B, e²te následující rekurenci n kterou z metod z kapitoly o sumách: (a j b k a k b j ) 2



Podobné dokumenty
Domácí úkol 2. Obecné pokyny. Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab.

e²ení systém lineárních rovnic pomocí s ítací, dosazovací a srovnávací metody

2. Ur íme sudost/lichost funkce a pr se íky s osami. 6. Na záv r na rtneme graf vy²et ované funkce. 8x. x 2 +4

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková

1. (18 bod ) Náhodná veli ina X je po et rub p i 400 nezávislých hodech mincí. a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost

I. VRSTEVNICE FUNKCE, OTEV ENÉ A UZAV ENÉ MNOšINY

P íklad 1 (Náhodná veli ina)

Rovnice a nerovnice. Posloupnosti.

Binární operace. Úvod. Pomocný text

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

Vnit ní síly ve 2D - p íklad 2

Post ehy a materiály k výuce celku Funkce

Zkou²ková písemná práce. 1 z p edm tu 01MAB4

e²ení testu 1 P íklad 1 v 1 u 1 u 2 v 2 Mechanika a kontinuum NAFY listopadu 2016

. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková

TROJÚHELNÍK. JAN MALÝ UK v Praze a UJEP v Ústí n. L. sin α = b a.

Práce s dokumentem. 1. Úvod do konstruování. 2. Statistické zpracování dat. 4. Analýza zatíºení a nap tí. Aktuální íslo revize: REV_40

Integrování jako opak derivování

4. Určete definiční obor elementární funkce g, jestliže g je definována předpisem

3.3. EXPONENCIÁLNÍ A LOGARITMICKÁ ROVNICE A NEROVNICE

7 Algebraické a nealgebraické rovnice a nerovnice v C. Numerické e²ení rovnic

1. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) x cotg x 1. c) lim. g) lim e x 1. cos(x) =

T i hlavní v ty pravd podobnosti

Vektory. Vektorové veli iny

Dolní odhad síly pro ztrátu stability obecného prutu

Posloupnosti a řady. 28. listopadu 2015

Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,

1 Spo jité náhodné veli iny

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická

Reálná ísla a posloupnosti Jan Malý

Funkce. b) D =N a H je množina všech kladných celých čísel,

ST2 - Cvi ení 1 STATISTICKÁ INDUKCE

Skalární sou in. Úvod. Denice skalárního sou inu

Zkou²ková písemná práce. 1 z p edm tu 01MAB4

Obsah. Pouºité zna ení 1

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Zimní semestr akademického roku 2014/ prosince 2014

1 1 3 ; = [ 1;2]

Měření momentu setrvačnosti z doby kmitu

kuncova/, 2x + 3 (x 2)(x + 5) = A x 2 + B Přenásobením této rovnice (x 2)(x + 5) dostaneme rovnost

16. DEFINIČNÍ OBORY FUNKCÍ

ST2 - Cvi ení 1 STATISTICKÁ INDUKCE

Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A

Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e)

Co je to tensor... Vektorový prostor

Jméno: P íjmení: Datum: 17. ledna 2018 Nechci zápo et p i hodnocení niº²ím neº (nezávazné): vadí mi vystavení mého hodnocení na internetu.



Zavedení a vlastnosti reálných čísel

Cvi ení 7. Docházka a testík - 15 min. Distfun 10 min. Úloha 1

Státní maturita 2010 Maturitní generálka 2010 Matematika: didaktický test - základní úrove obtíºnosti MAGZD10C0T01 e²ené p íklady

Pravd podobnost a statistika - cvi ení. Simona Domesová místnost: RA310 (budova CPIT) web:


Matematika I pracovní listy

- funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte. V obou případech vyzkoušejte Taylorovy řady

Určete a graficky znázorněte definiční obor funkce

p írodní zdroje energie a surovin odpady globální problémy ochrana p írody a krajiny nástroje spole nosti na ochranu životního

se nazývá charakter grupy G. Dále budeme uvaºovat pouze kone né grupy G. Charaktery tvo í také grupu, s násobením denovaným

Definiční obor funkce

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Spojka RPX. z tabulky 1 ní e, vyberte koeficient provozu, který je vhodný pro pou ití

na za átku se denuje náhodná veli ina

Limita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39

e²ení 4. série Binární operace

Vektor náhodných veli in - práce s více prom nnými

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost

Vzorové e²ení 4. série

Zápo tová písemná práce. 1 z p edm tu 01MAB4 varianta A

DMA Přednáška Rekurentní rovnice. takovou, že po dosazení odpovídajících členů do dané rovnice dostáváme pro všechna n n 0 + m pravdivý výrok.

MATEMATIKA I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ ZÁKLADY LINEÁRNÍ ALGEBRY

4. Lineární (ne)rovnice s racionalitou

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

Exponenciální a logaritmická funkce

Po etní geometrie. Výpo et délky p epony: c 2 = a 2 + b 2 Výpo et délky odv sny: a 2 = c 2 b 2, b 2 = c 2 a 2

tatistické rozdelenia

QR, b = QS, c = QP. Dokaºte ºe vzdálenost bodu P od roviny spl uje. a (b c) d =

Digitální učební materiál

l. 1 Úvodní ustanovení

Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A

TROJFÁZOVÝ OBVOD SE SPOT EBI EM ZAPOJENÝM DO HV ZDY A DO TROJÚHELNÍKU


Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. VZPĚR VZPĚR

Seminá e. Ing. Michal Valenta PhD. Databázové systémy BI-DBS ZS 2010/11, sem. 1-13

Obecnou definici vynecháme. Jednoduše řečeno: složenou funkci dostaneme, když dosadíme za argument funkci g. Potom y f g

z nich byla poprvé dokázána v 19. století velikány analytické teorie čísel (Pafnutij Lvovič Čebyšev, Charles-Jean de la Vallée Poussin a další).

pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A

Matematická logika cvi ení 47

Asymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

Logaritmus. Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým. umocníme základ a, abychom dostali číslo.

, Brno ipravil: Tomáš Vít z Mechanika tekutin

MECHANIKA TUHÉ TĚLESO

Matice a e²ení soustav lineárních rovnic

Státní maturita 2011 Maturitní testy a zadání jaro 2011 Matematika: didaktický test - základní úrove obtíºnosti MAMZD11C0T02 e²ené p íklady

Konceptuální modelování

1 P ílohy. 1.1 Dopln ní na tverec

Funkce komplexní proměnné a integrální transformace

Transkript:

1. A, e²te rekurenci Q 0 = 2 Q n = 2Q n 1 + (n + 2) 2, pro n > 0. B, e²te následující rekurenci n kterou z metod z kapitoly o sumách: Q 0 = 1 Q n = nq n 1 + n!, pro n > 0. 2. A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): Q 0 = 2 Q n = 2Q n 1 + 2 cos(nπ), pro n > 0. tak, aby po et s ítání byl úm rný n. 1 j<k n (a j b k a k b j ) 2 3. A, e²te rekurenci B, e²te metodou suma ního faktoru Q 0 = π, Q 1 = 2π, Q n = 2Q n 1 Q n 2 + π, pro n > 1. T 0 = 5 2T n = nt n 1 + 3n!, pro n > 0.

4. A, e²te rekurenci Q 0 = π Q n = 6Q n 1 πn 2, pro n > 0. B, Dokaºte, ºe platí n 1 n 1 (a k+1 a k )b k = a n b n a 0 b 0 (b k+1 b k )a k+1. 5. A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): Q 0 = π, Q 1 = π 2, Q n = Q n 2 + (n + π) 2, pro n > 1. B, Vypo t te následující sumu metodou z kapitoly 2.5.5: k 2 2 k. 6. A, e²te rekurenci B, e²te sumu Q 0 = 0, Q 1 = 0, Q n = 2Q n 1 Q n 2 + 2n, pro n > 1. H k perturba ní metodou. Návod: Zkuste namísto H k dosadit kh k. 7. A, e²te rekurenci Q 0 = 5 Q n = 5Q n 1 + 5n + 5, pro n > 0. ( 1) n k k 2.

8. A, e²te rekurenci Q 0 = 0 Q n = Q n 1 + 2 n + n, pro n > 0. 9. A, e²te rekurenci ( 2) k k 2. Q 0 = 5 Q n = 5Q n 1 + 55n 2, pro n > 0. ( ( 1) k k + k 2). 10. A, e²te rekurenci B, Vypo t te sumu Q 0 = 0 Q n = πq n 1 + πn 2, pro n > 0. k= n k([k > 0] [k < 0]). 11. A, e²te následující rekurenci (uvaºujte zvlá² sudá a lichá n): Q 0 = 1 Q n = 3Q n 1 + 6 cos(nπ) + 9 sin(nπ), pro n > 0. B, Vyjád ete následující sumu pomocí j a n : 12. A, e²te rekurenci B, Dokaºte Lagrangeovu rovnici: Q 0 = 3 [1 j k n] k Q n = 3Q n 1 + 3n 3, pro n > 0. ( n ) ( (a j b k a k b j ) 2 n ) ( = a 2 n ) k b 2 2 k a k b k. 1 j<k n

13. A, e²te rekurenci Q 0 = 1, Q 1 = 3, Q n = 2Q n 1 Q n 2 + 3n + 3, pro n > 1. ) k ) k+1. ( 1 3 ( 1 2 14. A, e²te rekurenci Q 0 = 4, Q 1 = 2, Q n = Q n 1 Q n 2 + 3, pro n > 1. 15. A, e²te rekurenci ( 1) n k 2 k. Q 0 = 2, Q 1 = 2, Q n = Q n 2 + (n + 1) 2, pro n > 1. 2 ( 1) k. k Nápov da: rozloºte na sumy pro lichá a sudá k. Uvaºte, ºe 1 k<2n k lich 1 k = H 2n 1 2 H n. 16. A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): Q 0 = 2, Q 1 = 3, Q n = Q n 2 + n cos(nπ), pro n > 1. B, Dokaºte, ºe platí 17. A, e²te rekurenci 1 k<2n k lich 1 k = H 2n 1 2 H n. Q 0 = π, Q 1 = π, Q n = Q n 1 Q n 2 7n, pro n > 1.

B, Plo²né momenty p i po íta ovém rozpoznávání obrazu o rozm ru n n bod s jasovou funkcí f(i, j), 1 i, j n jsou denovány jako m rs = i r j s f(i, j). i=1 j=1 Centrální momenty vztaºené k t ºi²ti i t, j t jsou denovány jako kde µ rs = (i i t ) r (j j t ) s f(i, j), i=1 j=1 i t = m 10 m 00, j t = m 01 m 00. Dokaºte, ºe µ 01 = µ 10 = 0 pro libovolné n a f(i, j). 18. A, e²te rekurenci Q 0 = 2, Q 1 = 2 2, Q n = Q n 1 Q n 2 + 2, pro n > 1. B, Vyjád ete pomocí harmonických ísel H n sumu k=2 1 k 2 1. Nápov da: 2/(k 2 1) = 1/(k 1) 1/(k + 1). 19. A, e²te rekurenci Q 0 = e, Q 1 = 2e, Q n = Q n 1 Q n 2 e, pro n > 1. Poznámka: íslo e je základ p irozeného logaritmu. 20. A, e²te rekurenci a k a j [j k]. j=1 g(1) = 1/3, g(2n + j) = 3g(n) + 33n + 333, pro j = 0, 1 a n > 0. Nápov da: e²te nejprve rekurenci bez lenu 33n, pak ji zobecn te a pouºijte repertoárovou metodu. (a k a j ) 2. j=1

21. A, e²te rekurenci B, Dokaºte, ºe platí 22. A, e²te rekurenci B, Dokaºte, ºe platí g(1) = 1, g(2n + j) = 3g(n) + sin(jπ/2), pro j = 0, 1 a n > 0. ( n )( (a k + b j ) 2 n 4 a k b j ). j=1 j=1 Q 0 = 7, Q 1 = 7, Q n = Q n 1 Q n 2 7n, pro n > 1. ( n ) n a 2 2 j a j. j=1 j=1 23. A, e²te následující rekurenci (uvaºujte zvlá² sudá a lichá n): B, Dokaºte, ºe platí 24. A, e²te rekurenci Q 0 = 13, Q 1 = 21, Q n = Q n 2 + n 2, pro n > 1. ( n )( n (a 2 k + b 2 n k) 2 a k b j ). j=1 g(1) = 1/3, g(2n + j) = 3g(n) + cos(jπ), pro j = 0, 1 a n > 0. B, e²te perturba ní metodou sumu ( 1) n k k. 25. A, e²te následující rekurenci (vyuºijte obecné e²ení z p edná²ek): 26. A, e²te rekurenci B, Vypo t te sumu g(1) = 1/3, g(2n + j) = 3g(n) + 3, pro j = 0, 1 a n > 0. Q 0 = 2 k 1 i=1 j=1 a i (a k a j ). Q n = 4Q n 1 6n, pro n > 0. j=1 j 2 k.

27. A, e²te následující rekurenci 28. A, e²te rekurenci Q 0 = 2 Q n = 4Q n 1 6 cos(nπ), pro n > 0. a 2 i (a k a j ) 2. i=1 j=1 Q 0 = 2 29. A, e²te následující rekurenci B, Dokaºte Cauchyho nerovnost Q n = 3Q n 1 + 5n 2 + 7n + 11, pro n > 0. a k a j (1 2[j < k]). j=1 Q 0 = 2, Q 1 = 3, Q n = Q n 2 + 5n + 8, pro n > 1. ( n a 2 k ) ( n b 2 k ) ( n ) 2 a k b k. Návod: pokuste se vyjád it rozdíl levé a pravé strany jako výraz, který je vºdy nezáporný. 30. A, e²te rekurenci Q 0 = 3 Q n = 6Q n 1 9n 2, pro n > 0. B, Vypo t te pomocí harmonických ísel sumu 2k + 1 k(k + 1). Návod: 1/k(k + 1) = 1/k 1/(k + 1). 31. A, e²te následující rekurenci (uvaºujte zvlá² sudá a lichá n): Q 0 = 2, Q 1 = 3, Q n = Q n 2 + n sin((2n + 1) π ), pro n > 1. 2 B, Vypo t te pomocí harmonických ísel sumu k 4k 2 1. Návod: 4k/(4k 2 1) = 1/(2k 1) + 1/(2k + 1).

32. A, e²te následující rekurenci (uvaºujte zvlá² sudá a lichá n): Q 0 = 2, Q 1 = 3, Q n = Q n 2 + n 2, pro n > 1. B, e²te sumu 33. A, e²te rekurenci S n = kx k, x R. 0 k n B, e²te metodou suma ního faktoru Q 0 = 7, Q 1 = 77, Q n = 2Q n 1 Q n 2 + 2, pro n > 1. T 0 = 3 3T n = nt n 1 3n!, pro n > 0. 34. A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): B, Vypo t te perturba ní metodou: 35. A, e²te rekurenci Q 0 = 3, Q 1 = 3, Q n = Q n 2 + (n + sin(nπ)) 2, pro n > 1. k 2 2 k. Q 0 = 2 Q n = 2Q n 1 2n 2 + 2n + 2, pro n > 0. B, e²te perturba ní metodou (namísto kh k dosa te k 2 H k ): 36. A, e²te rekurenci kh k. Q 0 = 7 Q n = 2Q n 1 + 3 n, pro n > 0. ) n k ) k. ( 1 3 ( 1 5

37. A, e²te následující rekurenci (p edpokládejte Q n 0 pro n 0): Q 0 = α, Q 1 = β, Q n = (1 + Q n 1 )/Q n 2, pro n > 1. 38. A, e²te rekurenci ( 2) k ( 3) n k. Q 0 = 5, Q 1 = 9, Q n = Q n 2 + 5n + 3, pro n > 1. B, Vyjád ete pomocí harmonických ísel H n sumu k k 2 1. Nápov da: 2k/(k 2 1) = 1/(k 1) + 1/(k + 1). 39. A, e²te rekurenci Q 0 = 2, Q 1 = 0, Q n = Q n 2 + n 2, pro n > 1. B, Vyjád ete pomocí harmonických ísel H n sumu k 2 k 2 1. Nápov da: 2k/(k 2 1) = 1/(k 1) + 1/(k + 1). 40. A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): Q 0 = 7 Q n = 7Q n 1 + 7 sin(nπ), pro n > 0. 2 2 j=1 k>j tak, aby po et s ítání byl lineární funkcí n. 41. A, e²te rekurenci Q 0 = 1 (c j d k c k d j ) 2 Q n = 11Q n 1 + n 1, pro n > 0. ( 1) k (n k) 2.

42. A, e²te rekurenci Q 0 = 2 0 Q n = Q n 1 + 2 n+1 + n + 1, pro n > 0. 43. A, e²te rekurenci ( 3) n+k k. Q 0 = 13 Q n = 3Q n 1 + 3n 2, pro n > 0. ( ( 1) k k 2 (n k) ). 44. A, e²te rekurenci B, Vypo t te sumu Q 0 = π Q n = 2πQ n 1 + πn 2 + π 2, pro n > 0. k 2 (1 2[k < 0]). k= n 45. A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): Q 0 = 1, Q 1 = 1, Q n = Q n 2 + 11 cos((n 1)π), pro n > 1. B, Vyjád ete následující sumu pomocí H 2n a H n : 46. A, e²te rekurenci 1 2k 1. Q 0 = log 3, Q 1 = 3 log 3, Q n = Q n 1 Q n 2 + log 3, pro n > 1. B, Vyjád ete pomocí harmonických ísel H n sumu 1 2k 2 + 3k 2. Nápov da: 2/(2k 2 + 3k 2) = 1/(k + 2) 2/(2k 1).

47. A, e²te rekurenci Q 0 = 1 2, Q 1 = Q 2 0, Q n = Q n 1 Q n 2 Q 1, pro n > 1. 48. A, e²te rekurenci n+1 j=2 a k a j [j k + 1]. g(1) = 3, g(2n + j) = 3g(n) + 3n + 3g(1), pro j = 0, 1 a n > 0. Nápov da: e²te nejprve rekurenci bez lenu 3n, pak ji zobecn te a pouºijte repertoárovou metodu. (a k + a j ) 2. j=1