ZÁKLADY POPISNÉ STATISTIKY
|
|
- Patrik Švec
- před 8 lety
- Počet zobrazení:
Transkript
1 ZÁKLADY POPISNÉ STATISTIKY Statitia věda o metodách běru, zpracováí a vyhodocováí tatiticých údaů. Statiticé údae ou apř. údae o přirozeém přírůtu či migraci obyvateltva, obemu výroby průmylových podiů, dovozu či vývozu určitého zboží apod. Statiticá edota aždý prve tatiticého ouboru, ehož ěteré vlatoti ou předmětem tatiticého zišťováí, zatímco ěteré přeě vymezeé vlatoti ou hodé otatími prvy ouboru (a záladě těchto vlatotí e vymeze tatiticý oubor) Statiticý oubor ouhr všech tatiticých edote podle určitého ritéria (vlatoti, terou maí tatiticé edoty polečou). Soubor e vždy uté přeě vymezit z hledia věcého, čaového a protorového (viz orétí přílad íže). Statiticý za vlatot tatiticých edote určitého tatiticého ouboru. Jou-li variaty tatiticého zau vyádřey číly, hovoříme o vatitativím tatiticém zau, zatímco ou-li vyádřey lovy, mluvíme o valitativím tatiticém zau. Statiticý za budeme začit velými pímey. Přílad) tatiticý oubor žáci všech třetích ročíů SPŠ a Proeu ve šolím roce tatiticá edota aždý z těchto žáů tatiticý za propěch z matematiy v pololetí, barva očí, výša, váha apod. Ozačíme-li určitý vatitativí tatiticý za X, pa číelé hodoty tatiticých edote tatiticého ouboru ozačíme ymbolem i, de i = 1 až. Přílad) Máme tatiticý oubor všech žáů třetích ročíů SPŠ a Proeu ve šolím roce Deme tomu, že počet všech těchto žáů e = 80. Ozačme ymbolem X eich výšu a eřadíme e podle abecedy. Pa 1 e výša prvího žáa podle abecedy, e výša druhého žáa, 80 e výša poledího žáa. U větších tatiticých ouborů e zřemé, že bude docházet opaovaému výytu teých hodot tatiticého zau. Ozačíme růzé hodoty tatiticého zau X, = 1,...,, de (rovot atae opravdu e výimečě). Pa 1 bude eižší hodota zau X, evyšší hodota zau X. Počet tatiticých edote e teou hodotou pro = 1,,..., azýváme četot hodoty. Pro růzá tuto četot ozačíme. Upořádáme-li hodoty zau X a eich odpovídaící četoti do tabuly, dotáváme edorozměré rozděleí četotí.
2 Přílad) Máme opět tatiticý oubor všech žáů třetích ročíů SPŠ a Proeu ve šolím roce Zoumáme eich výšu X. Žáů třetích ročíů e celem 80. Zde e tabula rozděleí četotí zau X: (cm) Tato tabula mimo ié říá: Bylo zištěo 6 růzých výše žáů, emeší aměřeá výša žáa byla 15 cm a měl i ede žá, evětší aměřeá výša byla 196 cm a měl i tatéž ede žá, počet žáů výšou 180 cm e 6 atd. Dále zřemě platí Itervalové rozděleí četotí V ěterých případech, dy e rozah ouboru a počet variat vatitativího tatiticého zau velý, můžeme zedodušit rozděleí četotí záměrým zaedbáím malých rozdílů mezi hodotami zau. Při tomto upořádáí údaů rozdělíme obor hodot tatiticého zau a itervaly. Hodoty, teré patří do teého itervalu, považueme za rovoceé a ahrazue e třed itervalu. Vhodý počet itervalů e taovue růzě, ezáměší e tzv. Sturgeovo pravidlo, podle terého má být počet itervalů přibližě 1 + 3,3log. Rozděleí relativích četotí Relativí četot (oz. p ) vyadřue podíl četoti určité hodoty (variaty) tatiticého zau ebo upiy (itervalu) hodot a oučtu četotí všech hodot. p pro = 1,,...,. Zřemě platí p 1 1. Přílad 1 Při zišťováí počtu ezletilých dětí ve dvaceti domácotech me dotali výledy 0,0,,,1,1,1,1,1,0,0,0,3,,1,1,,3,,1. Upořádete údae do tabuly rozděleí četotí, vypočítete relativí četoti a vyádřete zatoupeí edotlivých variat tatiticého zau v procetech.
3 Přílad Navrhěte podle Sturgeova pravidla formu itervalového rozděleí četotí věů u 000 pracovíů. Požadueme, aby edotlivé itervaly byly teě velé, a víme, že vě pracovíů e v itervalu od 18 do 66 let. Přílad 3 Ve třídě e 10 žáů propěchem od 1 do 1,5, 15 žáů propěchem od 1,5 do, 1 žáů propěchem od do,5 a 5 žáů propěchem od,5 do 3. Setavte tabulu itervalového rozděleí četotí propěchu žáů; četoti itervalů propěchu vyádřete abolutě, relativě a v procetech. I. Charateritiy polohy Statiticé charateritiy Charateritiy polohy ou číla, terá umožňuí rovávat úroveň zoumaého evu u dvou ebo více ouborů. Pro rováí polohy hodot zau v růzých ouborech e ečatěi používaí průměry, eichž výše přímo závií a velioti všech hodot. Nepoužívaěším druhem průměru e aritmeticý průměr (AP). Te e začí a určue e ze vztahu: i1 i Tato vyádřeý AP e azývá protý AP. Vycházíme-li z rozděleí četotí, pa dotáváme aritmeticý průměr ve formě vážeého AP. 1 1 Přílad 4 Máme údae o počtu dětí v dvaceti domácotech: 0,1,1,1,1,,,,,0,0,0,3,4,1,0,0,1,1,. Vypočítete protý AP a po upořádáí údaů do tabuly rozděleí četotí uažte, že e teému výledu dodeme i použitím vzorce pro vážeý AP. Doplňuící charateritiy polohy ou modu ˆ a mediá ~. Modu e ečetěší hodota tatiticého ouboru. Mediá e protředí hodota tatiticého ouboru, terý e upořádá podle velioti hodot tatiticého zau. Při udém počtu e mediá aritmeticým průměrem dvou protředích hodot. Přílad 5 Údae o počtu zamešaých hodi v urzu matematiy ou upořádáy do tabuly a áleduící traě. Určete AP, modu a mediá.
4 Počet zamešaých hodi Počet žáů Přílad 6 Ze 44 žáů e 1 ve věu 17 let, 30 ve věu 18 let a ve věu 19 let. Jaý e průměrý vě žáů? Přílad 7 V prví třídě abíral ede žá průměrě 0 g papíru, ve druhé třídě 30 g a ve třetí 40 g. Koli ilogramů papíru ebral průměrě ede žá za všechy tři třídy dohromady, etliže ve druhé třídě byl teý počet žáů ao v prví třídě, ale ve třetí třídě byla polovia žáů ve rováí prví i druhou třídou? II. Charateritiy variability Kromě polohy ledovaých zaů e třeba zoumat i to, a e edotlivé hodoty liší od míry polohy i a e liší vzáemě. Odlišot hodot přílušého zau azýváme variabilita. Přílad) Řada 7,7,7,8,8,8,8,9,9,9 Řada 1,1,1,8,8,8,8,15,15,15 ˆ = ~ = = 8 ˆ = ~ = = 8 Přitom e obě tyto řady liší variabilitou. Nepoužívaěší charateritiou variability e rozptyl v proté formě defiová: i 1 i. Rozptyl tatiticého zau e Při upořádáí údaů do tabuly rozděleí četotí používáme pro výpočet vážeou formu rozptylu 1 1 rep. 1 1 (tzv. výpočetí tvar)
5 Dalšími používaými charateritiami variability ou apřílad měrodatá odchyla variačí oeficiet v či variačí rozpětí R = ma mi. Přílad 8 Pro řadu číel 1,,3,4,5,6,7,8,9,10 vypočítete variačí rozpětí, rozptyl a měrodatou odchylu., Přílad 9 Na záladě údaů tabuly íže vypočítete měrodatou odchylu počtu zmetů. Počet zmetů Počet případů Celem 103 Přílad 10 Porovete difereciaci mezd dvou podiů a záladě údaů v tabulce íže. Podi A Podi B hodiová mzda (Kč) počet pracovíů měíčí mzda (Kč) počet pracovíů Celem 00 Celem 30 Přílad 11 Měřicí přítro e při 0 měřeích doputil áleduících odchyle od utečé hodoty parametru pozorovaé oučáty. 0,01-0,0 0,01 0,01-0,01 0,00 0,01-0,0 0,0 0,00 0,01-0,01 0,00 0,03 0,01-0,03-0,01 0,0 0,01-0,0 Určete aritmeticý průměr chyby měřeí a měrodatou odchylu chyb měřeí.
6 Přílad 1 Pro řadu číel,3,3,3,4,4,4,5,5,6,7,8 vypočtěte variačí rozpětí, rozptyl a měrodatou odchylu. Přílad 13 Ve třídě e 30% žáů bez ourozece, 60% žáů edím ourozecem a 10% žáů e dvěma ourozeci. Vypočtěte měrodatou odchylu počtu ourozeců ve třídě. Přílad 14 Porovete variabilitu řad 1,, 3, 4, 5 variabilitou řady 100, 00, 300, 400, 500.
Statistika Statistická jednotka, statistický soubor a statistické znaky Poznámka. (Rozd lení etností jednoho kvantitativního statistického znaku)
Statistia Tímto pomem většiou ozačueme: a) statisticé údae a eich ěteré fuce, b) statisticou čiost a istituce, teré tuto čiost provozuí, c) statisticou teorii. Statisticé údae eboli statisticá data sou
Více1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá
Statitická šetřeí a zpracováí dat Statitika e věda o metodách běru, zpracováí a vyhodocováí tatitických údaů. Statitika zkoumá polečeké, přírodí, techické a. evy vždy a dotatečě rozáhlém ouboru údaů. Matematická
VíceStatistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.
Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový
VíceStatistické charakteristiky (míry)
Stattcé charaterty (míry) - hrují formac, obažeou v datech (vyjadřují j v ocetrovaé formě); - charaterzují záladí ryy zoumaého ouboru dat; - umožňují porováváí více ouborů. upy tattcých charatert :. charaterty
VíceCharakteristiky úrovně
Charaterty úrově Měřeí úrově Úroveň (poloha) je jedou ze záladích vlatotí tattcých dat, v úrov e mohou tattcá data lšt ebo aopa hodovat. Výzačé hodoty varačí řady ejou ctlvé a změu jedotlvých hodot Medá
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru
VíceSoustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru.
Soutava mometů Momety (Obecé, cetrálí a ormovaé) Do ytému mometových charatert patří ty ejdůležtější artmetcý průměr (mometová míra úrově) a rozptyl (mometová úroveň varablty). Obecý momet -tého tupě:
Více3. cvičení 4ST201. Míry variability
cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry varablty
Více3. cvičení 4ST201 - řešení
cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 - řešeí Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry
VíceTéma 1: Pravděpodobnost
ravděpodobot Téma : ravděpodobot ředáša - ravděpodobot áhodého evu Náhodý pou a áhodý ev Náhodý pou - aždá čot, eíž výlede eí edozačě urče podmíam, za terých probíhá apř hod otou, měřeí dély, běh a 00
Více8. cvičení 4ST201. Obsah: Neparametrické testy. Chí-kvadrát test dobréshody Kontingenční tabulky Analýza rozptylu (ANOVA) Neparametrické testy
cvičící 8. cvičeí 4ST1 Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST1 Neparametricé testy Neparametricétesty využíváme,
VíceNEPARAMETRICKÉ METODY
NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost
VíceDoc. Ing. Dagmar Blatná, CSc.
PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj
VícePE 301 Podniková ekonomika 2. Garant: Eva KISLINGEROVÁ. Téma Metody mezipodnikového srovnávání. Téma 12. Eva Kislingerová
PE 30 Podiková ekoomika Garat: Eva KISLINGEROVÁ Téma Metody mezipodikového srováváí Eva Kisligerová Téma Eva Kisligerová Vysoká škola ekoomická v Praze 003 - Mezipodikové srováváí Poprvé 956- koferece
Vícestavební obzor 1 2/2014 11
tavebí obzor /04 Exploratorí aalýza výběrového ouboru dat pevoti drátobetou v tlau Ig. Daiel PIESZKA Ig. Iva KOLOŠ, Ph.D. doc. Ig. Karel KUBEČKA, Ph.D. VŠB-TU Otrava Faulta tavebí Věrohodé vyhodoceí experimetálích
Více8. cvičení 4ST201-řešení
cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,
VíceSTATISTIKA. Základní pojmy
Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci
Více7 VYUŽITÍ METOD OPERAČNÍ ANALÝZY V TECHNOLOGII DOPRAVY
7 VYUŽITÍ METOD OERAČNÍ ANALÝZY V TECHNOLOGII DORAVY Operačí aalýza jao jeda z oblatí apliovaé matematiy achází vé široé uplatěí v průmylových a eoomicých apliacích. Jedím z oborů, ve teré hraje ezatupitelou
VíceDeskriptivní statistika 1
Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky
VíceP2: Statistické zpracování dat
P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu
VíceSměrnice 1/2011 Statistické vyhodnocování dat, verze 3 Verze 3 je shodná s původní Směrnicí 1/2011 verze 2, za čl. 2.3 je vložen nový odstavec
Směrice /0 Statitické vyhodocováí dat, verze 3 Verze 3 e hodá ůvodí Směricí /0 verze, za čl..3 e vlože ový odtavec. Statitické metody ro zkoušeí zůobiloti Statitická aalýza oužívaá ro aalýzu výledků zkoušky
VícePro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).
STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,
VíceLekce Úroveň a její měření. aritmetický průměr; geometrický průměr; harmonický průměr; medián; mocninový
Lece Nejjedodušší Měřeí a charaterty úrově vlatotí datového ouboru je jeho úroveň, azývaá taé poloha. Charaterty úrově dělíme především podle toho, zda jou tvořey a báz výzamých hodot ebo zda jou fucem
VíceInterval spolehlivosti pro podíl
Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této
Více,6 32, ,6 29,7 29,2 35,9 32,6 34,7 35,3
Př 7: S 95% polehlivotí odhaděte variabilitu (protředictvím odhadu měrodaté odchylky) a tředí hodotu obahu vitamíu C u rajčat. Záte-li výledky rozboru 0-ti vzorků rajčat: 3 4 5 6 7 8 9 0 9,6 3,4 30 3,6
VíceMěření a charakteristiky variability
Lece Měřeí a charatert varablt Po úrov je druhou vlatotí datového ouboru promělvot varablta Tato vlatot je ložtější o čemž vpovídají ja růzé ocepce chápáí promělvot dat ta začý počet dpoblích charatert
VíceStatistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY
Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF
VícePopisné (deskriptivní) metody. Statistické metody a zpracování dat. II. Popisné statistické metody. Rozdělení četností. Skupinové rozdělení četností
Popé (derptví) metody Číme závěry pouze z určtého zpracovávaého ouboru výběrového, popujeme je to, co bylo zjštěo, bez zobecňováí Stattcé metody a zpracováí dat II. Popé tattcé metody Petr Dobrovolý Derptví
Více3. Charakteristiky a parametry náhodných veličin
3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo
Více6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.
6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola
Více8.1.2 Vzorec pro n-tý člen
8.. Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Myslím, že jde o jedu z velmi pěých hodi. Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým
VíceTéma 3: Popisná statistika
Popá tatta Téma : Popá tatta Předáša 7 Záladí tattcé pojmy Pojem a úoly tatty Statta je věda, teá e zabývá zíáváím, zpacováím a aalýzou dat po potřeby ozhodováí. Zoumá tav a vývoj homadých jevů a vztahů
VíceSTATISTIKA. pracujeme pouze s r hodnotami x. má svou absolutní četnost. n ) udává, jaká část souboru má hodnotu znaku
STATISTIKA. Základí pomy věda o metodách sběru, zpracováí a vyhodocováí statistických údaů. Zkoumá společeské, přírodí, techické a ié evy vždy a dostatečě rozsáhlém souboru údaů. Matematická statistika
VíceMomenty a momentové charakteristiky
Lekce 3 Momety a mometové charaktertky Pokud jme e v předešlém výkladu zmňoval o ěkteré tattcké charaktertce, zpravdla jme rověž uváděl, zda j řadíme mez více ebo méě důležté. A byly to právě artmetcký
VícePopis datového souboru
Lece 3 Pop datového ouboru Zatím jme hovořl převážě o zjšťováí dat a jejch zpracováí Údaje datového ouboru popují aždý případ zvlášť Ní e pouíme vužít údaje tomu, abchom zobecl určté tpcé vlatot datového
VícePRAVDĚPODOBNOST A STATISTIKA. Testy hypotéz
SP3 Tey hypoéz PRAVDĚPODOBNOST A STATISTIKA Tey hypoéz Lbor Žá SP3 Tey hypoéz Lbor Žá Tey hypoéz- úvod Nechť X X e áhodý výběr T X X X áhodý veor ezávlé ložy erý má rozděleí závlé a parameru θ Θ Θ R Ozačme:
VíceSTATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson
STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,
VíceTestování statistických hypotéz
Tetováí tatitických hypotéz CHEMOMETRIE I, David MILDE Jedá e o jedu z ejpoužívaějších metod pro vyloveí závěrů o základím ouboru, který ezkoumáme celý, ale pomocí áhodého výběru. Př.: Je obah účié látky
VíceTéma 5: Analýza závislostí
Aalýza závlotí Téma 5: Aalýza závlotí Předáša 5 Závlot mez ev Záladí pom Předmětem této aptol ude zoumáí závlotí ouvlotí mez dvěma a více ev. Jedá e o proutí do vztahů mez ledovaým ev a tím přlížeí tzv.
Více8.1.2 Vzorec pro n-tý člen
8 Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým příladům z IQ testů, teré studeti zají
Více0. 4b) 4) Je dán úhel 3450. Urči jeho základní velikost a převeď ji na radiány. 2b) Jasný Q Q ZK T D ZNÁMKA. 1. pololetí 2 3 1 2 2 3 5 2 3 1 1
) Urči záladí veliost úhlu v radiáech, víš-li, že platí: a) si cos 0. b) cos, Opravá zouša z matematiy 3SD (druhé pololetí) c) cotg 3 5b) ) Na možiě R řeš rovici cos cos 0. 4b) 3) Vzdáleost bodů AB elze
VíceLineární regrese ( ) 2
Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující
Více1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL
Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,
VíceÚvodem. Vážení čtenáři,
Úvodem Vážeí čteář, rpta, terá právě otevíráte, jou určea především poluchačům druhého ročíu baalářého tuda všech oborů Vyoé šoly fačí a práví, tj. jao tudjí materál předmětům Pravděpodobot a tatta, Pravděpodobot
VícePravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí
VíceVztahy mezi základním souborem a výběry. Základní pojmy a symboly. K čemu to je dobré? Výběrové metody zkoumání
K čemu to je dobé? Obvyklým případem při zpacováí homadých jevů je, že máme poměě malý počet pozoováí ějaké veličiy a chceme učiit závěy o tom, co bychom obdželi, kdybychom měli pozoováí mohokát více.
VícePosloupnosti ( 1) ( ) 1. Různým způsobem (rekurentně i jinak) zadané posloupnosti. 2. Aritmetická posloupnost
Poloupoti Růzým způobem (rekuretě i jik zdé poloupoti Urči prvích pět čleů poloupoti, ve které, + Urči prvích pět čleů poloupoti, je-li dáo:, + + Urči prvích pět čleů poloupoti, je-li dáo: 0,, Urči prvích
VíceElementární zpracování statistického souboru
Elemetárí zpracováí statistického souboru Obsah kapitoly 4. Elemetárí statistické zpracováí - parametrizace vhodými empirickými parametry Studijí cíle Naučit se výsledky měřeí parametrizovat vhodými empirickými
VícePopisná statistika. (Descriptive statistics)
Popá tatta Decrptve tattc Výledem měřeí je oubor aměřeých hodot vytvářející datový oubor D { } V datovém ouboru e mohou vyytovat tytéž hodoty vícerát, zejméa tehdy, mají-l velčy drétí epojtou povahu počet
Více- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.
MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je
Více1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor
1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců
VíceBudeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
VícePopisná statistika. Zdeněk Janák 9. prosince 2007
Popisá statistika Zdeěk Jaák jaak@physics.mui.cz 9. prosice 007 Výsledkem měřeí atmosférické extikce z pozorováí komet a observatoři Skalaté Pleso jsou tyto hodoty extikčích koeficietů ve vlové délce 46
Více6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3.
Zálady matematiy Kombiatoria. KOMBINATORIKA 8.. Záladí pojmy 8... Počítáí s fatoriály a ombiačími čísly 8.. Variace 8.. Permutace 85.. Kombiace 87.5. Biomicá věta 89 Úlohy samostatému řešeí 9 Výsledy úloh
Více5. Základní statistický rozbor
5. Záladí tattcý rozbor Záladí tattcý rozbor očívá ve výočtech a rezetac číelých charatert tattcého ouboru hodot zoumaého číelého (vattatvího) tattcého zau. Číelé charaterty jou číelé hodoty, teré zhuštěím
VícePravděpodobnostní model doby setrvání ministra školství ve funkci
Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí
VíceTeorie hromadné obsluhy
4..5 Teorie hromadé obluhy Radim Faraa Podlady pro výuu pro aademicý ro 3/4 Obah Teorie hromadé obluhy Klaiiace ytémů hromadé obluhy Sytém hromadé obluhy M/M// / /FIFO Sytém hromadé obluhy M/M/// Sytém
VíceTENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM STATISTIKA
STATISTIKA Statitický oubor: základí poem tatitiky. Statitika hledá ty latoti e, které e proeuí tepre dotate rozáhlém ouboru pípad. Statitické edotky: prky tatitického ouboru. Jeich poet zaíme. Statitické
VíceTéma 4: Výběrová šetření
Výběrová šetřeí Téma : Výběrová šetřeí Předáška Výběrové charaktertky a jejch rozděleí Výzam a druhy výběrového šetřeí tattcké šetřeí úplé vyčerpávající eúplé výběrové výběrové šetřeí aha o to aby výběrový
VíceStatistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc
Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se
VíceLineární a adaptivní zpracování dat. 8. Modely časových řad I.
Lieárí a adaptiví zpracováí dat 8. Modely časových řad I. Daiel Schwarz Ivestice do rozvoje vzděláváí Cíl, motivace Popis a idetifikace systémů BLACK BOX Cíl, motivace Popis a idetifikace systémů BLACK
VíceZá k l a d y k v a n t i t a t i v n í g e n e t i k y
Virtuálí vět geetiky 1 Základy kvatitativí geetiky Zá k l a d y k v a t i t a t i v í g e e t i k y Doud byly základí geetické procey (přeo geetické iformace) ledováy a zacích a vlatotech dikrétími hodotami
Více1.1. Primitivní funkce a neurčitý integrál
Mateatia II. NEURČITÝ INTEGRÁL.. Priitiví fuce a eurčitý itegrál Defiice... Říáe, že fuce F( ) je v itervalu ( ab, ) priitiví fucí fuci f ( ), platí-li pro všecha ( ab, ) vztah F = f. Defiice... Možia
VíceKapitola 3.: Úlohy o jednom náhodném výběru z normálního rozložení
Kapitola 3.: Úlohy o jedom áhodém výběru z ormálího rozložeí Cíl kapitoly Po protudováí této kapitoly budete - zát vlatoti pivotových tatitik odvozeých z áhodého výběru z ormálího rozložeí a budete je
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,
VíceZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)
ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti
VícePředmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 25. srpen 2013 Název zpracovaného celku: STATISTIKA ZÁKLADNÍ POJMY
Předmět: Ročík: Vytvořl: Datum: MATEMATIKA ČTVRTÝ Mg Tomáš MAŇÁK 5 pe 03 Název zpacovaého celku: STATISTIKA ZÁKLADNÍ POJMY STATISTIKA ZÁKLADNÍ POJMY Stattka e věda o metodách běu (pozoováí, měřeí, vážeí,
Víceodhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.
10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé
Více2 Diferenciální počet funkcí více reálných proměnných
- 6 - Difereciálí počet fucí více proměých Difereciálí počet fucí více reálých proměých 1 Spoitost, limity a parciálí derivace Fuce více reálých proměých Defiice Pod reálou fucí reálých proměých rozumíme
Více1 STATISTICKÁ ŠETŘENÍ
STATISTICKÁ ŠETŘENÍ Záladem aždého tattcého zoumáí jou údaje (data). Lze je zíat v záadě dvěma způoby. Buď je převzít z ějaého zdroje ebo je am zjtt. Seudárí data údaje, teré převezmeme z růzých zdrojů;
VícePracovní list č. 3 Charakteristiky variability
Pracovní lt č. 3 Charaktertky varablty 1. Př zjšťování počtu nezletlých dětí ve třcet vybraných rodnách byly zíkány tyto výledky: 1, 1, 0,, 3, 4,,, 3, 0, 1,,, 4, 3, 3, 0, 1, 1, 1,,, 0,, 1, 1,, 3, 3,. Upořádejte
Vícek(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln
Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = + 6 + +.... Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) =
VíceJEDNOROZMĚRNÁ POPISNÁ STATISTIKA
JEDNOROZMĚRNÁ POPISNÁ STATISTIKA Záladí tattcé ojmy Statta - teto ojem lze cháat v záadě ve třech ojetích: ) číelé ebo loví údaje (data) a jejch ouhry o hromadých jevech ) ratcá čot očívající ve běru,
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
VíceOdhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
Více8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI
8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI Ča ke tudiu kapitoly: 60 miut Cíl: Po protudováí tohoto odtavce budete umět: charakterizovat další typy pojitých rozděleí: χ, Studetovo, Ficher- Sedocorovo -
Více13 Popisná statistika
13 Popisá statistika 13.1 Jedorozměrý statistický soubor Statistický soubor je možia všech prvků, které jsou předmětem statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický
Více2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT
2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic
VíceZákladním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo.
přednáša KOMBINATORIKA Kombinatoria je obor matematiy, terý se zabývá uspořádáním daných prvů podle určitých pravidel do určitých supin Záladním pojmem v ombinatorice je pojem (-prvová) supina, nebo taé
Více12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
VíceOdhady a testy hypotéz o regresních přímkách
Lekce 3 Odhad a tet hpotéz o regreích přímkách Ve druhé lekc jme kotruoval kofdečí terval a formuloval tet hpotéz o korelačím koefcetu Korelačí koefcet je metrckou charaktertkou tezt závlot, u které ezáleží
VícePRACOVNÍ SEŠIT KOMBINATORIKA, PRAVDĚPODOBNOST A STATISTIKA. 9. tematický okruh:
Připrav se a státí maturití zoušu z MATEMATIKY důladě, z pohodlí domova a olie PRACOVNÍ SEŠIT 9. tematicý oruh: KOMBINATORIKA, PRAVDĚPODOBNOST A STATISTIKA vytvořila: RNDr. Věra Effeberger eperta a olie
VícePRAVDĚPODOBNOST A STATISTIKA
SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty
VícePRAVDĚPODOBNOST A STATISTIKA
Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru
VíceČeské vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika
České vysoké učeí techické v Praze Fakulta dopraví Semestrálí práce Statistika Čekáí vlaku ve staicích a trase Klado Ostrovec Praha Masarykovo ádraží Zouzalová Barbora 2 35 Michálek Tomáš 2 35 sk. 2 35
Více10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR
Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor
Vícen. Často může znak nabývat jen určitého počtu r různých hodnot; tyto hodnoty znaku označíme symboly x, x,..., x.
. STATISTIKA Statistika zkoumá evy a dostatečě ozsáhlém soubou říadů a hledá ty vlastosti evů, kteé se oeví až v soubou říadů a e a edom říadě. Tyickým říkladem e ůmě zámek ve škole z daého ředmětu, ůměá
VícePRAVDĚPODOBNOST A STATISTIKA
SP Teováí hypoéz PRAVDĚPODOBNOST A STATISTIKA SP Teováí hypoéz Teováí hypoéz Nechť je áhodá proměá, kerá má diribučí fukci Fx, ϑ. Předpokládejme, že záme var diribučí fukce víme jaké má rozděleí a ezáme
VíceMod(x) = 2, Med(x) = = 2
Pracoví list č.. Při zjišťováí počtu ezletilých dětí ve třiceti vybraých rodiách byly získáy tyto výsledky:,,,,,,,,,,,,,,,,,,,,,,,,,,,,,. Uspořádejte získaé údaje do tabulky rozděleí četostí a vyjádřete
VíceNázev školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: matematika a její aplikace
Název: Kombiatoria Autor: Mgr. Haa Čerá Název šoly: Gymázium Jaa Nerudy, šola hl. města Prahy Předmět, mezipředmětové vztahy: matematia a její apliace Ročí: 5. ročí Tématicý cele: Kombiatoria a pravděpodobost
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
VíceNáhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.
Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího
VíceV. Normální rozdělení
V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,
VíceMatematická statistika I přednášky
Statitika (004) - Kába, Svatošová Cvičeí ze tatitiky - Prášilová, Svatošová Matematická tatitika I předášky SAS (Statitical Aalyi Sytem) - tatitický oftware (v dalším emetru) Základí tatitické pojmy -
VícePopisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem
Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme
VíceCo je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika
Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má
VíceDvourozměrná tabulka rozdělení četností
ANALÝZA ZÁVILOTÍ - zouáí závlot dvou evet více poěých, ěřeí íl této závlot, atd - cíle je hlubší vutí do podtat ledovaých jevů a poceů, přblížeí tzv příčý ouvlote Dvouozěá tabula ozděleí četotí - je eleetáí
Více2 EXPLORATORNÍ ANALÝZA
Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů.
VíceDigitální učební materiál
Dgtálí učebí materál Číslo projetu CZ..07/.5.00/34.080 Název projetu Zvaltěí výuy prostředctvím ICT Číslo a ázev šabloy líčové atvty III/ Iovace a zvaltěí výuy prostředctvím ICT Příjemce podpory Gymázum,
VícePřednáška č. 2 náhodné veličiny
Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující
Více