Automaty a gramatiky. Organizační záležitosti. Přednáška: na webu (http://ktiml.mff.cuni.cz/~bartak/automaty) Proč chodit na přednášku?



Podobné dokumenty
Definice. Necht M = (Q, T, δ, q 0, F ) je konečný automat. Dvojici (q, w) Q T nazveme konfigurací konečného automatu M.

Automaty a gramatiky

AUTOMATY A GRAMATIKY

Automaty a gramatiky

Automaty a gramatiky. Úvod do formáln. lních gramatik. Roman Barták, KTIML. Příklady gramatik

Je regulární? Pokud ne, na regulární ji upravte. V původní a nové gramatice odvod te řetěz 1111.

Automaty a gramatiky(bi-aag)

Automaty a gramatiky. Roman Barták, KTIML. Důkaz věty o isomorfismu reduktů. Věta o isomorfismu reduktů. Pro připomenutí

Převody Regulárních Výrazů. Minimalizace Konečných. Regulární jazyky 2 p.1/35

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 7. března / 46

písemná a ústní část porozumění látce + schopnost formalizace

Petriho sítě PES 2007/2008. Doc. Ing. Tomáš Vojnar, Ph.D.

Minimalizace automatů. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 28. března / 31

6. Zobrazení δ: (a) δ(q 0, x) obsahuje x i, x i Z. (b) δ(x i, y) obsahuje y j, x i y j P 7. Množina F je množinou koncových stavů.

Naproti tomu gramatika je vlastně soupis pravidel, jak

Teorie jazyků a automatů

Deterministický konečný automat

Vlastnosti regulárních jazyků

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ

Riemannův určitý integrál.

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je

Vztah jazyků Chomskeho hierarchie a jazyků TS

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25

Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů

13. Exponenciální a logaritmická funkce

2.5.4 Věta. Každý jazyk reprezentovaný regulárním výrazem je regulárním jazykem.

VIII. Primitivní funkce a Riemannův integrál

Úvod 1. 3 Regulární jazyky Konečné jazyky Pumping Lemma pro regulární jazyky a nekonečné jazyky Sjednocení...

Úvod do Teoretické Informatiky ( UTI)

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,

Teorie jazyků a automatů I

Základy elementární teorie čísel

Formální jazyky a automaty Petr Šimeček

Základy teorie matic

Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému

Definice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.

Základy elementární teorie čísel

Logaritmická funkce teorie

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky.

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.

Věta o dělení polynomů se zbytkem

Návrh základních kombinačních obvodů: dekodér, enkodér, multiplexor, demultiplexor

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

m n. Matice typu m n má

Výroková a predikátová logika - IV

AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace

Integrální počet - II. část (určitý integrál a jeho aplikace)

3.2. LOGARITMICKÁ FUNKCE

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:

Výroková a predikátová logika - V

3. ROVNICE A NEROVNICE Lineární rovnice Kvadratické rovnice Rovnice s absolutní hodnotou Iracionální rovnice 90

2.1 - ( ) ( ) (020201) [ ] [ ]

10 Přednáška ze

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5.

Formální jazyky. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 6. března / 48

1.2. MOCNINA A ODMOCNINA

Turingovy stroje. Teoretická informatika Tomáš Foltýnek

Limity, derivace a integrály Tomáš Bárta, Radek Erban

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Výroková a predikátová logika - VIII

VIII. Primitivní funkce a Riemannův integrál

Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n,

Digitální učební materiál

Úvod do informatiky. Miroslav Kolařík

Psychologická metodologie. NMgr. obor Psychologie

I Diferenciální a integrální počet funkcí jedné proměnné 3

Logaritmické rovnice I

2.8.5 Lineární nerovnice s parametrem

8. Elementární funkce

SYLABUS MODULU UPLATNĚNÍ NA TRHU PRÁCE DÍLČÍ ČÁST II BAKALÁŘSKÝ SEMINÁŘ + PŘÍPRAVA NA PRAXI. František Prášek

Výroková a predikátová logika - VIII

TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA.

Matematická analýza 1

7. Integrální počet Primitivní funkce, Neurčitý integrál

Čísla značí použité pravidlo, šipka směr postupu Analýza shora. Analýza zdola A 2 B 3 B * C 2 C ( A ) 1 a A + B. A Derivace zleva:

2.3. DETERMINANTY MATIC

Kongruence na množině celých čísel

Integrální počet - III. část (určitý vlastní integrál)

4.2.1 Goniometrické funkce ostrého úhlu

ANALYTICKÁ GEOMETRIE

Základy teoretické informatiky Formální jazyky a automaty

Automaty a gramatiky. Uzávěrové vlastnosti v kostce R J BKJ DBKJ. Roman Barták, KTIML. Kvocienty s regulárním jazykem

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015

Přednáška 9: Limita a spojitost

Výroková a predikátová logika - III

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:

Lineární nerovnice a jejich soustavy

[1] Definice 1: Polynom je komplexní funkce p : C C, pro kterou. pro všechna x C. Čísla a 0, a 1,..., a n nazýváme koeficienty polynomu.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b b2 2.

3.2.1 Shodnost trojúhelníků I

Automaty a gramatiky. Trochu motivace. Roman Barták, KTIML. rní jazyky. Regulárn. Kleeneova věta. L = { w w=babau w=uabbv w=ubaa, u,v {a,b}* }

TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 3. PREDNÁŠKA - KOMPAKTNÍ PROSTORY.

Transkript:

Orgnizční záležitosti Atomty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cni.cz http://ktiml.mff.cni.cz/~rtk Přednášk: n we (http://ktiml.mff.cni.cz/~rtk/tomty) Proč chodit n přednášk? dozvíte se více než při pohém čtení sljdů de záv (někdy) Cvičení: Proč chodit n cvičení? vyzkošíte si, zd látce rozmíte rozšíříte si znlosti z přednášky Zkošk: písemná ústní část porozmění látce + schopnost formlizce O čem de přednášk? stdim konečného popis nekonečných ojektů stdim strktních výpočetních zřízení dvě větve: tomty grmtiky Zdroje litertr R. Brták: Atomty grmtiky: on-line http://ktiml.mff.cni.cz/~rtk/tomty M. Chytil: Atomty grmtiky, SNTL Prh, 984 V. Koek: Atomty grmtiky, elektronický text, 996 konečné tomty zásoníkové tomty lineárně omezené tomty reglární grmtiky ezkontextové grmtiky kontextové grmtiky M. Chytil: Teorie tomtů formálních jzyků, skript M. Chytil: Sírk řešených příkldů z teorie tomtů formálních jzyků, skript M. Demlová, V. Koek: Algerická teorie tomtů, SNTL Prh, 99 Tringovy stroje grmtiky typ J.E. Hopcroft, R. Motwni, J.D. Ullmn: Introdction to Atomt Theory, Lngges nd Compttion, Addison-Wesley -

Pohled do historie Počátky ve drhé čtvrtině 2. století první formlizce pojm lgoritms (936) co stroje mí co ne? Chrch, Tring, Kleene, Post, Mrkov Polovin 2. století neronové sítě (943) konečné tomty (Kleene 956 neronové sítě KA) 6. lét 2. století grmtiky (Chomsky) zásoníkové tomty formální teorie konečných tomtů Prktické vyžití! zprcování přirozeného jzyk! překldče! návrh, popis verifikce hrdwre integrovné ovody, stroje, tomty! relizce pomocí softwre formální popis progrm hledání výskyt slov v text, verifikce systémů s konečně stvy (protokoly, ),! plikce v iologii simlce růst cellární tomty see-reprodkce tomtů Úvod do konečných tomtů Projekt SETI (Serch Extr-Terrestril Intelligence) nlýz signálů - hledání vzork Úvod do konečných tomtů 2 Stroj n káv stroj signlizje vydání kávy po vhození potřeného onos Hledání vzork Vstpem stroje jso mince,2,5 Kč, káv stojí 5 Kč c d 2/ /- /- /- 2 3 4 /- 2/ / Relizce pomocí Melyho stroje s výstpem při přechod. -2

Formlizce konečného tomt Konečným tomtem nzýváme pětici A = (Q,X,δ,q,F), kde: Q - konečná neprázdná množin stvů (stvový prostor) X - konečná neprázdná množin symolů (vstpní eced) δ - zorzení Q X Q (přechodová fnkce) q Q (počáteční stv) F Q (množin přijímcích stvů) c d Popis konečného tomt Stvový digrm (grf) vrcholy = stvy hrny = přechody Tlk řádky = stvy+přechody slopce = písmen Stvový strom vrcholy = stvy hrny = přechody poze dosžitelné stvy! c d c c d c c d d c Aeced, slov, jzyky eced X = konečná neprázdná množin symolů slovo = konečná poslopnost symolů (i prázdná) prázdné slovo λ (e, ε,...) X* = množin všech slov v ecedě X X + = množin všech neprázdných slov v ecedě X X* = X + {λ} jzyk L X* (množin slov v ecedě X) Zákldní operce se slovy: zřetězení slov.v, v mocnin n ( = λ, =, n+ = n.) délk slov ( λ = ) Rozšířená přechodová fnkce přechodová fnkce δ: Q X Q rozšířená přechodová fnkce δ* : Q X* Q trnzitivní závěr δ indktivní definice δ*(q,λ) = q δ*(q,wx) = δ(δ*(q,w),x), x X, w X* úmlv: δ* deme někdy oznčovt tké jko δ -3

Jzyky rozpozntelné konečnými tomty Jzykem rozpoznávným (kceptovným, přijímným) konečným tomtem A = (Q,X, δ,q,f) nzveme jzyk: L(A) = {w w X* δ*(q,w) F}. Slovo w je přijímáno tomtem A, právě když w L(A). Jzyk L je rozpozntelný konečným tomtem, jestliže existje konečný tomt A tkový, že L=L(A). Tříd jzyků rozpozntelných konečnými tomty znčíme F, tzv. reglární jzyky. Příkldy reglárních jzyků L= { w w {,}*, w=xx, x {,}, {,}*} L= { w w {,}*, w=, {,}*} L= { w w {,}* w je inární zápis čísl dělitelného 5} L = { n n n } není reglární jzyk! 2 3 4 Kongrence Jk zjistit, že jzyk není rozpozntelný konečným tomtem? Jk chrkterizovt reglární jzyky? Kongrence Nechť X je konečná eced, ~ je relce ekvivlence (reflexivní, symetrická, trnsitivní) n X*. Potom: ) ~ je prvá kongrence, jestliže,v,w X* ~v w~vw ) je konečného index, jestliže rozkld X*/~ má konečný počet tříd Rozkld n třídy v w vw Nerodov vět Nechť L je jzyk nd konečno ecedo X. Potom následjící tvrzení jso ekvivlentní: ) L je rozpozntelný konečným tomtem, ) existje prvá kongrence ~ konečného index n X* tk, že L je sjednocením jistých tříd rozkld X*/~. X* X*/~ L -4

Důkz Nerodovy věty ) ) tomt prvá kongrence konečného index definjme ~v δ*(q,) = δ*(q,v) je to ekvivlence (reflexivní, symetrická, trnsitivní) je to prvá kongrence (z definice δ*) má konečný index (konečně mnoho stvů) L= { w δ*(q,w) F} = { w δ*(q q F,w) = q} Pozorování: stvy odpovídjí třídám ekvivlence w v Důkz Nerodovy věty - pokrčování ) ) prvá kongrence konečného index tomt oznčme [] tříd rozkld oshjící slovo Jk sestrojíme konečný tomt A? eced X dán stvy Q - třídy rozkld X*/~ stv q = [λ] koncové stvy F = {c,..,c n }, kde L= i=..n c i přechodová fnkce δ([],x) = [x] přechodová fnkce je korektní (z definice prvé kongrence) Ještě L(A) = L? w L w i=..n c i w c w c n [w]= c [w]= c n [w] F w L(A) δ*([λ],w) = [w] x L Požití Nerodovy věty Konstrkce tomtů Příkld: Sestrojte tomt přijímjící jzyk L = {w w {,}* & w oshje 3k+2 symolů } oznčme x počet symolů x ve slově definjme ~v ( mod 3 = v mod 3 ) tři třídy ekvivlence,,2 (zytky po dělení 3) L odpovídá třídě 2 -přechody přesovjí do následjící třídy (mod 3) -přechody zchovávjí tříd 2 Požití Nerodovy věty - pokrčování Důkz nereglárnosti jzyk! Příkld: Rozhodněte zd následjící jzyk je reglární L = { n n n }. Předpokládejme, že jzyk je reglární existje prvá kongrence konečného index m, L je sjednocením tříd vezmeme slov,,, m+ dvě slov pdno do stejné třídy (kričkový princip) i j i ~ j přidejme i i i ~ j i (prvá kongrence) spor i i L & j i L -5