Kvadraické rovnice a jejich užií Určeno udenům ředního vzdělávání mauriní zkouškou, první ročník, okruh Rovnice a nerovnice Pracovní li vyvořil: Mgr. Helena Korejková Období vyvoření VM: proinec 2012 Klíčová lova: řešení kvadraických rovnic, dikriminan, aplikace eorie ve lovních úlohách Maeriál je určen k procvičení probíraného učiva, pro práci pod vedením učiele, amoanou práci v hodině nebo k domácí přípravě. Práci pracovním liem předchází výklad vyučujícího. Kvadraická rovnice je maemaický výraz, kerý je možno ekvivalenními úpravami převé na var ax 2 +bx+c=0, kde a,b,c jou reálná číla, a 0, x je neznámá Vzorec pro výpoče dikriminanu: D = O čem dikriminan rozhoduje? Vypočěe x z rovnic: x = 9 x 2 = 25 x = c x = 0 Př.1: Přiřaďe právné dikriminany k daným rovnicím: 1) x 2 3x 4 = 0 A) D = 4 2) 12 7x + x 2 = 0 B) D = 25 3) x 2 2x = 0 C) D = 1 1., 2., 3. Vzorec pro výpoče kořenů kvadraické rovnice x 1,2 = Př.2: Řeše v R rovnici 2x 2 + 11x + 9 = 0 Auorem maeriálu a všech jeho čáí, není-li uvedeno jinak, je Mgr.Helena Korejková. Doupné z Meodického porálu www.rnb.cz/ablony, financovaného z ESF a áního rozpoču ČR. Provozováno Sřední školou echnickou a řemelnou Nový Bydžov.
Př.3: 3 x Řeše v R rovnici 1 x 2 Neúplné kvadraické rovnice ryze kvadraické např. x 2 = 64 bez aboluního členu např. 5x 2 125x = 0 Př.4: Řeše v R bez použií dikriminanu rovnice: a) x 2 1 = 0 b) x 2 + 16 = 0 c) 6x 2 + 12x = 0 Př.5: Zvěšíme li ranu čverce o 3 dm, zdevíináobí e jeho obah. Určee délku rany ohoo čverce. Př.6: Na rae dlouhé km léají leadla dvou ypů. Jeden yp doahuje rychloi o 100 km/h vyšší a jeho leový ča je edy o hodinu kraší. Vypočěe rychloi obou ypů leadel. Návod: 1 = 2 = km v 1 = v 2 + 100 vzorec v = Př.7: Dva závodníci vyběhli oučaně z mía A ejným měrem. První závodník má rychlo o 0,2 m/ věší než druhý. První závodník doběhl do cíle vzdáleného merů o 20 ekund dříve než druhý. Určee rychloi obou závodníků. Návod: proveďe ejný rozbor jako u předcházející úlohy. Auorem maeriálu a všech jeho čáí, není-li uvedeno jinak, je Mgr.Helena Korejková. Doupné z Meodického porálu www.rnb.cz/ablony, financovaného z ESF a áního rozpoču ČR. Provozováno Sřední školou echnickou a řemelnou Nový Bydžov.
Kvadraické rovnice a jejich užií - řešení Kvadraická rovnice je maemaický výraz, kerý je možno ekvivalenními úpravami převé na var ax 2 +bx+c=0, kde a,b,c jou reálná číla, a 0, x je neznámá Vzorec pro výpoče dikriminanu: D = b 2 4ac O čem dikriminan rozhoduje? Rozhoduje o poču kořenů dané rovnice. Vypočěe x z rovnic: x = 9 x 1,2 = 3 x 2 = 25 x 1,2 = 5 x = c x 1,2 = c x = 0 x = 0 Př.1: Přiřaďe právné dikriminany k daným rovnicím: 1) x 2 3x 4 = 0 A) D = 4 2) 12 7x + x 2 = 0 B) D = 25 3) x 2 2x = 0 C) D = 1 1 B, 2 C, 3 A Vzorec pro výpoče kořenů kvadraické rovnice x 1,2 = Př.2: Řeše v R rovnici 2x 2 + 11x + 9 = 0 D = 49 x 1 = 1, x 2 = 4,5 Př.3: b 2 a D 3 x Řeše v R rovnici 1 x 2 /.(x+8)(x-2) podm. x -8, x 2 x 2 16 = 0 x 1,2 = 4 Auorem maeriálu a všech jeho čáí, není-li uvedeno jinak, je Mgr.Helena Korejková. Doupné z Meodického porálu www.rnb.cz/ablony, financovaného z ESF a áního rozpoču ČR. Provozováno Sřední školou echnickou a řemelnou Nový Bydžov.
Př.4: Řeše v R bez použií dikriminanu rovnice: a) x 2 1 = 0 x 1,2 = 1 b) x 2 + 16 = 0 x = 16 rovnice nemá řešení v R c) 6x 2 + 12x = 0 x 1 = 0, x 2 = 2 Př.5: Zvěšíme li ranu čverce o 3 dm, zdevíináobí e jeho obah. Určee délku rany ohoo čverce. S = a 2, zvěšíme ranu o 3 dm na (a+3), pak S = (a+3) 2 9a 2 = (a+3) 2 8a 2 6a 9 = 0 D = 81, x 1 = 1,5 dm, x 2 = Př.6: 6 8 nevyhovuje délka rany čverce je 1,5 dm Na rae dlouhé km léají leadla dvou ypů. Jeden yp doahuje rychloi o 100 km/h vyšší a jeho leový ča je edy o hodinu kraší. Vypočěe rychloi obou ypů leadel. Návod: 1 = 2 = km v 1 = v 2 + 100 vzorec v = 1 100 1 100 100 2 100 = 0 D = 3610000, 1 = 10 hod, 2 = -9 nevyhovuje Ča = 10 hod, 1.leadlo má ča o 1 hod kraší, edy 9 hod. Rychloi 1.leadlo v = = 1000 km/h, 2.leadlo v = 9 10 = 900 km/h Auorem maeriálu a všech jeho čáí, není-li uvedeno jinak, je Mgr.Helena Korejková. Doupné z Meodického porálu www.rnb.cz/ablony, financovaného z ESF a áního rozpoču ČR. Provozováno Sřední školou echnickou a řemelnou Nový Bydžov.
Př.7: Dva závodníci vyběhli oučaně z mía A ejným měrem. První závodník má rychlo o 0,2 m/ věší než druhý. První závodník doběhl do cíle vzdáleného merů o 20 ekund dříve než druhý.určee rychloi obou závodníků. Návod: 1 = 2 = m v 1 = v 2 + 0,2 vzorec v = 20 0,2 0,2 2 4 19200 = 0 D = 15376 1 = 320, 2 = -300 nevyhovuje, ča = 320 = 5 min 20, první závodník má ča o 20 kraší, edy 300 Rychloi 1.závodník v = = 3,2 m/, 2.závodník 300 320 = 3 m/ Použiá lieraura: Sbírka úloh z maemaiky pro SOU a SOŠ, RNDr.Hudcová, Mgr.Kubičíková, Promeheu,pol..r.o., 2008 Sbírka úloh z maemaiky pro SŠ VÝRAZY, ROVNICE, NEROVNICE A JEJICH SOUSTAVY, F.Janeček, Proméheu pol..r.o., 2002 Sbírka úloh z maemaiky, ROVNICE A NEROVNICE I., David Zámek, ARCTUROS 1992 Auorem maeriálu a všech jeho čáí, není-li uvedeno jinak, je Mgr.Helena Korejková. Doupné z Meodického porálu www.rnb.cz/ablony, financovaného z ESF a áního rozpoču ČR. Provozováno Sřední školou echnickou a řemelnou Nový Bydžov.