B, e²te následující rekurenci n kterou z metod z kapitoly o sumách: (a j b k a k b j ) 2
|
|
- Aleš Němeček
- před 10 lety
- Počet zobrazení:
Transkript
1 1. A, e²te rekurenci Q 0 = 2 Q n = 2Q n 1 + (n + 2) 2, pro n > 0. B, e²te následující rekurenci n kterou z metod z kapitoly o sumách: Q 0 = 1 Q n = nq n 1 + n!, pro n > A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): Q 0 = 2 Q n = 2Q n cos(nπ), pro n > 0. tak, aby po et s ítání byl úm rný n. 1 j<k n (a j b k a k b j ) 2 3. A, e²te rekurenci B, e²te metodou suma ního faktoru Q 0 = π, Q 1 = 2π, Q n = 2Q n 1 Q n 2 + π, pro n > 1. T 0 = 5 2T n = nt n 1 + 3n!, pro n > 0.
2 4. A, e²te rekurenci Q 0 = π Q n = 6Q n 1 πn 2, pro n > 0. B, Dokaºte, ºe platí n 1 n 1 (a k+1 a k )b k = a n b n a 0 b 0 (b k+1 b k )a k A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): Q 0 = π, Q 1 = π 2, Q n = Q n 2 + (n + π) 2, pro n > 1. B, Vypo t te následující sumu metodou z kapitoly 2.5.5: k 2 2 k. 6. A, e²te rekurenci B, e²te sumu Q 0 = 0, Q 1 = 0, Q n = 2Q n 1 Q n 2 + 2n, pro n > 1. H k perturba ní metodou. Návod: Zkuste namísto H k dosadit kh k. 7. A, e²te rekurenci Q 0 = 5 Q n = 5Q n 1 + 5n + 5, pro n > 0. ( 1) n k k 2.
3 8. A, e²te rekurenci Q 0 = 0 Q n = Q n n + n, pro n > A, e²te rekurenci ( 2) k k 2. Q 0 = 5 Q n = 5Q n n 2, pro n > 0. ( ( 1) k k + k 2). 10. A, e²te rekurenci B, Vypo t te sumu Q 0 = 0 Q n = πq n 1 + πn 2, pro n > 0. k= n k([k > 0] [k < 0]). 11. A, e²te následující rekurenci (uvaºujte zvlá² sudá a lichá n): Q 0 = 1 Q n = 3Q n cos(nπ) + 9 sin(nπ), pro n > 0. B, Vyjád ete následující sumu pomocí j a n : 12. A, e²te rekurenci B, Dokaºte Lagrangeovu rovnici: Q 0 = 3 [1 j k n] k Q n = 3Q n 1 + 3n 3, pro n > 0. ( n ) ( (a j b k a k b j ) 2 n ) ( = a 2 n ) k b 2 2 k a k b k. 1 j<k n
4 13. A, e²te rekurenci Q 0 = 1, Q 1 = 3, Q n = 2Q n 1 Q n 2 + 3n + 3, pro n > 1. ) k ) k+1. ( 1 3 ( A, e²te rekurenci Q 0 = 4, Q 1 = 2, Q n = Q n 1 Q n 2 + 3, pro n > A, e²te rekurenci ( 1) n k 2 k. Q 0 = 2, Q 1 = 2, Q n = Q n 2 + (n + 1) 2, pro n > 1. 2 ( 1) k. k Nápov da: rozloºte na sumy pro lichá a sudá k. Uvaºte, ºe 1 k<2n k lich 1 k = H 2n 1 2 H n. 16. A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): Q 0 = 2, Q 1 = 3, Q n = Q n 2 + n cos(nπ), pro n > 1. B, Dokaºte, ºe platí 17. A, e²te rekurenci 1 k<2n k lich 1 k = H 2n 1 2 H n. Q 0 = π, Q 1 = π, Q n = Q n 1 Q n 2 7n, pro n > 1.
5 B, Plo²né momenty p i po íta ovém rozpoznávání obrazu o rozm ru n n bod s jasovou funkcí f(i, j), 1 i, j n jsou denovány jako m rs = i r j s f(i, j). i=1 j=1 Centrální momenty vztaºené k t ºi²ti i t, j t jsou denovány jako kde µ rs = (i i t ) r (j j t ) s f(i, j), i=1 j=1 i t = m 10 m 00, j t = m 01 m 00. Dokaºte, ºe µ 01 = µ 10 = 0 pro libovolné n a f(i, j). 18. A, e²te rekurenci Q 0 = 2, Q 1 = 2 2, Q n = Q n 1 Q n 2 + 2, pro n > 1. B, Vyjád ete pomocí harmonických ísel H n sumu k=2 1 k 2 1. Nápov da: 2/(k 2 1) = 1/(k 1) 1/(k + 1). 19. A, e²te rekurenci Q 0 = e, Q 1 = 2e, Q n = Q n 1 Q n 2 e, pro n > 1. Poznámka: íslo e je základ p irozeného logaritmu. 20. A, e²te rekurenci a k a j [j k]. j=1 g(1) = 1/3, g(2n + j) = 3g(n) + 33n + 333, pro j = 0, 1 a n > 0. Nápov da: e²te nejprve rekurenci bez lenu 33n, pak ji zobecn te a pouºijte repertoárovou metodu. (a k a j ) 2. j=1
6 21. A, e²te rekurenci B, Dokaºte, ºe platí 22. A, e²te rekurenci B, Dokaºte, ºe platí g(1) = 1, g(2n + j) = 3g(n) + sin(jπ/2), pro j = 0, 1 a n > 0. ( n )( (a k + b j ) 2 n 4 a k b j ). j=1 j=1 Q 0 = 7, Q 1 = 7, Q n = Q n 1 Q n 2 7n, pro n > 1. ( n ) n a 2 2 j a j. j=1 j=1 23. A, e²te následující rekurenci (uvaºujte zvlá² sudá a lichá n): B, Dokaºte, ºe platí 24. A, e²te rekurenci Q 0 = 13, Q 1 = 21, Q n = Q n 2 + n 2, pro n > 1. ( n )( n (a 2 k + b 2 n k) 2 a k b j ). j=1 g(1) = 1/3, g(2n + j) = 3g(n) + cos(jπ), pro j = 0, 1 a n > 0. B, e²te perturba ní metodou sumu ( 1) n k k. 25. A, e²te následující rekurenci (vyuºijte obecné e²ení z p edná²ek): 26. A, e²te rekurenci B, Vypo t te sumu g(1) = 1/3, g(2n + j) = 3g(n) + 3, pro j = 0, 1 a n > 0. Q 0 = 2 k 1 i=1 j=1 a i (a k a j ). Q n = 4Q n 1 6n, pro n > 0. j=1 j 2 k.
7 27. A, e²te následující rekurenci 28. A, e²te rekurenci Q 0 = 2 Q n = 4Q n 1 6 cos(nπ), pro n > 0. a 2 i (a k a j ) 2. i=1 j=1 Q 0 = A, e²te následující rekurenci B, Dokaºte Cauchyho nerovnost Q n = 3Q n 1 + 5n 2 + 7n + 11, pro n > 0. a k a j (1 2[j < k]). j=1 Q 0 = 2, Q 1 = 3, Q n = Q n 2 + 5n + 8, pro n > 1. ( n a 2 k ) ( n b 2 k ) ( n ) 2 a k b k. Návod: pokuste se vyjád it rozdíl levé a pravé strany jako výraz, který je vºdy nezáporný. 30. A, e²te rekurenci Q 0 = 3 Q n = 6Q n 1 9n 2, pro n > 0. B, Vypo t te pomocí harmonických ísel sumu 2k + 1 k(k + 1). Návod: 1/k(k + 1) = 1/k 1/(k + 1). 31. A, e²te následující rekurenci (uvaºujte zvlá² sudá a lichá n): Q 0 = 2, Q 1 = 3, Q n = Q n 2 + n sin((2n + 1) π ), pro n > 1. 2 B, Vypo t te pomocí harmonických ísel sumu k 4k 2 1. Návod: 4k/(4k 2 1) = 1/(2k 1) + 1/(2k + 1).
8 32. A, e²te následující rekurenci (uvaºujte zvlá² sudá a lichá n): Q 0 = 2, Q 1 = 3, Q n = Q n 2 + n 2, pro n > 1. B, e²te sumu 33. A, e²te rekurenci S n = kx k, x R. 0 k n B, e²te metodou suma ního faktoru Q 0 = 7, Q 1 = 77, Q n = 2Q n 1 Q n 2 + 2, pro n > 1. T 0 = 3 3T n = nt n 1 3n!, pro n > A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): B, Vypo t te perturba ní metodou: 35. A, e²te rekurenci Q 0 = 3, Q 1 = 3, Q n = Q n 2 + (n + sin(nπ)) 2, pro n > 1. k 2 2 k. Q 0 = 2 Q n = 2Q n 1 2n 2 + 2n + 2, pro n > 0. B, e²te perturba ní metodou (namísto kh k dosa te k 2 H k ): 36. A, e²te rekurenci kh k. Q 0 = 7 Q n = 2Q n n, pro n > 0. ) n k ) k. ( 1 3 ( 1 5
9 37. A, e²te následující rekurenci (p edpokládejte Q n 0 pro n 0): Q 0 = α, Q 1 = β, Q n = (1 + Q n 1 )/Q n 2, pro n > A, e²te rekurenci ( 2) k ( 3) n k. Q 0 = 5, Q 1 = 9, Q n = Q n 2 + 5n + 3, pro n > 1. B, Vyjád ete pomocí harmonických ísel H n sumu k k 2 1. Nápov da: 2k/(k 2 1) = 1/(k 1) + 1/(k + 1). 39. A, e²te rekurenci Q 0 = 2, Q 1 = 0, Q n = Q n 2 + n 2, pro n > 1. B, Vyjád ete pomocí harmonických ísel H n sumu k 2 k 2 1. Nápov da: 2k/(k 2 1) = 1/(k 1) + 1/(k + 1). 40. A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): Q 0 = 7 Q n = 7Q n sin(nπ), pro n > j=1 k>j tak, aby po et s ítání byl lineární funkcí n. 41. A, e²te rekurenci Q 0 = 1 (c j d k c k d j ) 2 Q n = 11Q n 1 + n 1, pro n > 0. ( 1) k (n k) 2.
10 42. A, e²te rekurenci Q 0 = 2 0 Q n = Q n n+1 + n + 1, pro n > A, e²te rekurenci ( 3) n+k k. Q 0 = 13 Q n = 3Q n 1 + 3n 2, pro n > 0. ( ( 1) k k 2 (n k) ). 44. A, e²te rekurenci B, Vypo t te sumu Q 0 = π Q n = 2πQ n 1 + πn 2 + π 2, pro n > 0. k 2 (1 2[k < 0]). k= n 45. A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): Q 0 = 1, Q 1 = 1, Q n = Q n cos((n 1)π), pro n > 1. B, Vyjád ete následující sumu pomocí H 2n a H n : 46. A, e²te rekurenci 1 2k 1. Q 0 = log 3, Q 1 = 3 log 3, Q n = Q n 1 Q n 2 + log 3, pro n > 1. B, Vyjád ete pomocí harmonických ísel H n sumu 1 2k 2 + 3k 2. Nápov da: 2/(2k 2 + 3k 2) = 1/(k + 2) 2/(2k 1).
11 47. A, e²te rekurenci Q 0 = 1 2, Q 1 = Q 2 0, Q n = Q n 1 Q n 2 Q 1, pro n > A, e²te rekurenci n+1 j=2 a k a j [j k + 1]. g(1) = 3, g(2n + j) = 3g(n) + 3n + 3g(1), pro j = 0, 1 a n > 0. Nápov da: e²te nejprve rekurenci bez lenu 3n, pak ji zobecn te a pouºijte repertoárovou metodu. (a k + a j ) 2. j=1
Domácí úkol 2. Obecné pokyny. Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab.
Domácí úkol 2 Obecné pokyny Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab. Návod pro výpo et v Matlabu Jestliºe X Bi(n, p), pak
e²ení systém lineárních rovnic pomocí s ítací, dosazovací a srovnávací metody
e²ení systém lineárních rovnic pomocí s ítací, dosazovací a srovnávací metody V praxi se asto setkávame s p ípady, kdy je pot eba e²it více rovnic, takzvaný systém rovnic, obvykle s více jak jednou neznámou.
2. Ur íme sudost/lichost funkce a pr se íky s osami. 6. Na záv r na rtneme graf vy²et ované funkce. 8x. x 2 +4
Pr b h funkce V této jednotce si ukáºeme jak postupovat p i vy²et ování pr b hu funkce. P edpokládáme znalost po ítání derivací a limit, které jsou dob e popsány v p edchozích letácích tohoto bloku. P
Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková
Tento text není smosttným studijním mteriálem. Jde jen o prezentci promítnou n p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze n tbuli nejsou zde obsºeny. Text m ºe
1. (18 bod ) Náhodná veli ina X je po et rub p i 400 nezávislých hodech mincí. a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost
(8 bod ) Náhodná veli ina X je po et rub p i nezávislých hodech mincí a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost P ( X EX < ) (9 bod ) b) Formulujte centrální limitní v tu a pomocí ní vypo
I. VRSTEVNICE FUNKCE, OTEV ENÉ A UZAV ENÉ MNOšINY
I. VRSTEVNICE FUNKCE, OTEV ENÉ A UZAV ENÉ MNOšINY 1. Ur ete a nakreslete deni ní obor a vrstevnice funkcí: a) f(, y) = + y b) f(, y) = y c) f(, y) = 2 + y 2 d) f(, y) = 2 y 2 e) f(, y) = y f) f(, y) =
P íklad 1 (Náhodná veli ina)
P íklad 1 (Náhodná veli ina) Uvaºujeme experiment: házení mincí. Výsledkem pokusu je rub nebo líc, ºe padne hrana neuvaºujeme. Pokud hovo íme o náhodné veli in, musíme p epsat výsledky pokusu do mnoºiny
Rovnice a nerovnice. Posloupnosti.
.. Veronika Sobotíková katedra matematiky, FEL ƒvut v Praze, http://math.feld.cvut.cz/ 30. srpna 2018.. 1/75 (v reálném oboru) Rovnicí resp. nerovnicí v reálném oboru rozumíme zápis L(x) P(x), kde zna
Binární operace. Úvod. Pomocný text
Pomocný text Binární operace Úvod Milí e²itelé, binární operace je pom rn abstraktní téma, a tak bude ob as pot eba odprostit se od konkrétních p íklad a podívat se na v c s ur itým nadhledem. Nicmén e²ení
Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar
Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné
Vnit ní síly ve 2D - p íklad 2
Vnit ní síly ve D - p íkld Orázek 1: Zt ºoví shém. Úkol: Ur ete nlytiké pr hy vnit níh sil n konstruki vykreslete je. e²ení: Pro výpo et rekí je vhodné si spojité ztíºení nhrdit odpovídjíím náhrdním emenem.
Post ehy a materiály k výuce celku Funkce
Post ehy a materiály k výuce celku Funkce 1) Grafy funkcí Je p edloºeno mnoºství výukových materiál v programu Graph - tvary graf základních i posunutých funkcí, jejich vzájemné polohy, Precizní zápis
Zkou²ková písemná práce. 1 z p edm tu 01MAB4
Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVU v Praze Zkou²ková písemná práce. 1 z p edm tu 1MAB4 25/5/216, 9: 11: ➊ (11 bod ) Vypo ítejte abstraktní plo²nou míru mnoºiny M = (x, y) R 2
e²ení testu 1 P íklad 1 v 1 u 1 u 2 v 2 Mechanika a kontinuum NAFY listopadu 2016
e²ení testu Mechania a ontinuu NAFY00 8. listopadu 06 P ílad Zadání: Eletron o ineticé energii E se srazí s valen ní eletrone argonu a ionizuje jej. P i ionizaci se ást energie nalétávajícího eletronu
. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0
Příklad 1 Určete definiční obor funkce: a) = b) = c) = d) = e) = 9 f) = Řešení 1a Máme určit definiční obor funkce =. Výraz je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy
Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3
Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme
Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze na tabuli a nejsou zde obsaºeny.
TROJÚHELNÍK. JAN MALÝ UK v Praze a UJEP v Ústí n. L. sin α = b a.
TROJÚHELNÍK JAN MALÝ UK v Prze UJEP v Ústí n. L. 1. Zn ení. Uvºujme trojúhelník ABC, jeho strny i jejih délky jsou,,, úhly α, β, γ. Osh trojúhelník zn íme P. Vý²k spu²t ná z odu C n strnu se zn í v její
Práce s dokumentem. 1. Úvod do konstruování. 2. Statistické zpracování dat. 4. Analýza zatíºení a nap tí. Aktuální íslo revize: REV_40
Aktuální íslo revize: REV_0 Práce s dokumentem Jednotlivé opravy (revize) jsou v dokumentu Errata ozna eny popiskem REV_a íslo revize ƒíslování revizí je provedeno chronologicky asov, tak jak p icházely
Integrování jako opak derivování
Integrování jako opak derivování V tomto dokumentu budete seznámeni s derivováním b ºných funkcí a budete mít moºnost vyzkou²et mnoho zp sob derivace. Jedním z nich je proces derivování v opa ném po adí.
4. Určete definiční obor elementární funkce g, jestliže g je definována předpisem
4 Určete definiční obor elementární funkce g jestliže g je definována předpisem a) g ( x) = x 16 + ln ( x) x 16 ( x + 4 )( x 4) Řešíme-li kvadratickou nerovnice pomocí grafu kvadratické funkce tj paraboly
3.3. EXPONENCIÁLNÍ A LOGARITMICKÁ ROVNICE A NEROVNICE
3.3. EXPONENCIÁLNÍ A LOGARITMICKÁ ROVNICE A NEROVNICE V této kapitole se dozvíte: jak je definována eponenciální a logaritmická rovnice a nerovnice a jaká je základní strategie jejich řešení. Klíčová slova
7 Algebraické a nealgebraické rovnice a nerovnice v C. Numerické e²ení rovnic
7 Algebrické nelgebrické rovnice nerovnice v C. Numerické (typy lgebrických rovnic zákldní metody jejich e²ení lineární, kvdrtické, reciproké rovnice rovnice vy²²ích ád, rovnice nerovnice nelgebrické s
1. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) x cotg x 1. c) lim. g) lim e x 1. cos(x) =
I. L'HOSPITALOVO PRAVIDLO A TAYLOR V POLYNOM. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) a) lim tg sin ( + ) / e e) lim a a i) lim a a, a > P ipome me si: 3 tg 4 2 tg b) lim 3 sin 4 2 sin
T i hlavní v ty pravd podobnosti
T i hlavní v ty pravd podobnosti 15. kv tna 2015 První p íklad P edstavme si, ºe máme atomy typu A, které se samovolným radioaktivním rozpadem rozpadají na atomy typu B. Pr m rná doba rozpadu je 3 hodiny.
Vektory. Vektorové veli iny
Vektor je veli ina, která má jak velikost tak i sm r. Ob tyto vlastnosti musí být uvedeny, aby byl vektor stanoven úpln. V této ásti je návod, jak vektory zapsat, jak je s ítat a od ítat a jak je pouºívat
Dolní odhad síly pro ztrátu stability obecného prutu
ƒeské vysoké u ení technické v Praze 9. února 216 Vedoucí seminární práce: doc. RNDr. Ivana Pultarová, Ph.D. prof. Ing. Milan Jirásek, DrSc. Osnova 1 2 Cíl práce Cíl práce Nalézt velikost síly, která zp
Posloupnosti a řady. 28. listopadu 2015
Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A st eda 19. listopadu 2015, 11:2013:20 ➊ (3 body) Pro diferenciální operátor ˆL je mnoºina W q denována p edpisem W q = { y(x) Dom( ˆL) : ˆL(y(x))
Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,
Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,
1 Spo jité náhodné veli iny
Spo jité náhodné veli in. Základní pojm a e²ené p íklad Hustota pravd podobnosti U spojité náhodné veli in se pravd podobnost, ºe náhodná veli ina X padne do ur itého intervalu (a, b), po ítá jako P (X
Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická
Variace 1 Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu
Reálná ísla a posloupnosti Jan Malý
Reálná ísla a posloupnosti Jan Malý Obsah 1. Reálná ísla 1 2. Posloupnosti 2 3. Hlub²í v ty o itách 4 1. Reálná ísla 1.1. Úmluva (T leso). Pod pojmem t leso budeme v tomto textu rozum t pouze komutativní
Funkce. b) D =N a H je množina všech kladných celých čísel,
Funkce ) Napište funkční předpisy a najděte definiční obory funkcí f pro které platí: f ( ) je povrch krychle o straně b) f ( ) je objem kvádru s čtvercovou podstavou o straně a povrchem rovným c) f (
ST2 - Cvi ení 1 STATISTICKÁ INDUKCE
ST2 - Cvi ení 1 STATISTICKÁ INDUKCE P íklad 1.1 Po et závad jistého typu elektrospot ebi e b hem záru ní doby má Poissonovo rozd lení s parametrem λ = 0,2. Jaká je pravd podobnost, ºe po prodeji 75 spot
Skalární sou in. Úvod. Denice skalárního sou inu
Skalární sou in Jedním ze zp sob, jak m ºeme dva vektory kombinovat, je skalární sou in. Výsledkem skalárního sou inu dvou vektor, jak jiº název napovídá, je skalár. V tomto letáku se nau íte, jak vypo
Zkou²ková písemná práce. 1 z p edm tu 01MAB4
Zkou²ková písemná práce. 1 z p edm tu 1MAB4 29/5/218, 9: 11: ➊ (8 bod ) Pro parametry a > a b R vypo t te ur itý integrál e ax2 cos(bx2 ) 1 x Uºijte v tu o derivaci integrálu s parametrem. Spln ní p edpokladu
Obsah. Pouºité zna ení 1
Obsah Pouºité zna ení 1 1 Úvod 3 1.1 Opera ní výzkum a jeho disciplíny.......................... 3 1.2 Úlohy matematického programování......................... 3 1.3 Standardní maximaliza ní úloha lineárního
Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,
Zimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva
1 1 3 ; = [ 1;2]
Soustavy lineárních rovnic - Příklady k procvičení ) + y= y= [ ; ] ) + y= = ) y= y 0 y ; + = [ ;] ) y= + y= [ ;] ) + y= = ; ) y= = y ) y = y= 8) y= + y= 9) = 8 y 0) y=, y= ) a+ = a b ) = y 9 ) u ( ) v
Měření momentu setrvačnosti z doby kmitu
Úloha č. 4 Měření momentu setrvačnosti z doby kmitu Úkoly měření:. Určete moment setrvačnosti vybraných těles, kruhové a obdélníkové desky.. Stanovení momentu setrvačnosti proveďte s využitím dvou rozdílných
kuncova/, 2x + 3 (x 2)(x + 5) = A x 2 + B Přenásobením této rovnice (x 2)(x + 5) dostaneme rovnost
. cvičení http://www.karlin.mff.cuni.cz/ kuncova/, kytaristka@gmail.com Příklady Najděte primitivní funkce k následujícím funkcím na maimální možné podmnožině reálných čísel a tuto množinu určete.. f()
16. DEFINIČNÍ OBORY FUNKCÍ
6 DEFINIČNÍ OBORY FUNKCÍ 6 Urči definiční obor funkce 7 46 0 7 46 = 0 46 ± 5, = = 7; = 4 7 D ( f ) = ( ; 7 ; ) 7 f : y = 7 46 Funkce odmocnina je definována pro kladná reálná čísla a pro nulu Problematické
ST2 - Cvi ení 1 STATISTICKÁ INDUKCE
ST2 - Cvi ení 1 STATISTICKÁ INDUKCE P íklad 1.1 Po et závad jistého typu elektrospot ebi e b hem záru ní doby má Poissonovo rozd lení s parametrem λ = 0,2. Jaká je pravd podobnost, ºe po prodeji 75 spot
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A úterý 28. listopadu 2017, 9:2011:20 ➊ (8 bod ) Lze nebo nelze k rozhodnutí o stejnom rné konvergence ady ( 1) n+1 x ln(n) n 6 + n 2 x 4 na intervalu
Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e)
Logaritmus, logaritmická funkce, log. Rovnice a nerovnice ) Výraz log log +log není správná 0 - žádná z předchozích odpovědí ) Číslo log 8 6 je rovno číslu: ) Výraz log log +log - 0 ) Číslo log 6 6 je
Co je to tensor... Vektorový prostor
Vektorový prostor Co je to tensor... Tato ást je tu jen pro p ipomenutí, pokud nevíte co je to vektorový prostor, tak tení tohoto textu ukon ete na konci této v ty, neb zbytek textu by pro Vás nebyl ni
Jméno: P íjmení: Datum: 17. ledna 2018 Nechci zápo et p i hodnocení niº²ím neº (nezávazné): vadí mi vystavení mého hodnocení na internetu.
Jméno: P íjmení: Datum: 7. ledna 28 Nechci zápo et p i hodnocení niº²ím neº (nezávazné): vadí mi vystavení mého hodnocení na internetu. Rotující nádoba Otev ená válcová nádoba napln ná do poloviny vý²ky
ť Ú Á É Á Ů Š Č Š Š č ř č č ř ÚČ Ě É č č ř úč č ř ů č ř úč č č úč úč ú ž ů č č ň č č č ú ó ů č ž ř č ř ž ž č č ú ů ř č š ů ř ň řú ř ň ň ú ř č č š Ů ů č řš ř řš Úč č É úú úč ú ú ů ž úč ů ú ů Č ÚČ Ě É É
Á ŘÁ É É Č ž Č ř ř ř Č ř ř Š ř řů ž š ú ů ý ř ř š ř ř ř ý ů řů ř ř Č Ů ř š ř ý ú ů ů ř ř ř ř ř ý ř ř ř ř ú řů ř ů ž Ž ř ř ř řů ř ř ř ř ř ž ř ř ř ř ž ř š ý š ř řů ř ž ř ř ř ž ř ř ž ž ř ž ř ů ř ý ů řů ř
Zavedení a vlastnosti reálných čísel
Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu
Cvi ení 7. Docházka a testík - 15 min. Distfun 10 min. Úloha 1
Cvi ení 7 Úkol: generování dat dle rozd lení, vykreslení rozd lení psti, odhad rozd lení dle dat, bodový odhad parametr, centrální limitní v ta, balí ek Distfun, normalizace Docházka a testík - 15 min.
Státní maturita 2010 Maturitní generálka 2010 Matematika: didaktický test - základní úrove obtíºnosti MAGZD10C0T01 e²ené p íklady
Státní maturita 00 Maturitní generálka 00 Matematika: didaktický test - základní úrove obtíºnosti MAGZD0C0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 6. b ezna 0 http://www.vachtova.cz/ Obsah Úloha Úloha.
Pravd podobnost a statistika - cvi ení. Simona Domesová místnost: RA310 (budova CPIT) web:
Pravd podobnost a statistika - cvi ení Simona Domesová simona.domesova@vsb.cz místnost: RA310 (budova CPIT) web: http://homel.vsb.cz/~dom0015 Cíle p edm tu vyhodnocování dat pomocí statistických metod
š Č ú ř úó ď ů ř ř ř ů ů š ů ů ů řš ř ů ř ů ř ó ř ú ů ů ů ú ů ů ů ů ř ů ů ú ú ř ů ř ů ř ň ř ů ř ř ř ř ň ř ů ř ř ř ř ř ů ř ú ř ř ř ř ř ř ř ř ú ř Ů ř ř Ó š ů š úó Č ó ř ú ú ř ů ř ó ň ú ů ú ř ř úó ů ř ů ó
Matematika I pracovní listy
Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny
- funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte. V obou případech vyzkoušejte Taylorovy řady
Vzorové řešení domácího úkolu na 6. 1. 1. Integrály 1 1 x2 dx, ex2 dx spočítejte přibližně následují metodou - funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte.
Určete a graficky znázorněte definiční obor funkce
Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro
p írodní zdroje energie a surovin odpady globální problémy ochrana p írody a krajiny nástroje spole nosti na ochranu životního
charakterizuje p sobení životního prost edí na lov ka a jeho zdraví; charakterizuje p írodní zdroje surovin a energie z hlediska jejich obnovitelnosti, posoudí vliv jejich využívání na prost edí; popíše
se nazývá charakter grupy G. Dále budeme uvaºovat pouze kone né grupy G. Charaktery tvo í také grupu, s násobením denovaným
Charaktery a Diskrétní Fourierova transforace Nejd leºit j²í kvantový algorite je Diskrétní Fourierova transforace (DFT) D vody jsou dva: DFT je pro kvantové po íta e exponenciáln rychlej²í neº pro po
Definiční obor funkce
Vlastnosti funkcí Definiční obor funkce Konstantní funkce D f = R Lineární funkce D f = R Kvadratická funkce D f = R Exponenciální funkce D f = R Logaritmická funkce D f = 0, + Nepřímá úměrnost D f = R
Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
Spojka RPX. z tabulky 1 ní e, vyberte koeficient provozu, který je vhodný pro pou ití
pojka RPX z tabulky 1 ní e, vyberte koeficient provozu, který je vhodný pro pou ití Vynásobte spot ebovaný p íkon ízeného stroje, v kw, koeficientem provozu, z kroku 1) k získání plánovaného výkonu. Pokud
na za átku se denuje náhodná veli ina
P íklad 1 Generujeme data z náhodné veli iny s normálním rozd lením se st ední hodnotou µ = 1 a rozptylem =. Rozptyl povaºujeme za známý, ale z dat chceme odhadnout st ední hodnotu. P íklad se e²í v následujícím
Limita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39
Limita funkce FIT ČVUT v Praze 3.týden (FIT) Limita funkce 3.týden 1 / 39 Definice funkce. Zobrazení (f, D f ), jehož definiční obor D f i obor hodnot H f je podmnožinou množiny reálných čísel, se nazývá
e²ení 4. série Binární operace
e²ení 4. série Binární operace Úloha 4.1. V Hloup tínské jaderné elektrárn do²lo jednoho dne k úniku radioaktivního zá ení. Obyvatelé byli pro tento p ípad kvalitn vy²koleni v obran proti záke ným ásticím,
Vektor náhodných veli in - práce s více prom nnými
Vektor náhodných veli in - práce s více prom nnými 12. kv tna 2015 N kdy k popisu n jaké situace pot ebujeme více neº jednu náhodnou veli inu. Nap. v k, hmotnost, vý²ku. Mezi t mito veli inami mohou být
2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost
.7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,
Vzorové e²ení 4. série
Vzorové e²ení 4. série Úloha 4.1 Kouma koupil Œoumovi k Vánoc m Rubikovu kostku. Strana kostky m í 10 cm. Kdyº mu ji v²ak cht l zabalit do váno ního papíru, zjistil, ºe má k dispozici pouze tvercový papír
Zápo tová písemná práce. 1 z p edm tu 01MAB4 varianta A
Zápo tová písemná práce. 1 z p edm tu 01MAB4 varianta A 18. dubna 2016, 11:2013:20 ➊ (1 bod) Nalezn te kritický bod soustavy generujících rovnic e x 6y 6z 2 + 12z = 13, 2e 2x 6y z 3 = 6. Uºijte faktu,
DMA Přednáška Rekurentní rovnice. takovou, že po dosazení odpovídajících členů do dané rovnice dostáváme pro všechna n n 0 + m pravdivý výrok.
DMA Přednáška Rekurentní rovnice Rekurentní rovnice či rekurzivní rovnice pro posloupnost {a n } je vztah a n+1 = G(a n, a n 1,..., a n m ), n n 0 + m, kde G je nějaká funkce m + 1 proměnných. Jejím řešením
MATEMATIKA I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ ZÁKLADY LINEÁRNÍ ALGEBRY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ MATEMATIKA I ZÁKLADY LINEÁRNÍ ALGEBRY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX 2ε, Podpořeno projektem
4. Lineární (ne)rovnice s racionalitou
@04 4. Lineární (ne)rovnice s racionalitou rovnice Když se řekne s racionalitou, znamená to, že zadaná rovnice obsahuje nějaký zlomek a neznámá je ve jmenovateli zlomku. Na co si dát pozor? u rovnic je
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
Exponenciální a logaritmická funkce
Variace 1 Exponenciální a logaritmická funkce Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Exponenciální
Po etní geometrie. Výpo et délky p epony: c 2 = a 2 + b 2 Výpo et délky odv sny: a 2 = c 2 b 2, b 2 = c 2 a 2
Po etní geometrie Pythagorova v ta Obsah tverce nad p eponou je roven sou tu obsah tverc nad ob ma odv snami. Výpo et délky p epony: c = a + b Výpo et délky odv sny: a = c b, b = c a P íklad 1: Vypo t
tatistické rozdelenia
FYZ-230/00 Algoritmy vedeckotechnických výpo tov tatistické rozdelenia 1 Obsah Úvod, vlastnosti rozdelení pravdepodobnosti Rovnomerné rozdelenie Trojuholníkové rozdelenie Binomické rozdelenie Poissonovo
QR, b = QS, c = QP. Dokaºte ºe vzdálenost bodu P od roviny spl uje. a (b c) d =
. cvi ení -Opakování geometrie IR n, p íklady () Najd te velikost úhlu mezi hlavní diagonálou krychle a diagonálou jedné ze stran, která s ní má spole ný vrchol. (2) Dokaºte ºe x y = y x. (3) Dokaºte ºe
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.0/1.5.00/34.080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím
l. 1 Úvodní ustanovení
OBEC V EMYSLICE Obecn závazná vyhlá ka. 1 / 2015 o stanovení systému shroma ování, sb ru, p epravy, t íd ní, vyu ívání a odstra ování komunálních odpad a nakládání se stavebním odpadem na území obce V
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A úterý 6. prosince 2016, 13:2015:20 ➊ (8 bod ) Vy²et ete stejnom rnou konvergenci ady na mnoºin R +. n=2 x n 1 1 4n 2 + x 2 ln 2 (n) ➋ (5 bod ) Detailn
TROJFÁZOVÝ OBVOD SE SPOT EBI EM ZAPOJENÝM DO HV ZDY A DO TROJÚHELNÍKU
TROJFÁZOVÝ OBVOD E POT EBI EM ZAPOJENÝM DO HV ZDY A DO TROJÚHELNÍKU Návod do m ení Ing. Vít zslav týskala, Ing. Václav Kolá Únor 2000 poslední úprava leden 2014 1 M ení v trojázových obvodech Cíl m ení:
č ň ň Ž Í č Í Ů Ó č Š Č č ň Š Ť Ó ň ň Ó Ť ť ň ď ň ň Ť Ť Ú č č č č ň Ť ň ň č ň ň č č ň č č č ň Ý ť ň č č ň ť Ž Č č ň ň ť Č ň ť č Ž č ň ň ň Ž Ť ň Š č č č Í č Ž ň ň ď ň ť č ť č č ň Ž Č ť Ó č ň ň ň Í č Ť č
Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. VZPĚR VZPĚR
Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 8. ZÁŘÍ 2013 Název zpracovaného celku: VZPĚR VZPĚR U všech předcházejících druhů namáhání byla funkce součásti ohroţena překročením
Seminá e. Ing. Michal Valenta PhD. Databázové systémy BI-DBS ZS 2010/11, sem. 1-13
Seminá e Ing. Michal Valenta PhD. Katedra softwarového inºenýrství Fakulta informa ních technologií ƒeské vysoké u ení technické v Praze c Michal Valenta, 2010 Databázové systémy BI-DBS ZS 2010/11, sem.
Obecnou definici vynecháme. Jednoduše řečeno: složenou funkci dostaneme, když dosadíme za argument funkci g. Potom y f g
Složená funkce Obecnou definici vynecháme Jednoduše řečeno: složenou funkci dostaneme, když do funkce y f dosadíme za argument funkci g Potom y f g Funkce f je vnější složka, funkce g vnitřní složka Pochopitelně
z nich byla poprvé dokázána v 19. století velikány analytické teorie čísel (Pafnutij Lvovič Čebyšev, Charles-Jean de la Vallée Poussin a další).
0. Tři věty o prvočíslech Martin Mareš Úvodem Při analýze algoritmů se často využívají různá tvrzení o prvočíslech. Většina z nich byla poprvé dokázána v 9. století velikány analytické teorie čísel (Pafnutij
pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A
Přijímací zkouška na MFF UK pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé úlohy
Matematická logika cvi ení 47
Matematická logika cvi ení 47 Libor B hounek www.cs.cas.cz/behounek/teaching/malog12 LS 2012/13, P F OU, 4.25. 3. 2013 Cvi ení 1. Posu te následující výroky z hlediska adekvátnosti dvojhodnotové sémantiky
Asymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze
Asymptoty funkce 1 Asymptota bez směrnice 6 Máme dvě funkce f 1 : y a 3 f : y 3 Člověk nemusí být matematický génius, aby pochopil, že do předpisu obou funkcí lze dosadit za libovolné reálné číslo kromě
1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:
Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky
Logaritmus. Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým. umocníme základ a, abychom dostali číslo.
Logaritmus Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým umocníme základ a, abychom dostali číslo. Platí tedy: logax = y a y = x ( Dekadický logaritmus základ 10 označení
11.12.2013, Brno ipravil: Tomáš Vít z Mechanika tekutin
11.12.2013, Brno ipravil: Tomáš Vít z Mechanika tekutin erpadla strana 2 erpadla - za ízení pro dopravu tekutin Doprava tekutin m že být uskute ována pomocí erpadel, - ventilátor, - kompresor. Tato za
MECHANIKA TUHÉ TĚLESO
Projekt Efektivní Učení Reformou oblastí gymnaziálního vzělávání je spolufinancován Evropským sociálním fonem a státním rozpočtem České republiky. Implementace ŠVP MECHANIKA TUHÉ TĚLESO Učivo - Tuhé těleso
Matice a e²ení soustav lineárních rovnic
Úvod Tato sbírka úloh z lineární algebry je ur ena student m Fakulty elektrotechniky a informatiky V B - Technické univerzity Ostrava T mto student m je p edev²ím ur eno skriptum profesora Zde ka Dostála
Státní maturita 2011 Maturitní testy a zadání jaro 2011 Matematika: didaktický test - základní úrove obtíºnosti MAMZD11C0T02 e²ené p íklady
Státní maturita 0 Maturitní testy a zadání jaro 0 Matematika: didaktický test - základní úrove obtíºnosti MAMZDC0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 0. srpna 0 http://www.vachtova.cz/ Obsah Úloha
Konceptuální modelování
Konceptuální modelování Ing. Michal Valenta PhD. Katedra softwarového inºenýrství Fakulta informa ních technologií ƒeské vysoké u ení technické v Praze c Michal Valenta, 2010 Databázové systémy BI-DBS
1 P ílohy. 1.1 Dopln ní na tverec
1 P ílohy 1.1 Dopln ní na tverec Pouºívá se pro minimalizaci kvadratického výrazu nebo pro integraci v konvoluci dvou normálních rozd lení (tady má význam rozkladu normální sdruºené hp na podmín nou a
Funkce komplexní proměnné a integrální transformace
Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na