ZÁKLADY ROBOTIKY Transformace souřadnic

Rozměr: px
Začít zobrazení ze stránky:

Download "ZÁKLADY ROBOTIKY Transformace souřadnic"

Transkript

1 ÁKLD OOIK ansfomace souřadnic Ing. Josef Čenohoský, h.d. ECHNICKÁ UNIVEI V LIECI Fakulta mechatoniky, infomatiky a mezioboových studií ento mateiál vznikl v ámci pojektu ESF C..7/2.2./7.247, kteý je spolufinancován Evopským sociálním fondem a státním ozpočtem Č

2 ákladní otázky po tento blok? řepočet osunutí Jak zapsat bod, jehož polohu znám v ámci jednoho v jiném ootočeném osunutém ootočeném a posunutém Jak zapsat změnu v ámci jednoho osun ootočení osun i pootočení

3 řipomenutí souřadných systémů řepočet osunutí θ θ 2 θ 3 x, y, θ Kloubový vs. Globální souřadný systém

4 Vyjádření změny adného řepočet osunutí od zobazený v bod zobazený v Vzájemný vztah oientací se dá popsat maticí

5 pět t do 2D řepočet osunutí od zobazený v pokud známe jeho souřadnice v Vzájemný vztah oientací se dá popsat ovnicemi

6 pět t do 2D řepočet osunutí x y a a x x b b cos sin ϕ ϕ + y y b b sin cos ϕ ϕ x y a a cos sin ϕ ϕ sin cos ϕ ϕ x y b b

7 Vyjádření změny adného řepočet osunutí od zobazený v bod zobazený v Vzájemný vztah oientací se dá popsat maticí

8 Jednotlivé sloupcové vektoy řepočet osunutí [ ]

9 do a co do? řepočet osunutí Vlastnost otonomální matice [ ] [ ]

10 říklad řepočet osunutí Jednoduchá mezi dvěma souřadnými systémy ( do ) a zpět

11 osunutí řepočet ansfomace souřadnic Systém otovaný kolem osy Syst Systém otovaný kolem m otovaný kolem osy osy

12 osunutí řepočet ansfomace souřadnic do do do

13 do a do řepočet osunutí

14 říklad - závě řepočet osunutí ostá matice 3x3, otonomální, invezní matice je ovna tansponované

15 Speciální případy pady,, řepočet osunutí ( θ ) cosθ sinθ sinθ cosθ cosϑ sinϑ ( ϑ) sinϑ cosϑ cosζ sinζ ( ζ ) sinζ cosζ

16 řepočet epočet et obecného řepočet osunutí

17 osunutí adného řepočet osunutí +

18 Obecná (osun+otace) řepočet osunutí p +

19 řepočet p osunutí ( 4x) (4x4) (4x)

20 do a co zpět? do řepočet osunutí p

21 říklad 2 řepočet osunutí Dva systémy pootočené jako v předchozím příkladě, navíc posunuté Učit výslednou tansfomační matici

22 Systém m otovaný kolem osy + posun řepočet osunutí 3

23 Systém m otovaný kolem osy + posun řepočet osunutí 3 3

24 řepočet et bodu pomocí tansfomační matice řepočet osunutí 3???

25 řepočet et bodu pomocí tansfomační matice řepočet osunutí 2 2 3

26 říklad 2 - závě řepočet osunutí Lze pacovat po částech vyjádříme vzájemnou otaci dvou systémů, vekto posunutí apíšeme homogenní tva ozšíříme bod o řepočteme oužijeme pvní tři komponenty (poslední zahodíme)

27 Stále stejný souřadný systém řepočet osunutí Jak v jeho ámci vyjádřit posun a pootočení omůže mi to co už vím?

28 otace v ámci souř. sys. řepočet (θ ) K osunutí

29 otace kolem osy (θ ) K řepočet osunutí ( θ ) K ( θ ) cos sin θ θ sin cos θ θ

30 otace kolem osy o řepočet osunutí 2???,8,6 (θ ) K,6,8 2 2

31 osunutí, homogenní def. + Q řepočet osunutí q q q 2 3

32 osunutí řepočet ansfomace souřadnic Sekvence tansfomací Sekvence tansfomac Sekvence tansfomací C C C C + C C C C C

33 Souvislost s anguláním obotem řepočet osunutí Na čem závisí hodnoty 6 5 Na ozměech jednotlivých amen (konstanty) Úhlech natočení jednotlivých os (poměnné)!!!

34 oděkování řepočet osunutí ento mateiál vznikl v ámci pojektu ESF C..7/2.2./7.247 eflexe požadavků půmyslu na výuku v oblasti automatického řízení a měření, kteý je spolufinancován Evopským sociálním fondem a státním ozpočtem Č.

Kinematika tuhého tělesa

Kinematika tuhého tělesa Kinematika tuhého tělesa Pet Šidlof TECHNICKÁ UNIVERZITA V LIERCI Fakulta mechatoniky, infomatiky a mezioboových studií Tento mateiál vznikl v ámci pojektu ESF CZ.1.07/2.2.00/07.0247 Reflexe požadavků

Více

Moment síly, spojité zatížení

Moment síly, spojité zatížení oment síly, spojité zatížení Pet Šidlof TECHNICKÁ UNIVERZITA V LIBERCI akulta mechatoniky, infomatiky a mezioboových studií Tento mateiál vznikl v ámci pojektu ES CZ.1.07/2.2.00/07.0247 Reflexe požadavků

Více

Duktilní deformace, část 1

Duktilní deformace, část 1 uktilní defomace, část uktilní (plastická) defomace je taková defomace, při níž se mateiál defomuje bez přeušení koheze (soudžnosti). Plasticita mateiálu záleží na tzv. mezi plasticity (yield stess) -

Více

Učební text k přednášce UFY102

Učební text k přednášce UFY102 Matematický popis vlnění vlna - ozuch šířící se postředím zachovávající svůj tva (pofil) Po jednoduchost začneme s jednodimenzionální vlnou potože ozuch se pohybuje ychlostí v, musí být funkcí jak polohy

Více

GEOMETRIE ŘEZNÉHO NÁSTROJE

GEOMETRIE ŘEZNÉHO NÁSTROJE EduCom Tento mateiál vznikl jako součást pojektu EduCom, kteý je spolufinancován Evopským sociálním fondem a státním ozpočtem Č. GEOMETIE ŘEZNÉHO NÁSTOJE Jan Jesák Technická univezita v Libeci Technologie

Více

do strukturní rentgenografie e I

do strukturní rentgenografie e I Úvod do stuktuní entgenogafie e I Difakce tg záření na kystalu Metody chaakteizace nanomateiálů I RND. Věa Vodičková, PhD. Studium kystalové stavby Difakce elektonů, neutonů, tg fotonů Kystal ideální mřížka

Více

Diferenciální operátory vektorové analýzy verze 1.1

Diferenciální operátory vektorové analýzy verze 1.1 Úvod Difeenciální opeátoy vektoové analýzy veze. Následující text popisuje difeenciální opeátoy vektoové analýzy. Měl by sloužit především studentům předmětu MATEMAT na Univezitě Hadec Kálové k přípavě

Více

Geometrické transformace pomocí matic

Geometrické transformace pomocí matic Geometrické transformace pomocí matic Pavel Strachota FJFI ČVUT v Praze 2. dubna 2010 Obsah 1 Úvod 2 Geometrické transformace ve 2D 3 Geometrické transformace ve 3D Obsah 1 Úvod 2 Geometrické transformace

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT pof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz VI. VOLBA A VÝBĚR PŘÍ ZAČÍNÁME kolik a jaké příznaky? málo příznaků možná chyba klasifikace;

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje EEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité ozložení náboje Pete Doumashkin MIT 006, překlad: Jan Pacák (007) Obsah. SPOJITÉ OZOŽENÍ NÁBOJE.1 ÚKOY. AGOITMY PO ŘEŠENÍ POBÉMU ÚOHA 1: SPOJITÉ OZOŽENÍ

Více

Přímková a rovinná soustava sil

Přímková a rovinná soustava sil STAVEBNÍ STATIKA Ing. Lenka Lausová LH 47/1 tel. 59 73 136 římková a ovinná soustava sil lenka.lausova@vsb.c http://fast1.vsb.c/lausova Základní pojmy: Jednotková kužnice 1) Souřadný systém 1 sin potilehlá

Více

Přímá a inverzní kinematika manipulátoru pro NDT (implementační poznámky) (varianta 2: RRPR manipulátor)

Přímá a inverzní kinematika manipulátoru pro NDT (implementační poznámky) (varianta 2: RRPR manipulátor) Technická zpráva Katedra kybernetiky, Fakulta aplikovaných věd Západočeská univerzita v Plzni Přímá a inverzní kinematika manipulátoru pro NDT (implementační poznámky) (varianta 2: RRPR manipulátor) 22.

Více

Dynamika tuhého tělesa

Dynamika tuhého tělesa Dnaika tuhého tělesa Pet Šidlof ECHNCKÁ UNVERZA V LBERC Fakulta echatonik, infoatik a eioboových studií ento ateiál vnikl v áci pojektu ESF CZ..7/../7.47 Reflexe požadavků půslu na výuku v oblasti autoatického

Více

Kap. 3 Makromechanika kompozitních materiálů

Kap. 3 Makromechanika kompozitních materiálů Kap. Makromechanika kompozitních materiálů Informační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky FS ČVU v Praze. listopadu 7 Základní pojmy a vztahy Notace

Více

4. cvičení z Matematické analýzy 2

4. cvičení z Matematické analýzy 2 4. cvičení z Matematické analýzy 2 22. - 26. října 208 4. Po funkci fx, y, z xy 2 + z 3 xyz učete v bodě a 0,, 2 deivaci ve měu u, kteý je učen tím, že víá kladnými měy ouřadných o potupně úhly 60, 45

Více

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém Vysoká škola báňskb ská Technická univeita Ostava Stavební statika Cvičení 1 římková a ovinná soustava sil římková soustava sil ovinný svaek sil Statický moment síly k bodu a dvojice sil v ovině Obecná

Více

Kinematika. Hmotný bod. Poloha bodu

Kinematika. Hmotný bod. Poloha bodu Kinematika Pohyb objektů (kámen, automobil, střela) je samozřejmou součástí každodenního života. Pojem pohybu byl poto známý už ve staověku. Modení studium pohybu začalo v 16. století a je spojeno se jmény

Více

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic

Více

Kvaterniony, duální kvaterniony a jejich aplikace

Kvaterniony, duální kvaterniony a jejich aplikace 1 / 16 Kvaterniony, duální kvaterniony a jejich aplikace Jitka Prošková Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky 17. 6. 21 2 / 16 Zadání Základní charakteristika tělesa

Více

PRUŽNOST A PEVNOST 2 V PŘÍKLADECH

PRUŽNOST A PEVNOST 2 V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECNICKÁ UNIVEZITA OSTAVA FAKULTA STOJNÍ PUŽNOST A PEVNOST V PŘÍKLADEC Kvadratický moment I doc. Ing. Karel Frydrýšek, Ph.D., ING-PAED IGIP Ing. Milan Sivera Ing. ichard Klučka Ing.

Více

6 Diferenciální operátory

6 Diferenciální operátory - 84 - Difeenciální opeátoy 6 Difeenciální opeátoy 61 Skalání a vektoové pole (skalání pole) u u x x x Funkci 1 n definovanou v učité oblasti Skalání pole přiřazuje každému bodu oblasti učitou číselnou

Více

F5 JEDNODUCHÁ KONZERVATIVNÍ POLE

F5 JEDNODUCHÁ KONZERVATIVNÍ POLE F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Evopský sociální fond Paha & EU: Investujeme do vaší budoucnosti F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Asi nejznámějším konzevativním polem je gavitační silové pole Ke gavitační

Více

Mechanika

Mechanika Mechanika 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Mechanika Kinematika 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Více

Konstrukční a technologické koncentrátory napětí

Konstrukční a technologické koncentrátory napětí Obsah: 6 lekce Konstukční a technologické koncentátoy napětí 61 Úvod 6 Účinek lokálních konstukčních koncentací napětí 63 Vliv kuhového otvou na ozložení napjatosti v dlouhém tenkém pásu zatíženém tahem

Více

ZÁKLADY ROBOTIKY Kinematika a topologie robotů

ZÁKLADY ROBOTIKY Kinematika a topologie robotů ZÁKLADY ROBOTIKY Kinematika a topologie Ing. Josef Černohorský, Ph.D. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF

Více

a polohovými vektory r k

a polohovými vektory r k Mechania hmotných soustav Hmotná soustava (HS) je supina objetů, o teých je vhodné uvažovat jao o celu Pvy HS se pohybují účinem sil N a) vnitřních: Σ ( F + F + L+ F ) 0 i 1 i1 b) vnějších: síly od objetů,

Více

Dynamika tuhého tělesa. Petr Šidlof

Dynamika tuhého tělesa. Petr Šidlof Dnaika tuhého tělesa Pet Šidlof Dnaika tuhého tělesa Pvní věta ipulsová F dp dt a t Zchlení těžiště Výslednice vnějších sil F A F B F C Celková hbnost soustav p p i Hotnost soustav i těžiště soustav se

Více

Trivium z optiky Vlnění

Trivium z optiky Vlnění Tivium z optiky 7 1 Vlnění V této kapitole shnujeme základní pojmy a poznatky o vlnění na přímce a v postou Odvolávat se na ně budeme často v kapitolách následujících věnujte poto vyložené látce náležitou

Více

Digital Control of Electric Drives. Vektorové řízení asynchronních motorů. České vysoké učení technické Fakulta elektrotechnická

Digital Control of Electric Drives. Vektorové řízení asynchronních motorů. České vysoké učení technické Fakulta elektrotechnická Digital Control of Electric Drives Vektorové řízení asynchronních motorů České vysoké učení technické Fakulta elektrotechnická B1M14DEP O. Zoubek 1 MOTIVACE Nevýhody skalárního řízení U/f: Velmi nízká

Více

PODÉLNÁ STABILITA PLOVOUCÍHO TĚLESA VÁLCOVÉHO TVARU PLOVÁKŮ - 1. FÁZE LONGITUDINAL STABILITY OF THE FLOATING BODY BY CYLINDRICAL FORM OF FLOATS - 1

PODÉLNÁ STABILITA PLOVOUCÍHO TĚLESA VÁLCOVÉHO TVARU PLOVÁKŮ - 1. FÁZE LONGITUDINAL STABILITY OF THE FLOATING BODY BY CYLINDRICAL FORM OF FLOATS - 1 Ročník 5., Číslo III., listopad 00 PODÉLNÁ STABILITA PLOVOUCÍHO TĚLESA VÁLCOVÉHO TVARU PLOVÁKŮ -. FÁZE LONGITUDINAL STABILITY OF THE FLOATING BODY BY CYLINDRICAL FORM OF FLOATS - Leopold Habovský Anotace:

Více

1 Veličiny charakterizující geometrii ploch

1 Veličiny charakterizující geometrii ploch 1 Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně

Více

Zjednodušená deformační metoda (2):

Zjednodušená deformační metoda (2): Stavební mechanika 1SM Přednášky Zjednodušená deformační metoda () Prut s kloubově připojeným koncem (statická kondenzace). Řešení rovinných rámů s posuvnými patry/sloupy. Prut s kloubově připojeným koncem

Více

Merkur perfekt Challenge Studijní materiály

Merkur perfekt Challenge Studijní materiály Merkur perfekt Challenge Studijní materiály T: 541 146 120 IČ: 00216305, DIČ: CZ00216305 / www.feec.vutbr.cz/merkur / steffan@feec.vutbr.cz 1 / 15 Název úlohy: Kresba čtyřlístku pomocí robotické ruky Anotace:

Více

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU udeme se zabývat výpočtem magnetického pole vytvořeného danou konfiguací elektických poudů (podobně jako učení elektického pole vytvořeného daným ozložením elektických

Více

transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1]

transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1] [1] Afinní transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím využití například v počítačové grafice Evropský sociální fond Praha & EU. Investujeme do

Více

K přednášce NUFY080 Fyzika I prozatímní učební materiál, verze 01 Keplerova úloha Leoš Dvořák, MFF UK Praha, Keplerova úloha

K přednášce NUFY080 Fyzika I prozatímní učební materiál, verze 01 Keplerova úloha Leoš Dvořák, MFF UK Praha, Keplerova úloha K řednášce NUFY080 Fyzika I ozatímní učební mateiál, veze 01 Keleova úloha eoš Dvořák, MFF UK Paha, 014 Keleova úloha Chceme sočítat, jak se ohybuje hmotný bod gavitačně řitahovaný nehybným silovým centem.

Více

DYNAMIKA HMOTNÉHO BODU

DYNAMIKA HMOTNÉHO BODU DYNAMIKA HMOTNÉHO BODU Součást Newtonovské klasická mechanika (v

Více

MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ

MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ Úloha č. 6 a MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ ÚKOL MĚŘENÍ:. Změřte magnetickou indukci podél osy ovinných cívek po případy, kdy vdálenost mei nimi je ovna poloměu cívky R a dále R a R/..

Více

Řešení testu 2b. Fyzika I (Mechanika a molekulová fyzika) NOFY ledna 2016

Řešení testu 2b. Fyzika I (Mechanika a molekulová fyzika) NOFY ledna 2016 Řešení testu b Fika I (Mecanika a molekulová fika NOFY. ledna 6 Příklad Zadání: Po kouli o poloměu se be pokluovaní valí malá koule o poloměu. Jaká bude úlová clost otáčení malé koule v okamžiku kd se

Více

Kinematika. Kinematika studuje geometrii pohybu robotu a trajektorie, po kterých se pohybují jednotlivé body. Klíčový pojem je poloha.

Kinematika. Kinematika studuje geometrii pohybu robotu a trajektorie, po kterých se pohybují jednotlivé body. Klíčový pojem je poloha. Kinematika Kinematika studuje geometrii pohybu robotu a trajektorie, po kterých se pohybují jednotlivé body. Klíčový pojem je poloha. Statika studuje vliv sil působících na robota v klidu a jejich vliv

Více

Vlnovody. Obr. 7.1 Běžné příčné průřezy kovových vlnovodů: obdélníkový, kruhový, vlnovod, vlnovod H.

Vlnovody. Obr. 7.1 Běžné příčné průřezy kovových vlnovodů: obdélníkový, kruhový, vlnovod, vlnovod H. 7 Vlnovody Běžná vedení (koaxiální kabel, dvojlinka) jsou jen omezeně použitelná v mikovlnné části kmitočtového spekta. S ůstem kmitočtu přenášeného signálu totiž významně ostou ztáty v dielektiku těchto

Více

FYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Mechanická enegie Pof. RND. Vilém Mád, CSc. Pof. Ing. Libo Hlaváč, Ph.D. Doc. Ing. Iena Hlaváčová, Ph.D. Mg. At. Dagma Mádová Ostava

Více

7 Transformace 2D. 7.1 Transformace objektů obecně. Studijní cíl. Doba nutná k nastudování. Průvodce studiem

7 Transformace 2D. 7.1 Transformace objektů obecně. Studijní cíl. Doba nutná k nastudování. Průvodce studiem 7 Transformace 2D Studijní cíl Tento blok je věnován základním principům transformací v rovinné grafice. V následujícím textu bude vysvětlen rozdíl v přístupu k transformacím u vektorového a rastrového

Více

Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r

Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r Newtonův avitační zákon: Gavitační pole ezi dvěa tělesy o hotnostech 1 a, kteé jsou od sebe vzdáleny o, působí stejně velké síly vzájené přitažlivosti, jejichž velikost je přío úěná součinu hotností 1

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti F8 KEPLEOVY ZÁKONY Evopský sociální fond Paha & EU: Investujeme do vaší udoucnosti F8 KEPLEOVY ZÁKONY Kepleovy zákony po planetání pohy zfomuloval Johannes Keple (1571 1630) na základě měření Tychona Baheho

Více

k + q. Jestliže takový dipól kmitá s frekvencí ν (odpovídající

k + q. Jestliže takový dipól kmitá s frekvencí ν (odpovídající Vlastnosti kmitajíího dipólu Podle klasiké teoie je nejefektivnějším zdojem elektomagnetikého záření kmitajíí elektiký dipól. Intenzita jeho záření o několik řádů převyšuje intenzity ostatníh zdojů záření

Více

1. Dvě stejné malé kuličky o hmotnosti m, jež jsou souhlasně nabité nábojem Q, jsou 3

1. Dvě stejné malé kuličky o hmotnosti m, jež jsou souhlasně nabité nábojem Q, jsou 3 lektostatické pole Dvě stejné malé kuličk o hmotnosti m jež jsou souhlasně nabité nábojem jsou pověšen na tenkých nitích stejné délk v kapalině s hustotou 8 g/cm Vpočtěte jakou hustotu ρ musí mít mateiál

Více

2.13 Rovinný obloukový nosník zatížený v rovině = staticky určitě podepřený rovinný obloukový prut

2.13 Rovinný obloukový nosník zatížený v rovině = staticky určitě podepřený rovinný obloukový prut .13 Rovinný obloukový nosník atížený v rovině = staticky určitě podepřený rovinný obloukový prut (střednice-rovinná křivka, atížení v rovině střednice) Geometrie obloukového prutu Poloha průřeu: s x =

Více

Stavební mechanika 1 (132SM01)

Stavební mechanika 1 (132SM01) Stavební mechanika 1 (132SM01) Přednáší: Ing. Jiří Němeček, Ph.D. Kateda stavební mechanik K132 místnost 331a e-mail: jii.nemecek@fsv.cvut.c http://mech.fsv.cvut.c/ Liteatua: Kabele a kol., Stavební mechanika

Více

1.7.2 Moment síly vzhledem k ose otáčení

1.7.2 Moment síly vzhledem k ose otáčení .7. oment síly vzhledem k ose otáčení Předpoklady 70 Pedagogická poznámka Situaci tochu komplikuje skutečnost, že žáci si ze základní školy pamatují součin a mají pocit, že se pouze opakuje notoicky známá

Více

14. TRANSFORMACE SOUŘADNÉHO SYSTÉMU

14. TRANSFORMACE SOUŘADNÉHO SYSTÉMU Transformace souřadnic 14 14. TRANSFORMACE SOUŘADNÉHO SYSTÉMU Transformace souřadného systému je implementována od softwarové verze 40.19 primárního procesoru a 6.201 sekundárního procesoru formou příslušenství

Více

Newtonův gravitační zákon

Newtonův gravitační zákon Gavitační pole FyzikaII základní definice Gavitační pole je posto, ve kteém působí gavitační síly. Zdojem gavitačního pole jsou všechny hmotné objekty. Každá dvě tělesa jsou k sobě přitahována gavitační

Více

11. cvičení z Matematiky 2

11. cvičení z Matematiky 2 11. cvičení z Mateatiky. - 6. května 16 11.1 Vypočtěte 1 x + y + z dv, kde : x + y + z 1. Věta o substituci á analogický tva a podínky pouze zanedbatelné nožiny nyní zahnují i plochy, oviny atd.: f dv

Více

5. Světlo jako elektromagnetické vlnění

5. Světlo jako elektromagnetické vlnění Tivium z optiky 9 5 Světlo jako elektomagnetické vlnění Ve třetí kapitole jsme se dozvěděli že na světlo můžeme nahlížet jako na elektomagnetické vlnění Dříve než tak učiníme si ale musíme alespoň v základech

Více

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet

Více

7 Analytické vyjádření shodnosti

7 Analytické vyjádření shodnosti 7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Komentovaný metodický list č. 1/4 Vytvořil: Ing. Oldřich Ševeček & Ing. Tomáš Profant, Ph.D.

Více

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D.

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D. Příklad 1: 3;4 3;4 = =4 9 2;1,78 = = 4 9 4=16 9 =1,78 =2 =2 2 4 9 =16 9 1 = 1+ =0,49 = 1+ =0,872 =0 =10 6+ 2,22=0 =3,7 6+ 2,22=0 =3,7 + =0 3,7+3,7=0 0=0 =60,64 =0 =0 + =0 =3,7 á čá 5+ 2,22=0 =3,7 5+ 2,22+

Více

Afinní transformace Stručnější verze

Afinní transformace Stručnější verze [1] Afinní transformace Stručnější verze je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím body a vektory: afinní prostor využití například v počítačové grafice a)

Více

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE 1 ELEKTRICKÝ NÁBOJ Elektický náboj základní vlastnost někteých elementáních částic (pvní elektické jevy pozoovány již ve staověku janta (řecky

Více

1.3.8 Rovnoměrně zrychlený pohyb po kružnici I

1.3.8 Rovnoměrně zrychlený pohyb po kružnici I 1.3.8 Rovnoměně zychlený pohyb po kužnici I Předpoklady: 137 Opakování: K veličinám popisujícím posuvný pohyb existují analogické veličiny popisující pohyb po kužnici: ovnoměný pohyb pojítko ovnoměný pohyb

Více

Geometrická optika. Aberace (vady) optických soustav

Geometrická optika. Aberace (vady) optických soustav Geometická optika Abeace (vady) optických soustav abeace (vady) optických soustav jsou odchylky zobazení eálné optické soustavy od zobazení ideální optické soustavy v důsledku abeací není obazem bodu bod,

Více

hmotný bod: těleso s nekonečně malými rozměry, ale nenulovou hmotností, tj. žádné otáčení, žádná deformace atd. = bodová hmotnost

hmotný bod: těleso s nekonečně malými rozměry, ale nenulovou hmotností, tj. žádné otáčení, žádná deformace atd. = bodová hmotnost Kinematika hmotný bod: těleso s nekonečně malými omě, ale nenulovou hmotností, tj. žádné otáčení, žádná defomace atd. = bodová hmotnost popis pohbu hmotného bodu tj. poloha hmotného bodu v ávislosti na

Více

Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách

Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách Fyzika Studuje objekty neživé příody a vztahy mezi nimi Na základě pozoování a pokusů studuje obecné vlastnosti látek a polí, indukcí dospívá k obecným kvantitativním zákonům a uvádí je v logickou soustavu

Více

(5) Primitivní funkce

(5) Primitivní funkce (5) Primitivní funkce Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (5) Primitivní funkce 1 / 20 Def: Primitivní funkce Definice Necht funkce f je definována na neprázdném otevřeném intervalu (a,

Více

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace

Více

Výslednice, rovnováha silové soustavy.

Výslednice, rovnováha silové soustavy. Výslednce, ovnováha slové soustavy. Základy mechanky, 2. přednáška Obsah přednášky : výslednce a ovnováha slové soustavy, ovnce ovnováhy, postoová slová soustava Doba studa : as 1,5 hodny Cíl přednášky

Více

Vibrace vícečásticových soustav v harmonické aproximaci. ( r)

Vibrace vícečásticových soustav v harmonické aproximaci. ( r) Paktikum z počítačového modelování ve fyzice a chemii Úloha č. 5 Vibace vícečásticových soustav v hamonické apoximaci Úkol Po zadané potenciály nalezněte vibační fekvence soustavy několika částic diagonalizací

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNCKÁ NVEZTA V LBEC Fakulta mechatroniky, informatiky a mezioborových studií Základy spojitého řízení Analýza elektrického obvodu čební text Josef J a n e č e k Liberec 010 Materiál vznikl v rámci projektu

Více

2.1 Shrnutí základních poznatků

2.1 Shrnutí základních poznatků .1 Shnutí základních poznatků S plnostěnnými otujícími kotouči se setkáváme hlavně u paních a spalovacích tubín a tubokompesoů. Matematický model otujících kotoučů můžeme s úspěchem využít např. i při

Více

Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu

Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu Václav Čibera 12. února 2009 1 Motivace Na obrázku 1 máme znázorněný mechanický systém, který může představovat

Více

Í Č ú Č Š Í Á É Č Č ú š š Ž ž š Ť Ť Ž ž Ó ó Ž ž ž Í ú ž Ť ž ž š ň ž š š Í ž Í ň Ž ň š ó š Ž Ž Í Š ú Í ž ž Í š ž ž Ť š š Ž Ž Á ž ó ž Ť š ž ť š Í ň ť ž Ž ž Ž ž Ť ž šť š ž Ž ň ú ž š ž ú ú ť Ž ň ú š ú ž Ž

Více

Veličiny charakterizující geometrii ploch

Veličiny charakterizující geometrii ploch Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVO O MOELOVÁNÍ V MECHNICE MECHNIK KOMPOZITNÍCH MTERIÁLŮ 2 Přednáška č. 7 Robert Zemčík 1 Zebry normální Zebry zdeformované 2 Zebry normální Zebry zdeformované 3 Zebry normální 4 Zebry zdeformované protažené?

Více

Klíčové pojmy Vypište hlavní pojmy: b) Tíhová síla. c) Tíha. d) Gravitační zrychlení. e) Intenzita gravitačního pole

Klíčové pojmy Vypište hlavní pojmy: b) Tíhová síla. c) Tíha. d) Gravitační zrychlení. e) Intenzita gravitačního pole Pojekt Efektivní Učení Refomou oblastí gymnaziálního vzdělávání je spolufinancován Evopským sociálním fondem a státním ozpočtem České epubliky. GRAVITAČNÍ POLE Teoie Slovně i matematicky chaakteizujte

Více

Řešení : Těleso T je elementárním oborem integrace vzhledem k rovině (x,y) a proto lze přímo aplikovat Fubiniovu větu pro trojný integrál.

Řešení : Těleso T je elementárním oborem integrace vzhledem k rovině (x,y) a proto lze přímo aplikovat Fubiniovu větu pro trojný integrál. E. rožíková, M. Kittlerová, F. Mrá: Sbírka příkladů Matematik II (6 III.6. Aplikace trojných integrálů Příklad 6. Užitím vorce pro výpočet objemu tělesa pomocí trojného integrálu (tj.v ddd ukažte, že objem

Více

SMR 1. Pavel Padevět

SMR 1. Pavel Padevět SMR Pavel Padevět Oganzace předmětu Přednášející Pavel Padevět, K 3, D 09 e-mal: pavel.padevet@fsv.cvut.cz Infomace k předmětu: https://mech.fsv.cvut.cz/student SMR Heslo: odné číslo bez lomítka (případně

Více

Optimalizace vláknového kompozitu

Optimalizace vláknového kompozitu Optimalizace vláknového kompozitu Bc. Jan Toman Vedoucí práce: doc. Ing. Tomáš Mareš, Ph.D. Abstrakt Optimalizace trubkového profilu z vláknového kompozitu při využití Timošenkovy hypotézy. Hledání optimálního

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

Kartézská soustava souřadnic

Kartézská soustava souřadnic Katézská soustava souřadnic Pavotočivá Levotočivá jednotkové vekto ve směu souřadnicových os Katézská soustava souřadnic otonomální báze z,, z Katézská soustava souřadnic polohový (adius) vekto z,, z velikost

Více

7 Lineární elasticita

7 Lineární elasticita 7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový

Více

Robotické architektury pro účely NDT svarových spojů komplexních potrubních systémů jaderných elektráren

Robotické architektury pro účely NDT svarových spojů komplexních potrubních systémů jaderných elektráren Robotické architektury pro účely NDT svarových spojů komplexních potrubních systémů jaderných elektráren Projekt TA ČR č. TA01020457: Výzkum, vývoj a validace univerzální technologie pro potřeby moderních

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT pof. Ing. Jiří Holčík, CSc. INVESTICE Intitut DO biotatitiky OZVOJE VZDĚLÁVÁNÍ a analýz II. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obaz zpacovávaných dat je

Více

Napětí horninového masivu

Napětí horninového masivu Npětí honinového msivu pimání npjtostí sekundání npjtostí účinky n stbilitu podzemního díl Dále můžeme uvžovt * bobtnání honiny * teplotní stv honiny J. Pušk MH 6. přednášk 1 Pimání npjtost gvitční (vyvolán

Více

Z teorie je nutné znát pojmy: lineární funkcionál, jádro, hodnost a defekt lineárního funkcionálu. Také využijeme 2. větu o dimenzi.

Z teorie je nutné znát pojmy: lineární funkcionál, jádro, hodnost a defekt lineárního funkcionálu. Také využijeme 2. větu o dimenzi. Lineární funkcionál Z teorie je nutné znát pojm: lineární funkcionál jádro hodnost a defekt lineárního funkcionálu Také vužijeme větu o dimenzi [cvičení] Nechť je definován funkcionál ϕ : C C pro každé

Více

Analýza napjatosti PLASTICITA

Analýza napjatosti PLASTICITA Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném

Více

ZÁKLADY GEOMETRIE KŘIVEK A PLOCH

ZÁKLADY GEOMETRIE KŘIVEK A PLOCH ZÁKLADY GEOMETRIE KŘIVEK A PLOCH Povzoní studní mateál - - Křvky v toozměném postou Úvod E - toozměný eukldovský posto s pevně zvolenou katézskou soustavou P e e V - eho zaměření D Nechť J R Zobazení X

Více

Derivace funkcí více proměnných

Derivace funkcí více proměnných Derivace funkcí více proměnných Pro studenty FP TUL Martina Šimůnková 16. května 019 1. Derivace podle vektoru jako funkce vektoru. Pro pevně zvolenou funkci f : R d R n a bod a R d budeme zkoumat zobrazení,

Více

Spojitý nosník. Příklady

Spojitý nosník. Příklady Spojitý nosník Příklady Příklad, zadání A = konst. =, m I = konst. =,6 m 4 E = konst. = GPa q =kn / m F kn 3 = M = 5kNm F = 5kN 8 F3 = 8kN 4,5 . způsob řešení n p = (nepočítáme pootočení ve styčníku č.3)

Více

Řešení úloh krajského kola 58. ročníku fyzikální olympiády Kategorie B Autor úloh: J. Thomas

Řešení úloh krajského kola 58. ročníku fyzikální olympiády Kategorie B Autor úloh: J. Thomas Řešení úlo kajskéo kola 58 očníku fyzikální olympiády Kategoie B Auto úlo: J Tomas a) Doba letu střely od okamžiku výstřelu do zásau označíme t V okamžiku výstřelu se usa nacází ve vzdálenosti s měřené

Více

Výukové texty. pro předmět. Automatické řízení výrobní techniky (KKS/ARVT) na téma

Výukové texty. pro předmět. Automatické řízení výrobní techniky (KKS/ARVT) na téma Výukové texty pro předmět Automatické řízení výrobní techniky (KKS/ARVT) na téma Podklady a grafická vizualizace k určení souřadnicových systémů výrobních strojů Autor: Doc. Ing. Josef Formánek, Ph.D.

Více

Namáhání krutem. Napětí v krutu podle Hookova zákona roste úměrně s deformací a svého maxima dosahuje na povrchu součásti

Namáhání krutem. Napětí v krutu podle Hookova zákona roste úměrně s deformací a svého maxima dosahuje na povrchu součásti Pužnost a evnost namáhání utem Namáhání utem Namáhání utem zůsobuje silová dvojice, esetive její outicí moment = F.a, teý vyvolává v namáhaných ůřezech vnitřní outicí moment (viz etoda řezu) Při namáhání

Více

KMS cvičení 6. Ondřej Marek

KMS cvičení 6. Ondřej Marek KMS cvičení 6 Ondřej Marek NETLUMENÝ ODDAJNÝ SYSTÉM S DOF analytické řešení k k Systém se stupni volnosti popisují pohybové rovnice: x m m x m x + k + k x k x = m x k x + k x = k x m x k x x m k x x m

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory 5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi

Více

Modelování blízkého pole soustavy dipólů

Modelování blízkého pole soustavy dipólů 1 Úvod Modelování blízkého pole soustavy dipólů J. Puskely, Z. Nováček Ústav radioelektroniky, Fakulta elektrotechniky a komunikačních technologií, VUT v Brně Purkyňova 118, 612 00 Brno Abstrakt Tento

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Střední půmyslová škola a Vyšší odboná škola technická Bno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky postřednictvím ICT Název: Téma: Auto: Číslo: Anotace: Mechanika, dynamika Pohybová ovnice po

Více

Harmonický pohyb, výchylka, rychlost a zrychlení

Harmonický pohyb, výchylka, rychlost a zrychlení Střední půmyslová škola a Vyšší odboná škola technická Bno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky postřednictvím ICT Název: Téma: Auto: Číslo: Anotace: Mechanika, kinematika Hamonický pohyb,

Více

ODVOZENÍ OBLASTI NECITLIVOSTI PRO PARAMETRY STŘEDNÍ HODNOTY REGULÁRNÍHO SMÍŠENÉHO LINEÁRNÍHO REGRESNÍHO MODELU BEZ PODMÍNEK

ODVOZENÍ OBLASTI NECITLIVOSTI PRO PARAMETRY STŘEDNÍ HODNOTY REGULÁRNÍHO SMÍŠENÉHO LINEÁRNÍHO REGRESNÍHO MODELU BEZ PODMÍNEK ODVOZENÍ OBLASTI NECITLIVOSTI PRO PARAMETRY STŘEDNÍ HODNOTY REGULÁRNÍHO SMÍŠENÉHO LINEÁRNÍHO REGRESNÍHO MODELU BEZ PODMÍNEK Hana Boháčová Univezita Padubice, Fakulta ekonomicko-spávní, Ústav matematiky

Více