Návrh filtrů FIR, metoda okénkování, klasická okna, návrh pomocí počítače. Návrh filtrů IIR, základní typy filtrů, bilineární transformace
|
|
- Filip Mareš
- před 8 lety
- Počet zobrazení:
Transkript
1 6. ČÍSLICOVÉ FILRY MEODY NÁVRHU Návrh diskrétních filtrů - úvod Návrh filtrů FIR, metoda okénkování, klasická okna, návrh pomocí počítače Návrh filtrů IIR, ákladní typy filtrů, bilineární transformace Srovnání filtrů FIR a IIR 383ZS P6
2 NÁVRH DISKRÉNÍCH FILRŮ ÚVOD Návrh požadovaného průběhu H(e jθ ) ; požadovaná fáová charakteristika většinou neadána nebo požadována lineární fáe Specifikace: graficky - toleranční diagram, často číselně v db (povolené vlnění v propustném pásmu pass-band ripple- a minimální eslabení v ávěrném pásmustop-band attenuation) Obr. toleranční digram, DP V praxi je h(n) reálná posloupnost stačí adat H(e jθ ) v pásmu 0 θ π. Návrh filtru (po adání H(e jθ ) ):. FIR nebo IIR filtr?. Řád filtru? (např. Matlab) 3. Struktura filtru a výpočet koeficientů, případně ověření vlivu kvantování u hardwarových filtrů (x, y, b i, a i ). 4. Kontrola splnění adání (např.: Matlab freq, imp); při nesplnění opakování návrhu. 383ZS P6
3 NÁVRH FIR FILRŮ Základní metoda: užití FD a oken ( windowing ) Dáno: Požadovaná frekvenční charakteristika Pomocí IFD: h d π π jθ ( n) H ( e ) jnθ d e dθ π jθ ( e ) n jnθ H ( h ( n) e ) Frekvenčně selektivní filtry frekvenční charakteristika je periodická obdélníková funkce (nespojitosti mei pásmy), h d (n) jsou koeficienty F.Ř. této charakteristiky. a má nekonečně mnoho členů u FIR filtru nutnost ořínutí (rovnice pro H d (e jθ ) je F.Ř. v komplexním tvaru s reálnými koeficienty h d (n). Při použití konečného počtu těchto koeficientů dojde k Gibbsovu jevu, frekvenční charakteristika bude mít u skokových měn překmity). ato metoda v MALABu: příka fir Grafické náornění postupu této metody vi další blána d d 383ZS P6 3
4 Návrh dolní propusti FIR metodou FD a oken výchoí charakteristika A, výsledná B (v obr. p místo π a q místo θ) 383ZS P6 4
5 Zvlnění (amplitudové) modulové frekvenční charakteristiky filtru navrženého metodou okénkování le potlačit tím, že se pro omeení délky h(n) použije jiné než obdélníkové okno. ZÁKLADNÍ OKNA POUŽÍVANÁ PŘI NÁVRHU DISKRÉNÍCH FILRŮ Kauální okna: obdélníkové (pravoúhlé), Hann, Hamming, Blackmann, trojúhelníkové OBDÉLNÍKOVÉ (PRAVOÚHLÉ) OKNO Definice: w ( n) pro 0 n L, w ( n) jinde O O 0 Jde o kauální jednotkový diskrétní obdélníkový impuls délky L M+, takže jeho spektrum je: OKNO HANN Definice: w W O jθl ( L) θ θ e j j ( e ) W ( ) jθ e e jθ e πn L sin sin ( θl / ) ( θ / ) ( n) cos pro 0 n L, w ( n) jinde HN HN 0 383ZS P6 5
6 OKNO HAMMING Definice: w πn L ( n) cos pro 0 n L, w ( n) jinde HM HM 0 OKNO BLACKMAN Definice: w w BL BL ( n) πn cos cos L ( n) 0 jinde 4πn pro 0 n L, L OKNO ROJÚHELNÍKOVÉ (BARLEOVO, ale v Matlabu odchylná) Definice: w w w n L n L ( n) pro 0 n ( L ) ( n) pro ( L ) ( n) 0 jinde. /, / n L, O 383ZS P6 6
7 PRŮBĚH ZÁKLADNÍCH OKEN V ČASOVÉ OBLASI (symetrická okna délky M) 383ZS P6 7
8 SPEKRA ZÁKLADNÍCH OKEN (PRŮBĚH VE FREKVENČNÍ OBLASI) (Matlab: prohlížení oken: wvtool, de: symetrická okna (u DF: periodická okna)) 383ZS P6 8
9 ZÁKLADNÍ VLASNOSI KLASICKÝCH OKEN PRO NÁVRH FILRŮ FIR Náev okna obdélník Hann. postranní Šířka hlavního Šířka přechodného Minimální eslabení oblouk oblouku pásma -3 db 4π/(M+),8π/(M+) db -3 db 8π/(M+) 6,π/(M+) 4 db Hamming -4 db 8,5π/(M+) 6,6π/(M+) 53 db Blackman -57 db π/(m+) π/(m+) 74 db trojúhelník -5 db 8π/(M+) 5,6π/(M+) 5 db NÁVRH DOLNÍ PROPUSI FIR h d d ( jθ ) ( jθ e pro θ θ, H e ) pro θ θ π H 0 h d π ( ) ( jθ ) jnθ sin( nθh ) sin( nθh ) n H e e dθ L θ π π d π n h π h nθ h 383ZS P6 9
10 Jde o funkci sinc(x); doporučené hodnoty θ h jsou θh ( 0.3π; 0. 5π) periodické frekvenční charakteristiky je (-π, π).). (Základní interval ČÍSELNÝ PŘÍKLAD: DP FIR, L7, f VZ 00 H, f h 5 H, požadována lineární fáe. b i?, h(n)?, H(e jθ )? Řešení: θ h h π f f h v π ; ( n) b h( n) ( nπ / ) sin n b n, n nπ / 3 ( π) b.5, b / π, b 0, / 3 Je tedy 0 0 b3 h( n) δ 3π H π ( n 3) + δ( n ) + δ( n) + δ( n + ) δ( n + 3) π 3π 3 3 jθ ( ) ( + ) ( + ), a tedy H ( e ) cosθ cos( 3θ) π 3π π 3π 383ZS P6 0
11 H(e jθ ) neávisí na časovém posunu impulsní odevy, takže posuvem h d (n) doprava o polovinu její délky ískáme kauální filtr se stejnou frekvenční charakteristikou. Důsledkem posuvu je ale měna původně nulové fáe na fái lineární. Násobení h d (n) oknem Hann délky rovné L M + odpovídá ve frekvenční oblasti konvoluci ideální frekvenční charakteristiky filtru s frekvenčním spektrem okna Hann. Protože okno Hann (a všechna používaná okna) má nižší postranní oblouky než okno obdélníkové, překmity v modulové frekvenční charakteristice se sníží. Protože je ale šířka hlavního oblouku těchto oken širší než u okna obdélníkového, rošíří se přechodné pásmo filtru. 383ZS P6
12 Příklad DP FIR délky 50, θ h 0.4π (f NORM 0.4) be okna (tj. s oknem obdélník) a s oknem Hann: 383ZS P6
13 DALŠÍ MEODY NÁVRHU FIR FILRŮ Nejdůležitější metod návrhu FIR filtrů je NÁVRH FILRU S KONSANNÍM ZVLNĚNÍM ( EQUIRIPPLE DESIGN ) optimální návrh FIR filtrů. Metoda okénkování - největší chyby v okolí přechodného pásma. PARKS MCCLELLANŮV ALGORIMUS - aložen na Remeově výměnném algoritmu využívá aproximace frekvenční charakteristiky pomocí Čebyševových polynomů. Amplitudová frekvenční charakteristika - konstantní vlnění v propustném pásmu a v ávěrném pásmu. akto navržená dolní propust má větší minimální eslabení v ávěrném pásmu než DP navržená metodou okénkování. Maximální chyba mei navrženou a požadovanou frekvenční charakteristikou filtru je tímto algoritmen minimaliována (minmax algoritmy). Může být dána délka filtru L a povolená kolísání v propustném a ávěrném pásmu a program určí frekvence přechodného pásma, nebo může být dáno L a požadované hraniční frekvence přechodného pásma θ a θ a program určí δ a δ.. V MALABu je tento algoritmus využit v příkau breme(n, f, a), který navrhuje vícepásmový FIR filtr délky Ln+ s lineární fáí, s přechodnými pásmy a s předepsanými hodnotami esílení v definovaných frekvenčních pásmech. Velikost kolísání v jednotlivých pásmech určí algoritmus a je možné ji jistit grafu frekvenční odevy. Vedle metody Parks-McClellan le pro návrh FIR filtrů použít MEODU FREKVENČNÍHO VZORKOVÁNÍ, u které si volíme hodnoty L vorků v H d (k) (požadované frekvenční charakteristice v DF) a impulsní odevu nejdeme aplikací IDF na posloupnost těchto vorků. Frekvenční odevy v FD a DF se ale shodují jen v těchto vorcích, jinde mohou být velké odchylky. 383ZS P6 3
14 NÁVRH IIR FILRŮ OBVYKLE: Z ANALOGOVEHO PROOYPOVEHO FILRU (AF), H() JE RACIONALNI LOMENA FUNKCE. PŘENOS AF: POMOCÍ L, V ROVINĚ p, PŘENOS DF: POMOCÍ Z, V ROVINĚ O ZACHOVÁNÍ PODSANÝCH VLASNOSÍ (SABILIY) AF: IM OSA ROVINY p JEDNOKOVA KRUŽNKICE V ROVINĚ LEVÁ POLOROVINA p VNIŘEK JEDNOKOVÉ KRUŽNICE V ZÁKLADNÍ MEODY PŘECHODU p : INVARIANNOS IMPULSNÍ ODEZVY NÁHRADA DERIVACÍ DIFERENCEMI BILINEÁRNÍ RANSFORMACE 383ZS P6 4
15 ZÁKLADNÍ YPY FREKVENČNĚ SELEKIVNÍCH FILRŮ BUERWORH H(ω) - maximálně plochá v propustném pásmu monotonní (be překmitů) v celém pásmu frekvencí strmost v přechodném pásmu roste s řádem filtru Dolnofrekvenční propust Butterworth, řád, 4. 5 a 7.4 IIR LP BUER, f d 0.4 MODUL ZESILENI N, 4, 5, NORMOVANA FREKVENCE (θ f π ) 383ZS P6 5
16 ČEBYŠEV (ČEBYŠEV A ČEBYŠEV ) DEFINOVANÉ ROVNOMĚRNÉ ZVLNĚNÍ V PROPUSNÉM PÁSMU (CHEBY) NEBO ZÁVĚRNÉM PÁSMU (CHEBY) PŘECHODNÉ PÁSMO: UŽŠÍ NEŽ BUERWORH Dolnofrekvenční propusti CHEBY A CHEBY, ŘÁD, 4, 5 a 7:.4 IIR LP CHEBY, f h 0.4, R p db.4 IIR LP CHEBY, f h 0.4, Rs 0 db,. N, 4, 5, 7. N, 4, 5, 7 MODUL ZESILENI MODUL ZESILENI NORMOVANA FREKVENCE (θf π ) NORMOVANA FREKVENCE (θ f π ) 383ZS P6 6
17 ELIPICKÉ (CAUEROVY) FILRY FREKVENČNÍ CHARAKERISIKA MÁ DEFINOVANÉ ZVLNĚNÍ V OBOU PÁSMECH NEJUŽŠÍ PŘECHODNÉ PÁSMO (PRO DANÉ N, ω h, δ a δ ) Dolní propusti CAUER PRO ŘÁD, 4 a 5, R p db, R s 0 db.4 IIR DP, ELLIP, f h 0.4, Rp db, Rs 0 db. N, 4, 5 MODUL ZESILENI NORMOVANA FREKVENCE (θ π) 383ZS P6 7
18 BILINEÁRNÍ RANSFORMACE Základní metoda k převodu přenosu filtru roviny p do roviny, naleení H() H A (p); Odvoení převodního vtahu ideální derivátor, nulové počáteční podmínky ( ) ( ) ( ) () ()dt t y t x p p X p Y p H dt t dx t y t t A 0, ) ( ) ( ( ) n t n t, 0 Lichoběžníkové pravidlo, numerická integrace ( ) ( [ ( ) ( ) [ ] ) ] ( ) ( ) ( ) ( ), + + n y n y n x n x n y n y n x n x, ( )( ) ( )( ) + Y X ( ) ( ) ( ) ( ) + + p pro p H X Y H A 383ZS P6 8
19 Zobraení roviny p do roviny je dáno vtahy p + + p p Jde o konformní obraení (vájemně jednonačné, obrauje přímky na kružníce a naopak a achovává úhly). Imaginární osa roviny p je obraena na jednotkovou kružnici a levá polorovina p na (celý) vnitřek jednotkové kružnice. Pro stabilní prototypový analogový filtr dostaneme stabilní filtr diskrétní. Celý rosah analogových frekvencí ω A se obraí do ákladního intervalu frekvence diskrétního filtru. Vtah mei frekvencemi ω A a θ je nelineární: jθ e p jω A j + + e θ L θ j tg ωa θ arctg Nemůže vniknout aliasing. Nejsou totožné mení frekvence AF a DF. Deformuje se fáová charakteristika AF. (v obráku: p je π, q je θ a w je ω). 383ZS P6 9
20 Naleení meních frekvencí výchoího AF pro adané mení frekvence DF: (v obráku: p je π, q je θ, d je δ a w je ω) Příklad: Najděte mení frekvence vorového AF, mají-li mení frekvence odpovídajícího DF být f kh, f,6 kh a je-li f VZ 8 kh. ( ) ( ) θ ω / ω π tan i Řešení: užít vtahu: i arctg Ai Ai fi θ 383ZS P6 0
21 Bilineární transformace achovává ákladní vlastnosti analogových frekvenčně selektivních filtrů (akmitávání,monotonnost) a řád filtru. Neachovává ale tvar impulsní odevy ani odevy na skok. Příklad: Najděte diskrétní filtr odpovídající (analogovému) pasivnímu integračnímu článku. POROVNÁNÍ VLASNOSÍ FIR FILRŮ A IIR FILRŮ. FILRY FIR Jsou vždy stabilní. Fáová charakteristika může být přesně lineární. Řád filtru bývá vysoký, proto je poždění filtru poměrně velké. Nejužívanější je transversální struktura. Rušivý impuls na vstupu ovlivní výstup jen krátkou dobu. Vliv chyb kvantování ávisí na délce filtru. Nemůže dojít k nestabilitě nebo vniku meních cyklů. FILRY IIR Mohou být nestabilní. Používají se převážně jako filtry typu DP, HP, PP a PZ. Řád filtru je nižší než u filtrů FIR (do 0), proto bývá rychlost reakce větší než u FIRF. I krátký rušivý vstupní impuls může ovlivnit trvale výstup filtru. Nejužívanější je kaskáda členů. řádu realiovaných jako PF. Vlivem kvantování může dojít k nestabilitě a mením cyklům. Fáe kauálního IIR filtru nemůže být přesně lineární. 383ZS P6
Při návrhu FIR filtru řešíme obvykle následující problémy:
Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.
VíceSIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
Více7.1. Číslicové filtry IIR
Kapitola 7. Návrh číslicových filtrů Hraniční kmitočty propustného a nepropustného pásma jsou ve většině případů specifikovány v[hz] společně se vzorkovacím kmitočtem číslicového filtru. Návrhové algoritmy
VícePři návrhu FIR filtru řešíme obvykle následující problémy:
Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.
Vícefiltry FIR zpracování signálů FIR & IIR Tomáš Novák
filtry FIR 1) Maximální překývnutí amplitudové frekvenční charakteristiky dolní propusti FIR řádu 100 je podle obr. 1 na frekvenci f=50hz o velikosti 0,15 tedy 1,1dB; přechodové pásmo je v rozsahu frekvencí
VíceA7B31ZZS 10. PŘEDNÁŠKA Návrh filtrů 1. prosince 2014
A7B3ZZS. PŘEDNÁŠKA Návrh filtrů. prosince 24 Návrhy jednoduchých filtrů Návrhy složitějších filtrů Porovnání FIR a IIR Nástroje pro návrh FIR filtrů v MATLABu Nástroje pro návrh IIR filtrů v MATLABu Kvantování
VíceX31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky
X3EO - Elektrické obvody Kmitočtové charakteristiky Doc. Ing. Petr Pollák, CSc. Letní semestr 5/6!!! Volné šíření není povoleno!!! Fázory a spektra Fázor harmonického průběhu Û m = U m e jϕ ut) = U m sinωt
VíceLineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita
Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové
VíceLineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti
Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů
VíceFlexibilita jednoduché naprogramování a přeprogramování řídícího systému
Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.
Vícezákladní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů
A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky
VíceZ transformace. Definice. Z transformací komplexní posloupnosti f = { } f n z n, (1)
Z transformace Definice Z transformací komplexní posloupnosti f = { roumíme funkci F ( definovanou vtahem F ( = n, ( pokud řada vpravo konverguje aspoň v jednom bodě 0 C Náev Z transformace budeme také
VíceIMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,
IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie
VíceMĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky Při návrhu elektroakustických soustav, ale i jiných systémů, je vhodné nejprve
VíceAutomatizace je proces při němž je řídicí funkce člověka nahrazována činností
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné
Vícer Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F.
Systé my, procesy a signály I - sbírka příkladů NEŘ EŠENÉPŘ ÍKADY r 223 Odvoď te přenosovou funkci obvodů na obr26, je-li vstupem napě tí u a výstupem napě tí Uvaž ujte Ω, H a F u u u a) b) c) u u u d)
VíceÚvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
VíceLineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
VíceDIGITÁLNÍ FILTRACE V REÁLNÍM ČASE PRO ZPRACOVÁNÍ BIOMEDICÍNSKÝCH SIGNÁLŮ POMOCÍ MATLAB - XPC TARGET
DIGITÁLNÍ FILTRACE V REÁLNÍM ČASE PRO ZPRACOVÁNÍ BIOMEDICÍNSKÝCH SIGNÁLŮ POMOCÍ MATLAB - XPC TARGET Grobelný David, Martinák Lukáš, Nevřiva Pavel, Plešivčák Přemysl Department of measurement and control,
Víceteorie elektronických obvodů Jiří Petržela obvodové funkce
Jiří Petržela obvod jako dvojbran dvojbranem rozumíme elektronický obvod mající dvě brány (vstupní a výstupní) dvojbranem může být zesilovač, pasivní i aktivní filtr, tranzistor v některém zapojení, přenosový
VíceAnalýza a zpracování signálů. 5. Z-transformace
Analýa a pracování signálů 5. Z-transformace Z-tranformace je mocný nástroj použitelný pro analýu lineárních discretetime systémů Oboustranná Z-transformace X k jf j xk, je komplexní číslo r e r e k Oboustranná
VíceLineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
VíceČíslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Číslicová filtrace FIR filtry IIR filtry Tyto materiály vznikly za podpory Fondu rozvoje
Více13 - Návrh frekvenčními metodami
3 - Návrh frekvenčními metodami Michael Šebek Automatické říení 208 28-3-8 Návrh pomocí Bodeho grafu Automatické říení - Kybernetika a robotika Návrh probíhá v OL s konečným cílem lepšit stabilitu a chování
VíceFILTRACE VE FOURIEROVSKÉM SPEKTRU
1/18 FILTRACE VE FOURIEROVSKÉM SPEKTRU (patří do lineárních integrálních transformací) Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz
VíceÚPGM FIT VUT Brno,
Systémy s diskrétním časem Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 LTI systémy v tomto kursu budeme pracovat pouze se systémy lineárními a časově invariantními. Úvod k nim jsme viděli již
VíceFiltrace obrazu ve frekvenční oblasti
Filtrace obrazu ve frekvenční oblasti Václav Hlaváč České vysoké učení technické v Praze Český institut informatiky, robotiky a kybernetiky 166 36 Praha 6, Jugoslávských partyzánů 1580/3 http://people.ciirc.cvut.cz/hlavac,
VíceCW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace
Více12 - Frekvenční metody
12 - Frekvenční metody Michael Šebek Automatické řízení 218 28-3-18 Proč frekvenční metody? Řídicích systémy se posuzují z časových odezev na určité vstupní signály Naopak v komunikačních systémech častěji
VíceIdeální frekvenční charakteristiky filtrů podle bodu 1. až 4. v netypických lineárních souřadnicích jsou znázorněny na následujícím obrázku. U 1.
Aktivní filtry Filtr je obecně selektivní obvod, který propouští určité frekvenční pásmo, zatímco ostatní frekvenční pásma potlačuje. Filtry je možno realizovat sítí pasivních součástek, tj. rezistorů,
VíceSignál v čase a jeho spektrum
Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě
VíceRekurentní filtry. Matlab
Rekurentní filtry IIR filtry filtry se zpětnou vazbou a nekonečnou impulsní odezvou Výstupní signál je závislý na vstupu a minulém výstupu. Existují různé konvence zápisu, pozor na to! Někde je záporná
VíceFrekvenční charakteristiky
Frekvenční charakteristiky EO2 Přednáška Pavel Máša ÚVODEM Frekvenční charakteristiky popisují závislost poměru amplitudy výstupního ku vstupnímu napětí a jejich fázový posun v závislosti na frekvenci
VíceLaplaceova transformace
Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP pondělí 23. března
VíceZákladní metody číslicového zpracování signálu část I.
A4M38AVS Aplikace vestavěných systémů Základní metody číslicového zpracování signálu část I. Radek Sedláček, katedra měření, ČVUT v Praze FEL, 2015 Obsah přednášky Úvod, motivace do problematiky číslicového
Více1 Modelování systémů 2. řádu
OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka
VíceSIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz, Kamenice 3, 4. patro, dv.č.424 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. FREKVENČNÍ TRASFORMACE SPOJITÉ
Více31SCS Speciální číslicové systémy Antialiasing
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE 2006/2007 31SCS Speciální číslicové systémy Antialiasing Vypracoval: Ivo Vágner Email: Vagnei1@seznam.cz 1/7 Převod analogového signálu na digitální Složité operace,
VíceDSY-4. Analogové a číslicové modulace. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
DSY-4 Analogové a číslicové modulace Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti DSY-4 analogové modulace základní číslicové modulace vícestavové modulace modulace s rozprostřeným
VíceLineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací
VíceMaturitní témata z matematiky
Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy
VíceDigitalizace převod AS DS (analogový diskrétní signál )
Digitalizace signálu v čase Digitalizace převod AS DS (analogový diskrétní signál ) v amplitudě Obvykle převod spojité předlohy (reality) f 1 (t/x,...), f 2 ()... připomenutí Digitalizace: 1. vzorkování
VíceVLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST
VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST 5.1. Snímač 5.2. Obvody úpravy signálu 5.1. SNÍMAČ Napájecí zdroj snímač převod na el. napětí - úprava velikosti - filtr analogově číslicový převodník
VíceČíslicové filtry. Honza Černocký, ÚPGM
Číslicové filtry Honza Černocký, ÚPGM Aliasy Digitální filtry Diskrétní systémy Systémy s diskrétním časem atd. 2 Na co? Úprava signálů Zdůraznění Potlačení Detekce 3 Zdůraznění basy 4 Zdůraznění výšky
VíceTeorie měření a regulace
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace 22.z-3.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ druhá část tématu předmětu pokračuje. oblastí matematických pomůcek
Více2 Teoretický úvod Základní princip harmonické analýzy Podmínky harmonické analýzy signálů Obdelník Trojúhelník...
Obsah 1 Zadání 1 2 Teoretický úvod 1 2.1 Základní princip harmonické analýzy.................. 1 2.2 Podmínky harmonické analýzy signálů................. 1 3 Obecné matematické vyjádření 2 4 Konkrétní
VíceKTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni
KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace
VíceMATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
VíceVY_32_INOVACE_E 15 03
Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory
Více31ZZS 9. PŘEDNÁŠKA 24. listopadu 2014
3ZZS 9. PŘEDNÁŠKA 24. listopadu 24 SPEKTRÁLNÍ ANALÝZA Fourierovy řady Diskrétní Fourierovy řady Fourierova transformace Diskrétní Fourierova transformace Spektrální analýza Zobrazení signálu ve frekvenční
VíceÚvod do číslicové filtrace
jindrich.zdansky@tul.cz Ústav infromačních technologií a elektroniky Technická univerzita v Liberci 2008 Osnova 1 2 3 4 5 Osnova 1 2 3 4 5 Pojem filtr a filtrace Filtrace je proces, kdy systém (filtr)
VíceModelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31
VíceVlastnosti a modelování aditivního
Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),
Více04 Lineární filtrace filtry
Modul: Analýza a modelování dynamických biologických dat Předmět: Lineární a adaptivní zpracování dat Autor: Daniel Schwarz Číslo a název výukové jednotky: 4 Lineární filtrace filtry Výstupy z učení: dokáží
VíceNávrh frekvenčního filtru
Návrh frekvenčního filtru Vypracoval: Martin Dlouhý, Petr Salajka 25. 9 2010 1 1 Zadání 1. Navrhněte co nejjednodušší přenosovou funkci frekvenčního pásmového filtru Dolní propusti typu Bessel, která bude
VícePředmět A3B31TES/Př. 13
Předmět A3B31TES/Př. 13 PS 1 1 Katedra teorie obvodů, místnost č. 523, blok B2 Přednáška 13: Kvantování, modulace, stavový popis PS Předmět A3B31TES/Př. 13 květen 2015 1 / 28 Obsah 1 Kvantování 2 Modulace
Více1 Zpracování a analýza tlakové vlny
1 Zpracování a analýza tlakové vlny 1.1 Cíl úlohy Prostřednictvím této úlohy se naučíte a zopakujete: analýzu biologických signálů v časové oblasti, analýzu biologických signálů ve frekvenční oblasti,
Více. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.
Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo
VíceTransformace obrazu Josef Pelikán KSVI MFF UK Praha
Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých
VíceSIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz @iba.muni.cz,, Kamenice 3, 4. patro, dv.č.44.44 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz XI. STABILITA
VíceMatematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
VíceFOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth
FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického
VíceTeorie elektronických obvodů (MTEO)
Teorie elektronických obvodů (MTEO) Laboratorní úloha číslo 10 návod k měření Filtr čtvrtého řádu Seznamte se s principem filtru FLF realizace a jeho obvodovými komponenty. Vypočtěte řídicí proud všech
VíceSIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické
VíceFyzikální praktikum 3 Operační zesilovač
Ústav fyzikální elekotroniky Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum 3 Úloha 7. Operační zesilovač Úvod Operační zesilovač je elektronický obvod hojně využívaný téměř ve
Více2. Číslicová filtrace
Żpracování signálů a obrazů 2. Číslicová filtrace.......... Petr Česák Zimní semestr 2002/2003 . 2. Číslicová filtrace FIR+IIR ZADÁNÍ Účelem cvičení je seznámit se s průběhem frekvenčních charakteristik
VíceMATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel
MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní
Více[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2
4.1 Křivkový integrál ve vektrovém poli přímým výpočtem 4.1 Spočítejte práci síly F = y i + z j + x k při pohybu hmotného bodu po orientované křivce, která je dána jako oblouk ABC na průnikové křivce ploch
VíceInverzní Laplaceova transformace
Inverzní Laplaceova transformace Modelování systémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 6. přednáška MSP čtvrtek 30. března
VíceVlastnosti členů regulačních obvodů Osnova kurzu
Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Statické vlastnosti členů regulačních obvodů 6) Dynamické vlastnosti členů
VíceČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Základy fyzikální geodézie 3/19 Legendreovy přidružené funkce
Více1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
Více1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
VíceDiferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
VíceMatematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
VícePříloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty
Příloha č. 1 Při hodnocení expozice nízkofrekvenčnímu elektromagnetickému poli (0 Hz 10 MHz) je určující veličinou modifikovaná proudová hustota J mod indukovaná v tělesné tkáni. Jak je uvedeno v nařízení
VíceIV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
VíceDefinice derivace v bodě
Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +
VíceSBÍRKA ÚLOH I. Základní poznatky Teorie množin. Kniha Kapitola Podkapitola Opakování ze ZŠ Co se hodí si zapamatovat. Přírozená čísla.
Opakování ze ZŠ Co se hodí si zapamatovat Přírozená čísla Číselné obory Celá čísla Racionální čísla Reálná čísla Základní poznatky Teorie množin Výroková logika Mocniny a odmocniny Množiny Vennovy diagramy
Vícedx se nazývá diferenciál funkce f ( x )
6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí
Víceelektrické filtry Jiří Petržela všepropustné fázovací články, kmitočtové korektory
Jiří Petržela všepropustné fázovací články, kmitočtové korektory zvláštní typy filtrů všepropustné fázovací články 1. řádu všepropustné fázovací články 2. řádu všepropustné fázovací články vyšších řádů
VíceFunkce komplexní proměnné a integrální transformace
Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na
VíceNelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.
Nelineární obvody Dosud jsme se zabývali analýzou lineárních elektrických obvodů, pasivní lineární prvky měly zpravidla konstantní parametr, v těchto obvodech platil princip superpozice a pro analýzu harmonického
VíceZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
Více0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému
2 1 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 x 1 2 Jméno a příjmení: ID.č. 9.5.2016 1. Řešte diferenciální rovnici: y + 2xy x 2 + 3 = sin x x 2 + 3. y = C cos x x 2 + 1 2. Vypočtěte z 2 e z dz, kde je křivka
VíceMatematika vzorce. Ing. Petr Šídlo. verze
Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............
VíceDiskretizace. 29. dubna 2015
MSP: Domácí příprava č. 3 Vnitřní a vnější popis diskrétních systémů Dopředná Z-transformace Zpětná Z-transformace Řešení diferenčních rovnic Stabilita diskrétních systémů Spojování systémů Diskretizace
VíceMĚŘENÍ ÚHLOVÝCH KMITŮ ZA ROTACE
26. mezinárodní konference DIAGO 27 TECHNICKÁ DIAGNOSTIKA STROJŮ A VÝROBNÍCH ZAŘÍZENÍ MĚŘENÍ ÚHLOVÝCH KMITŮ ZA ROTACE Jiří TŮMA VŠB Technická Univerzita Ostrava Osnova Motivace Kalibrace měření Princip
VíceVzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová
1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,
VícePoznámky k Fourierově transformaci
Poznámky k Fourierově transformaci V těchto poznámkách jsou uvedeny základní vlastnosti jednorozměrné Fourierovy transformace a její aplikace na jednoduché modelové případy. Pro určitost jsou sdružené
VíceČíslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů
Číslicová filtrace Použití : Separace sigálů Restaurace sigálů Číslicové filtry Aalogové x číslicové filtry : Aalogové Číslicové: + levé + rychlé + velký dyamický rozsah (v amplitudě i frekveci) - evhodé
VíceAnalýza a zpracování signálů. 5. Z-transformace
nalýa a pracování signálů 5. Z-transformace Z-tranformace je mocný nástroj použitelný pro analýu lineárních discretetime systémů Oboustranná Z-transformace X j F j x, je omplexní číslo r e r e Oboustranná
VíceČÍSLICOVÁ FILTRACE VÝUKOVÁ SIMULACE DIGITAL FILTERS LEARNING SIMULATION
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
VíceLimita ve vlastním bodě
Výpočty it Definice (a případné věty) jsou z knihy [] příklady z [] [] a []. Počítám u zkoušky dvacátou itu hlavu mám dávno už do čista vymytu papír se značkami skvěje z čela mi pot v proudech leje než
VíceModulační parametry. Obr.1
Modulační parametry Specifickou skupinou měřicích problémů je měření modulačních parametrů digitálních komunikačních systémů. Většinu modulačních metod používaných v digitálních komunikacích lze realizovat
VíceKomplexní analýza. Fourierovy řady. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Fourierovy řady Martin Bohata Katedra matematiky FEL ČVU v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Fourierovy řady 1 / 20 Úvod Často se setkáváme s periodickými
VíceP7: Základy zpracování signálu
P7: Základy zpracování signálu Úvodem - Signál (lat. signum) bychom mohli definovat jako záměrný fyzikální jev, nesoucí informaci o nějaké události. - Signálem je rovněž funkce, která převádí nezávislou
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální
Více1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.
1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle
Více3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY
3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY Modulací nazýváme proces při kterém je jedním signálem přetvář en jiný signál za účelem př enosu informace. Př i amplitudové modulaci dochází k ovlivňování amplitudy nosného
Více