Několik poznámek na téma lineární algebry pro studenty fyzikální chemie



Podobné dokumenty
Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie

Jazyk matematiky Matematická logika Množinové operace Zobrazení Rozšířená číslená osa

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.

Lineární algebra II. Adam Liška. 9. února Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak. rok 2007/2008

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly

Matice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

3. Matice a determinanty

Euklidovský prostor Stručnější verze

5. Maticová algebra, typy matic, inverzní matice, determinant.

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )

Matematické symboly a značky

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

2. Matice, soustavy lineárních rovnic

Vybrané problémy lineární algebry v programu Maple

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

TEORIE MATIC. Tomáš Vondra

Matematika pro studenty ekonomie

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity

DEFINICE Z LINEÁRNÍ ALGEBRY

2 Spojité modely rozhodování

Soustavy lineárních rovnic

Maticový a tenzorový počet

1 Determinanty a inverzní matice

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ. Matematika 3. RNDr. Břetislav Fajmon, PhD. Autoři textu:

Jak pracovat s absolutními hodnotami

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu

Vektory a matice. Matice a operace s nimi. Hodnost matice. Determinanty. . p.1/12

Poznámky z matematiky

Operace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n.

Geometrie pro FST 2. Plzeň, 28. srpna 2013, verze 6.0

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku

předmětu MATEMATIKA B 1

FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

1 Linearní prostory nad komplexními čísly

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

(Auto)korelační funkce Statistické vyhodnocování exp. dat M. Čada ~ cada

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

0. Lineární rekurence Martin Mareš,

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

1 Vektorové prostory.

8 Matice a determinanty

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím.

(Cramerovo pravidlo, determinanty, inverzní matice)

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

Soustavy linea rnı ch rovnic

3.2 Rovnice postupné vlny v bodové řadě a v prostoru

y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Řádková norma (po řádcích sečteme absolutní hodnoty prvků matice a z nich

6. T e s t o v á n í h y p o t é z

Lineární algebra a analytická geometrie sbírka úloh a ř ešených př íkladů

1. Základy logiky a teorie množin

Teoretická rozdělení

11. Geometrická optika

Reference 10. Předpokládejme stavový popis spojitého, respektive diskrétního systému

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace

Připomenutí co je to soustava lineárních rovnic

IB112 Základy matematiky

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici

0.1 Úvod do lineární algebry

7. Lineární vektorové prostory

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

Matematika B101MA1, B101MA2

Co je obsahem numerických metod?

Aplikovaná numerická matematika - ANM

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

kde je dostupný ve formě vhodné pro tisk i ve formě vhodné pro prohlížení na obrazovce a z adresy

9. Úvod do teorie PDR

Symetrické a kvadratické formy

Elektrotechnická fakulta

0.1 Úvod do lineární algebry

Eduard Šubert: Koktejl nápoj je vektorem z lineárního obalu ingrediencí.

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program

VĚTY Z LINEÁRNÍ ALGEBRY

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu

Přímé metody výpočtu charakteristických čísel matic

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

1 0 0 u 22 u 23 l 31. l u11

6. Matice. Algebraické vlastnosti

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Masarykova univerzita. Základy konvexní analýzy a optimalizace v R n.

Úvod do optimalizace

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. lorencz@fel.cvut.cz

Edita Kolářová ÚSTAV MATEMATIKY

Lineární algebra : Vlastní čísla, vektory a diagonalizace

Optimalizace. Elektronická skripta předmětu A4B33OPT. Toto je verze ze dne 28. ledna Katedra kybernetiky Fakulta elektrotechnická

Transkript:

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Jiří Kolafa Vektory. Vektorový prostor Vektor je často zaveden jako n-tice čísel, (v,..., v n ), v i R (pro reálný vektorový prostor); případně v i C (komplexní vektorový prostor; další možná zobecnění zde nebudeme uvažovat). Tuto představu lze zobecnit (zvláště na n = ) pomocí pojmu vektorového prostoru. Vektorový prostor (též lineární prostor) je definován následujícími axiomy (u, v, w značí prvky vektorového prostoru a a, b R nebo C): u + (v + w) = (u + v) + w u + v = v + u nulový vektor 0 : v + 0 = v opačný vektor v : v + ( v) = 0 a(bv) = (ab)v v = v a(u + v) = au + av (a + b)v = av + bv Vektory značíme různě podle oboru použití: v, v, v (zvláště reálné vektory ve 3D), v, v ( ket v kvantové teorii), v i (formálně složka vektoru, ale lze ji někdy identifikovat s celým vektorem). Množina vektorů v (i), i =..m, je lineárně závislá, jestliže existuje taková lineární kombinace a alespoň jedním a i 0, která je nulová: ai v (i) = 0 Lineárně nezávislá množina vektorů taková, že pomocí jejích lineárních kombinací lze vyjádřit libovolný vektor, se nazývá báze. Dá se ukázat, že takové vyjádření je jednoznačné. Vektor je pak někdy identifikován se svými souřadnicemi v i ve vybrané bázi, v = v i b (i). Příklady viz mat-lin.mw.2 Skalární součin Nás zajímají především vektorové prostory se skalárním (též vnitřním) součinem. V R n se skalární součin definuje vztahem u v = u i v i, v obecném lineárním prostoru však nemáme žádnou speciální bázi, a tedy ani žádné souřadnice. Skalární součin (u, v) je pak

zobrazení dvojic u, v do R nebo C takové, že platí axiomy (u, v) = (v, u) ( značí komplexní sdružení) (au, v) = a(u, v) (u + v, w) = (u, w) + (v, w) (u, u) 0 (u, u) = 0 u = 0 (nulový vektor) Skalární součin se značí u T v, u T v, u v, (u, v), u, v, u v, u v, u v (bra-ketová symbolika oblíbená v kvantové teorii), u i v i (v tenzorovém počtu), případně případně obdobně jako lineární forma (viz níže). Ve výrazech T značí transpozici: jestliže se v interpretuje jako sloupec čísel (sloupcový vektor), je v T řádkový vektor a násobíme řádek sloupcem. V komplexních prostorech je transpozice a komplexní sdružení. Dále v některých zápisech a v bra-ketové notaci značí součet přes jistou dvojici indexů, ve výrazu u i v i se sčítá přes jeden index nahoře a jeden dole (Einsteinova sumační konvence). Vektory u, v, pro které platí (u, v) = 0, nazýváme kolmé. Výraz (u, u) /2 se nazývá norma a značí se u nebo u. Hilbertův prostor je vektorový prostor se skalárním součinem, který je tzv. úplný (každá Cauchyovská posloupnost 2 v metrice dané (u, u) konverguje) a obvykle ještě separabilní (prostor obsahuje spočetnou hustou podmnožinu). Každý konečný vektorový prostor je Hilbertův. Výše uvedené podmínky vágně řečeno znamenají, že nejsou problémy s rozšířením konečných sum na nekonečné, pokud uvažujeme nekonečnědimenzionální prostory. Příklad. Práce je skalárním součinem síly a dráhy: W = F s. Příklad. Vlnová funkce je vektor komplexního Hilbertova prostoru; musí platit, že existuje ψ(τ) 2 dτ (integrovatelnost s kvadrátem). Skalární součin je (v braketové notaci) φ ψ = φ(τ) ψ(τ)dτ Ve výše uvedeném vzorci je obvykle τ R 3n, kde n je počet elektronů, ale pokud uvažujeme spin, pak máme 2 n -tice funkcí argumentu z R 3n a integrace obsahuje sumy přes spinové stavy, což není matematicky konzistentní s integrační notací..3 Ortogonální báze Ortogonální báze Hilbertova prostoru je báze, jejíž všechny prvky jsou navzájem kolmé, ortonormální báze má prvky navíc normalizované, tj. b (i) b (j) = δ ij zde v Hilbertově prostoru existují lineární prostory s normou, ale bez skalárního součinu 2 Posloupnost {u i } i= je Cauchyovská, jestliže d > 0 n : v j v i < d i, j > n 2

Složky vektoru v v ortonormální bázi vyjádříme zvlášť snadno, v i = v b (i) v = v i b (i) = Skalární součin dvou vektorů rozvinutých ve stejné ortonormální bázi má dobře známý tvar v. v n b u v = u i v i Máme-li bázi b i, která není ortogonální, můžeme ji ortogonalizovat a normovat Gramovým Schmidtovým procesem, který napíšeme ve formě algoritmu 3 b () := b () / b () b (2) := b (2) (b (2) b () )b (), b (2) := b (2) / b (2) b (3) := b (3) (b (3) b () )b () (b (3) b (2) )b (2), b (3) := b (3) / b (3) Pokud v Hilbertově prostoru mluvíme o bázi a souřadnicích vektoru v této bázi, máme na mysli zpravidla ortonormální bázi. Příklady viz mat-lin2.mw.4 Lineární forma Lineární forma f přiřazuje vektoru číslo f(v) R, případně f(v) C. Pro libovolné formy f, g, číslo a a libovolný vektor v musí platit Pro konečné n lze formu zapsat jako (f + g)(v) = f(v) + g(v) f(av) = af(v) n f(u) = f i u i i= pro nekonečnědimenzionální prostory mohou být problémy s konvergencí, až na ně je ale v Hilbertově prostoru lineární forma skoro to samé jako skalární součin, tedy f(v) = fi v i = (f, v). V některém kontextu, zpravidla v Euklidovském prostoru (a v tenzorovém počtu), se pak lineární forma nazývá kovektor; je-li vektor interpretován jako sloupec čísel (sloupcový vektor), pak kovektor je řádkový vektor, f T (transponovaný). Např. rovina ve 3D procházející počátkem má rovnici n r = 0, kde n je vektor kolmý k rovině a lze jej interpretovat jako kovektor. Zápisy skalárního součinu pak lze doplnit o f(u) = f T u = f T u = f i u i (Einsteinova sumační konvence = sčítá se přes dvojici indexů nahoře/dole). V komplexních Hilbertových prostorech máme místo T. 3 := je dosazení, algoritmus vykonáváme sekvenčně 3

.5 Maple V Maple při použití with(linearalgebra) dává funkce Vector(), např. Vector([,2,3]), sloupcový vektor a při násobení matice zprava (operátor. 4 ) vektorem vznikne opět sloupcový vektor. Kovektor je řádkový vektor, ale operátor. nekonzistentně akceptuje jak dva sloupcové vektory (pak je výsledek skalární součin) tak kovektor.vektor (lineární forma), operátor. se rovněž používá k násobení matic (kde se řádky a sloupce rozlišují), ale již nelze násobit matici kovektorem zprava, tj. používá se pravidlo řádky násobíme sloupci. 2 Čtvercové matice Čtvercová matice n n, např. A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 může reprezentovat: matici koeficientů soustavy n lineárních rovnic o n neznámých: A x neboli Ax = b neboli A ij x j = b i j lineární zobrazení R n R n resp. C n C n x A x neboli x Ax neboli x i j A ij x j matici koeficientů kvadratické formy x T Ax neboli x T A x neboli x i A ij x j ij kvadratický tenzor, např. tenzor tlaku (napětí) P Matice se občas značí tučně A, příp. A (tenzor), jako operátory se stříškou (Â). Co se týče konvence násobení matice vektorem (= aplikace lineárního operátoru), či se často vynechává. Je však (pokud nechceme vše vypisovat pomocí sum) potřeba rozlišovat řádky a sloupce. V nekonečně rozměrných prostorech jsou matice nekonečné a spíš se mluví o lineárních operátorech. Pokud soustava A x = b má řešení b, říkáme, že A je regulární a řešení můžeme napsat ve tvaru x = A b 4. = tečka, nutno rozlišovat od, kterýmžto symbolem se ve 2D zobrazení na vstupu i výstupu značí násobení; v režimu 2D vstupu (který nedoporučuji) se tento znak napíše z klávesnice pomocí * 4

kde A je inverzní matice, A A = A A = δ, kde δ = diag(,,...) je jednotková matice (identita, Kroneckerovo delta); jiné značení je,, ˆ nebo jen jako číslo, dále I, E, atd. Determinant matice A je číslo definované součtem přes všech n! permutací p indexů {, 2,..., n}: det A = sign(p) A i,p(i) p kde sign(p) = ( ) počet transpozic p. Jiné značení je DetA, A, A (pozor na záměnu s normou matice). Regulární matice má det A 0. Platí det(a B) = det(a) det(b), det(a ) = det A (pro regulární matici A) Determinant diagonální nebo trojúhelníkové matice je roven součinu prvků na diagonále. Existuje mnoho numerických metod pro inverzi matice (založených např. na LU rozkladu), na papíře je nejjednodušší použít buď Crammerovo pravidlo (do 3 3) nebo Gaussovu eliminaci: Eliminační operace provádíme synchronně na dané matici a na jednotkové matici, je to ekvivalentní násobením zleva jistou maticí; nakonec znásobíme zleva diagonální maticí, abychom dostali vlevo δ. Příklad viz mat-lin3.mw Ortogonální 5 (v R) nebo unitární (v C) matice má všechny řádky i sloupce normalizované, různé řádkové i sloupcové vektory jsou kolmé: UijU jk = δ ik nebo U U = δ j Tato matice je regulární, platí U = U. Determinant ortogonální matice je + nebo. Lineární zobrazení x U x v R n představuje rotaci v n-dimenzionálním prostoru okolo počátku (pro det U = ), resp. rotaci a zrcadlení (pro det U = ). Příklady viz mat-lin3.mw 2. Vlastní vektory a čísla matice Vlastní vektor a vlastní číslo matice A jsou definované vztahem A v = λv neboli (A λδ) v = 0 Druhou rovnic lze splnit (pro nenulové v), pouze když matice A λδ je singulární, tedy det(a λδ) = 0 () To je algebraická rovnice n-tého stupně, která má n kořenů (vč. násobnosti). Nejčastěji se setkáte s reálnými symetrickými (A = A T neboli A ij = A ji ) resp. komplexními Hermitovskými maticemi (A = A neboli A ij = A ji ); ovšem každá symetrická 5 Logičtější termín ortonormální se nepoužívá 5

matice je také Hermitovská. Např. matice (vážených) druhých derivací potenciálu pro výpočet fundamentálních vibrací je symetrická, operátory odpovídající pozorovatelným v kvantové teorii jsou často 6 Hermitovské. Vlastní čísla Hermitovské matice jsou reálná. Dokážeme to snadno tak, že rovnici A v = λv resp. A v = λ v znásobíme zleva v T = v = v : v A v = ij v i A ij v j = i v i λv i = λ v 2 = ij v i A jiv j = ij v j A jivi = ij vj A ji v i = λ v 2 Tedy λ = λ λ R. Vlastní vektory odpovídající různým vlastním číslům Hermitovské matice jsou kolmé. Důkaz provedeme v bra-ket notaci; máte-li pochyby, rozepište si výrazy pomocí sum. Zprava: v (2) A v () = v (2) λ v () = λ v (2) v () a zleva v (2) A v () = v (2) λ 2 v () = λ 2 v (2) v () což může zároveň platit (pro λ λ 2 ), pouze když v () v (2) = 0. Pokud je k vlastních čísel stejných (degenerovaných), tvoří vlastní vektory k-dimenzionální podprostor, ve kterém můžeme vybrat ortonormální bázi z k vektorů. Symetrická nebo Hermitovská matice tedy generuje ortogonální bázi z n vektorů v (i). Můžeme ji ortonormalizovat (místo v () vezmeme v () / v (), což je také vlastní vektor). Podobné tvrzení (zvané spektrální teorém) platí pro tzv. kompaktní operátory v - -dimenzionálním Hilbertově prostoru. Takový operátor musí být ještě o něco lepší než omezený (tj. zobrazující omezenou množinu na omezenou množinu neprodukující nekonečna), musí omezenou množinu ještě trochu víc splácnout. Lze si jej zhruba představit jako limitu posloupnosti matic se zvětšující se velikostí s tím, že řádky a sloupce přidané k dalšímu členu posloupnosti jsou vždy menší a menší. Pro úplnost jedna z ekvivalentních definic: Omezený operátor (v Hilbertově prostoru) je kompaktní, jestliže z obrazů libovolné posloupnosti vektorů v -kouli (tj. {v i } i=, v i < ) lze vybrat Cauchyovskou (tj. zde konvergentní) posloupnost. (Z {v i } i= v -dimenzionálním prostoru obecně takovou posloupnost vybrat nelze, takže identita není kompaktním operátorem). Příklady viz mat-lin4.mw Omezme se nyní na reálné symetrické matice a sestavme matici U ze sloupcových vektorů v (j), tedy U ij = v (j) i. Pak A v (j) = λ j v (j) A U = Λ U kde Λ = diag(λ, λ 2,...), Λ ij = λ j δ ij = λ i δ ij je diagonální matice s vlastními čísly na diagonále. Znásobením U = U T zleva dostaneme U A U = U Λ U = Λ U U = Λ 6 V nekonečnědimenzionálních prostorech musím ještě zajistit konvergenci. 6

Obrázek : Kvadratická forma x 2 4xy + y 2 protože diagonální matice komutuje s libovolnou maticí. Kvadratická forma odpovídající matici U A U je x T U A U x = x T Λ x = i λ i x 2 i tedy unitární transformace U (tj. rotace v n-rozměrném prostoru) převádí symetrickou (lze rozšířit na Hermitovskou) matici na diagonální. Termín diagonalizace matice je tedy prakticky to samé co výpočet vlastních čísel a vektorů. Příklad. má matici Kvadratická forma Charakteristická rovnice je x 2 4xy + y 2 A = ( 2 2 ( ) λ 2 det = λ 2 2λ 3 2 λ s kořeny λ =, λ 2 = 3. Vlastní vektory získáme řešením rovnic ) ( ) Av = v v = ( ) Av 2 = 3v 2 v 2 = Po normalizaci To je matice rotace o 45. v = ( / 2 / 2 / 2 / 2 ) 7

Signatura kvadratické formy resp. symetrické matice je daná počtem kladných, záporných a nulových vlastních čísel v diagonálním tvaru (na pořadí nezáleží). Např. signatura formy z příkladu je (+, ) resp. (n +, n, n 0 ) = (,, 0). Signaturu kvadratické formy lze použít k stanovení typu extrému funkce. Pro funkce f(x i ) se spojitými druhými derivacemi je podmínka extrému f x i = 0, i =,..., n Je-li tato podmínka splněna pro nějaké x 0, je Taylorův rozvoj funkce do 2. řádu v minimu f(x) = f(x 0 ) + (x i x 0 i )A ij (x j x 0 2 j), A ij = f 2 ij x i x j xi =x 0 i,x j=x 0 j Je-li signatura matice A rovna (n, 0, 0), tj. samé +, pak matice resp. forma je pozitivně definitní a funkce f má v bodě x 0 lokální minimum. Je-li signatura matice A rovna (0, n, 0), tj. samé, pak matice je negativně definitní a funkce f má v bodě x 0 lokální maximum. Obsahuje-li signatura signatura + i, je matice indefinitní a funkce f má v x 0 sedlový bod. Jiné kritérium typu extrému je Sylvestrovo. Počítáme subdeterminanty det A ij i,j=, det A ij i,j=..2, det A ij i,j=..3. Jsou-li všechny kladné, je v bodě x 0 minimum; střídají-li se znaménka v pořadí, +,,..., je v bodě x 0 maximum. 2.2 Aplikace fundamentální vibrace molekuly Nechť PES ve tvaru U pot (τ), τ = { r,..., r N, }, nabývá minima pro τ min, výchylku od minima označme τ = τ τ min. Rozvineme PES do 2. řádu v minimu: U pot (τ) = U pot (τ min ) + i Newtonovy pohybové rovnice jsou U pot r i (τ min ) r i + 2 i,j r i 2 U pot r i r j (τ) r j m i ri m i 2 r i t 2 = f j = j A ij r j kde A ij = 2 U pot r i r j (τ min ), r i = r i r i,min V maticovém zápisu (vektor má 3N složek a matice jsou 3N 3N) pčejdou Newtonovy rovnice na M τ = A τ, kde M = diag(m, m, m,..., m N, m N, m N ) Hledáme transformaci (bázi) ve tvaru τ = M /2 U u 8

kde U je ortogonální matice. Po dosazení: Zleva znásobíme M /2 U : M M /2 U üu = A M /2 U u üu = Λ u, Λ = U M /2 A M /2 U Najdeme-li matici U tak, že Λ = U M /2 A M /2 U je diagonální, to jest diagonalizujeme matici A = M /2 A M /2 neboli nalezneme její vlastní čísla a vektory. Newtonovy rovnice se nám rozpadnou na 3N nezávislých harmonických oscilátorů: ü α = B αα u α, α =,..., 3N Frekvence jsou Λαα ν α = 2π Fundamentální pohyby jsou kolmé, neboť A je symetrická. Příklad. Dvě částice o hmotnosti m spojené pružinou na přímce U pot = K ( ) K/m K/m 2 (x y)2 A = B = diag(2k/m, 0) K/m K/m Frekvence jsou ν = 2K/m 2π (sym. stretch), Vlastní vektory (nenormalizované) jsou: ( ) ψ =, ψ 2 = ν 2 = 0 (translační pohyb) ( 2.3 Aplikace Soustava homogenních lineárních diferenciálních rovnic. řádu je soustava ẋ = A x + A 2 x 2 + + A n x n. ẋ n = A n x + A n2 x 2 + + A nn x n ) ẋ = A x (2) kde tečka značí derivaci (např. časovou) a x je vektor n funkcí proměnné t. Snadno ověříme, že jedno z n lineárně nezávislých řešení je x = e λt v, 9

kde v je vlastní vektor matice A: A v = λv Pro reálné koeficienty A ij jsou vlastní čísla λ buď reálná nebo se vyskytují v komplexně sdružených párech. Jsou-li všechna vlastní čísla různá (nedegenerovaná), máme n lineárně nezávislých řešení a obecné řešení lze zapsat pomocí n konstant jako x = λ C λ e λt v λ (3) kde neznámé hodnoty C λ se určí z počátečních podmínek, které jsou typicky ve tvaru (vektorově) x(0) = x 0. Je-li vlastní číslo λ k-krát degenerované, pak příslušných k členů z (3) nahradíme součtem k C k t k e λt v λ,k i= kde v λ,k je libovolná báze podprostoru příslušného k číslu λ. Soustava (2) je ekvivalentní jedné homogenní lineární diferenciální rovnici n-tého řádu, její charakteristická rovnice (algebraická rovnice n-tého stupně) je ekvivalentní rovnici (). Příklad. matice soustavy je A = ẋ = y, ẏ = x ( 0 0 z čehož spočteme vlastní čísla a vektory: v i = ) ( ) i, v i = λ = ±i ( ) i Obecné řešení je neboli po složkách C i v i e it + C i v i e it x = ic i e it + C i e it y = C i e it + ic i e it Pro počáteční podmínky x(0) =, y(0) = 0 najdeme ic i = C i = /2, načež x = cos(t), y = sin(t) což je rovnice pro harmonické kmity. Příklad viz mat-lin5.mw ẍ = x 0