarizační roviny na koncentraci vodního roztoku gukozy v rozmezí 0 500 g/. Pro jednu zvoenou koncentraci proveďte 5 měření úhu stočení poarizační roviny. Jednu
R t = b + b l ŘÍDÍCÍ ÚSTROJÍ. Ackermanova podmínka
ŘÍDÍCÍ ÚSTROJÍ Souží k udržování nebo ke změně směru jízdy automobiu v závisosti na přání řidiče. Řízení u automobiů je reaizováno natáčením předních ko koem rejdových čepů. Natáčení vnitřního a vnějšího
Kapitola 10. Numerické integrování
4.5.o7 Kpitol 0. Numerické integrování Numerický výpočet odnoty určitéo integrálu Formulce: Mějme n ; bi dánu integrovtelnou funkci f = f(x). Nším cílem je určit přibližnou odnotu určitéo integrálu I(f)
-R x,a. Příklad 2. na nejbližší vyšší celý mm) 4) Výpočet skutečné plochy A skut 5) Výpočet maximálního napětíσ max 6) Porovnání napětí. Výsl.
Zákdy dimenzování prutu nmáhného prostým tkem them Th prostý tk-zákdy dimenzování Už známe:, 3 -, i i 3 3 ormáové npětí [P] konst. po výšce průřezu Deformce [m] ii E ově zákdní vzthy: Průřezová chrkteristik
Stabilita a vzpěrná pevnost tlačených prutů
Pružnost psticit,.ročník kářského studi Stiit vzpěrná pevnost tčených prutů Euerovo řešení stiity přímého pružného prutu Ztrát stiity prutů v pružno-pstickém ooru Posouzení oceových konstrukcí n vzpěr
Přednáška 12 Obecná deformační metoda, nelineární úlohy u prutových soustav
Statika stavebních konstrukcí II., 3.ročník bakaářského studia Přednáška Obecná deformační metoda, neineární úohy u prutových soustav Fyzikáně neineární úoha Geometricky neineární úoha Konstrukčně neineární
Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.
Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně
ZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA
OBRAOVACÍ ROVNICE OKY A KULOVÉHO RCADLA vtšení optického zobrzení pedešlých kpitol již víme, že pi zobrzení okmi nebo kulovými zrcdly mohou vznikt zvtšené nebo zmenšené obrzy pedmt. Pro jejich mtemtický
Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.
Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce
( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t
7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách
Statika 2. Vetknuté nosníky. Miroslav Vokáč 2. listopadu ČVUT v Praze, Fakulta architektury. Statika 2. M.
3. přednáška Průhybová čára Mirosav Vokáč mirosav.vokac@kok.cvut.cz ČVUT v Praze, Fakuta architektury 2. istopadu 2016 Průhybová čára ohýbaného nosníku Znaménková konvence veičin M z x +q +w +ϕ + q...
FYZIKA I. Kyvadlový pohyb. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STRONÍ FYZIKA I Kyvadový pohyb Prof. RNDr. Viém Mádr, CSc. Prof. Ing. Libor Haváč, Ph.D. Doc. Ing. Irena Haváčová, Ph.D. Mgr. Art. Dagmar Mádrová
3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90
ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy
Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)
KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1
Úlohy školní klauzurní části I. kola kategorie C
52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.
Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:
.. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto
Stavební mechanika 2 (K132SM02)
Stvení mecnik 2 (K132SM02) Přednáší: Jn Sýkor Ktedr mecniky K132 místnost D2016 e-mil: jn.sykor.1@fsv.cvut.cz konzultční odiny: Po 12-14 Kldné směry vnitřníc sil: Kldný průřez vnitřní síly jsou kldné ve
Téma 6 Spojitý nosník
Stvení mechnik.očník kářského studi AST Tém Sojitý nosník Zákdní vstnosti sojitého nosníku Řešení sojitého nosníku siovou metodou yužití symetie sojitého nosníku Kted stvení mechniky Fkut stvení ŠB - Technická
P2 Číselné soustavy, jejich převody a operace v čís. soustavách
P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel
Příklad 5.3. v 1. u 1 u 2. v 2
Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu
Z toho se η využije na zajištění funkcí automobilu a na překonání odporu vzduchu. l 100 km. 2 body b) Hledáme minimum funkce θ = 1.
Řešení úoh. koa 59. ročníku fyzikání oympiády. Kategorie A Autor úoh: J. Thomas.a) Na dráze vt bude zapotřebí objem paiva V θ θv t. Při jeho spáení se získá tepo Q mh ρv H ρθvh t. Z toho se η využije na
18ST - Statika. 15. dubna Dan et al. (18ST) Vnitřní síly na lomených nosnících 15. dubna / 16
Vnitřní síy n omný nosníí Dn Kytýř, Tomáš Doktor, Ptr Kouk 8ST - Sttik 5. un 03 Dn t. (8ST) Vnitřní síy n omný nosníí 5. un 03 / 6 Zání Zání Vyjářt vykrst funk průěů vnitřní si N(x), T(x), M(x) n ném nosníku.
BETONOVÉ KONSTRUKCE B03C +B03K ŠTÍHLÉ BETONOVÉ KONSTRUKCE. Betonové konstrukce B03C + B03K. Betonové konstrukce B03C +6B03K
BETONOVÉ KONSTRUKCE B03C +B03K ŠTÍHLÉ BETONOVÉ KONSTRUKCE Betonové konstrukce B03C +4B03K Betonové konstrukce B03C +5B03K Betonové konstrukce B03C +6B03K prvky namáhané kombinací [M+N] N M tak (tah) s
Stanovení přetvoření ohýbaných nosníků. Clebschova a Mohrova metoda
Stnovení přetvoření ohýnýh nosníků Ceshov Mohrov metod (pokrčování) (Mohrov nogie) Příkd Určete rovnii ohyové čáry pootočení nosníku stáého průřezu Ceshovou metodou. Stnovte veikost průhyu w pootočení
ANALYTICKÁ GEOMETRIE V PROSTORU
ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici
Pohyblivé zatížení. Pohyblivé zatížení. Příčinkové čáry na prostém nosníku, konzole a spojitém nosníku s vloženými klouby
Stvní sttik,.ročník kářského stui Pohyivé ztížní zniká pojížěním vozi (vky, utomoiy, jřáy po stvní konstruki (mosty, jřáové ráhy, nájzové rmpy, pohy gráží. Pohyivé ztížní n prostém nosníku, konzo spojitém
Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.
9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce
14. cvičení z Matematické analýzy 2
4. cvičení z temtické nlýzy 2 22. - 26. květn 27 4. Greenov vět) Použijte Greenovu větu k nlezení práce síly F x, y) 2xy, 4x 2 y 2 ) vykonné n částici podél křivky, která je hrnicí oblsti ohrničené křivkmi
13. Soustava lineárních rovnic a matice
@9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky
NA POMOC FO kategorie E, F. Komentáře a metodický materiál pro učitele fyziky k řešení úloh FO
NA POMOC FO kategorie E, F Koentáře a etodický ateriá pro učitee fyziky k řešení úo FO Ivo Vof *, ÚV FO, Univerzita Hradec Kráové Tak jako po někoik inuýc et jse pro soutěžící v kategoriíc E, F připravii
Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie D. Dosazením do rovnice(1) a úpravou dostaneme délku vlaku
Řešení úoh koa 49 ročníku fyzikání oympiády Kategorie D Autořiúoh:JJírů(,3,4,5,6,),TDenkstein(), a) Všechny uvažované časy jsou měřené od začátku rovnoměrně zrychené pohybu vaku a spňují rovnice = at,
Odolnost vozidel proti smyku
TU Lierci akuta strojní atedra ozide a motorů ooé dopraní a manipuační stroje II 04 Odonost ozide proti smyku Odonost ozide proti smyku Smyk porušení ronoáy si půsoícíc na ozido oční skouznutí přední nápray
Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu
Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je
SMR 2. Pavel Padevět
SR Pve Pevět PRICIP VIRTUÁLÍCH PRACÍ jenošená eformční meto, esiové vivy, Sčítání účinků ztížení ezi nesiové vivy vžjeme v D: viv posntí popor, viv tepoty. ESILOVÉ VLIVY Popštění popory vyvoává v sttiky
HYDROMECHANIKA. Požadavky ke zkoušce: - zápočet Zkouška: písemný test (příklady) + ev. ústní
HYDROMECHANIKA Rozsh : /1 z, zk, semestr: 3 Ktedr vodního hospodářství environmentálního modelování Grnt předmětu: Rdek Roub FŽP MCEV II, D439 Tel.: 4 38 153, 737 483 840, e-mil: roub@fzp.czu.cz Konzultční
Pružnost a plasticita Program č.1
Ktedr stvební mecniky Fkut stvební VŠB-TU Ostrv Jméno : Studijní skupin : úterý 14.15 Průřez spodnío pásu Fotogrfie reáné konstrukce Nvrněte posuďte u výše zobrzené rovinné koubové přírdové konstrukce
Přednáška 4: Derivace
4 / / 7, :5 Přednáška 4: Derivace Pojem derivace ormuloval v 7. století Isaac Newton při výpočtec poybu planet sluneční soustavy. Potřeboval spočítat úlovou ryclost planet. Její směr je dán tečnou ke dráze
I Stabil. Lepený kombinovaný nosník se stojnou z desky z orientovaných plochých třísek - OSB. Navrhování nosníků na účinky zatížení podle ČSN 73 1701
I Stabi Lepený kombinovaný nosník se stojnou z desky z orientovaných pochých třísek - OSB Navrhování nosníků na účinky zatížení pode ČSN 73 1701 Část A Část B Část C Část D Výchozí předpokady, statické
Určení Planckovy konstanty pomocí fotoelektrického jevu
Určení Planckovy konstanty pomocí fotoelektrickéo jevu Související témata: Externí fotoelektrický jev, výstupní práce elektronu z kovu, absorpce, energie fotonu Princip a úkol: Fotocitlivý prvek - fotonka
Hyperbola a přímka
7.5.8 Hperol přímk Předpokld: 75, 75, 755, 756 N orázku je nkreslen hperol = se středem v počátku soustv souřdnic. Jká je vzájemná poloh této hperol přímk, která prochází počátkem soustv souřdnic? E B
Dodatečné příklady k AJFY
Doečné příkdy k AJFY 1. Odhdněte veikost tomů, víte-i, že: ) 1 kpk,5 % roztoku kyseiny oejové v kohou vytvoří n vodě kruhovou oejovou skvrnu o průměru 3 cm, objem kpky je si, cm 3 (Frnkin), b) výprné tepo
8. cvičení z Matematiky 2
8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,
2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman
STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr
+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c
) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším
Řešení diferenciálních rovnic 1. řádu (lineárních, s konstantními koeficienty)
Exonenciální funkce - jejic "vužití" ři řešení diferenciálníc rovnic (Tto dolňková omůck nemůže v žádném řídě nrdit sstemtickou mtemtickou řírvu.) Vlstností exonenciální funkce lze výodně oužít ři řešení
Přednáška 10, modely podloží
Statika stavebních konstrukcí II.,.ročník kaářského studia Přednáška, modey podoží Úvod Winkerův mode podoží Pasternakův mode podoží Nosník na pružném Winkerově podoží, řešení OD atedra stavební mechaniky
Rovinné nosníkové soustavy. Pohyblivé zatížení. Trojkloubový nosník s táhlem Rovinně zakřivený nosník (oblouk) Příčinkové čáry
Stvení sttik,.ročník kářského studi Rovinné nosníkové soustvy Pohyivé ztížení Trojkouový nosník s táhem Rovinně zkřivený nosník (oouk) Příčinkové čáry Ktedr stvení mehniky Fkut stvení, VŠB - Tehniká univerzit
1.1 Numerické integrování
1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme
třecí síla (tečná vazba podložky) F normálová reakce podložky výsledná reakce podložky Podmínky rovnováhy:
SPŠ VOŠ KLADO SAIKA - PASIVÍ ODPORY PASIVÍ ODPORY Při vzájemném pohybu těles vznikjí v reálných vzbách psivní odpory, jejichž práce se mění v teplo. Psivní odpory předstvují ztráty, které snižují účinnost
Matematické pozadí důkazu Shannonova-Nyquistova teorému
Matematické pozadí důkazu Sannonova-Nyquistova teorému Pave Stracota 9. února 205 Poznámka. Pro jednoducost budou všecny pojmy vysvětovány na jednorozměrném případu. Fourierovy řady V obecném Hibertově
NOVÁ METODA NÁVRHU PRŮMYSLOVÝCH PODLAH Z VLÁKNOBETONU
NOVÁ METODA NÁVRHU PRŮMYSLOVÝCH PODLAH Z VLÁKNOBETONU Jan Loško, Lukáš Vrábík, Jaromír Jaroš Úvod Nejrozšířenějším příkadem využití váknobetonu v současné době jsou zřejmě podahové a zákadové desky. Při
Jednoduché výpočty ve fyzice živé přírody
Jednoduché výpočty ve fyzice živé přírody ZDENĚK BOCHNÍČEK Přírodovědecká fakuta MU, Brno Abstrakt. V příspěvku je ukázáno někoik příkadů použití jednoduchých fyzikáních modeů na popis dějů v živé přírodě,
R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na
Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.
b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:
Křivkový integrál funkce
Kpitol 6 Křivkový integrál funkce efinice způsob výpočtu Hlvním motivem pro definici určitého integrálu funkce jedné proměnné byl úloh stnovit obsh oblsti omezené grfem dné funkce intervlem n ose x. Řd
Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem
Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je
2.9.11 Logaritmus. Předpoklady: 2909
.9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).
Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.
.. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).
Ohýbaný nosník - napětí
Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se
Logaritmické rovnice I
.9.9 Logritmické rovnice I Předpokldy: 95 Pedgogická poznámk: Stejně jko u eponenciálních rovnic rozkldů n součin bereme ritmické rovnice jko nácvik výběru metody. Sestvujeme si rzenál metod n konci máme
5.2. Určitý integrál Definice a vlastnosti
Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)
Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.
Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce
Příklad 1. Řešení 1a. Řešení 1b ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 5
Příklad 1 Najděte totální diferenciál d (h) pro h=(h,h ) v příslušných bodech pro následující funkce: a) (,)= cos, =1; b) (,)=ln( + ), =2; 0 c) (,)=arctg(), =1; 0 1 d) (,)= +, =1; 1 Řešení 1a Máme nalézt